

2

Howard Gould

Database Design and Implementation
A practical introduction using Oracle SQL

Download free eBooks at bookboon.com

3

Database Design and Implementation: A practical introduction using Oracle SQL
1st edition
© 2015 Howard Gould & bookboon.com
ISBN 978-87-403-1046-7
Peer reviewed by Dr Mark Dixon, senior lecturer, School of Computing,
Creative Technologies & Engineering, Leeds Beckett University

Download free eBooks at bookboon.com

http://bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

4

Contents

Contents

 Acknowledgements 8

 Foreword 9

1 Introduction to database development 10
1.1 Conceptual data modelling 11
1.2 The Entity Relationship Diagram (ERD) 12
1.3 Entity types 12
1.4 Producing the ERD 14
1.5 Entity attributes 14
1.6 Entity selection and validation 15
1.7 Entity definitions 19
1.8 Validating the model 20

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

Database Design and Implementation:
A practical introduction using Oracle SQL

5

Contents

2 Entity Relationships 21
2.1 Introduction 21
2.2 Relationships 21
2.3 Relationship cardinality 24
2.4 Relationship optionality 27

3 Complex relationships 31
3.1 Introduction 31
3.2 Associative relationships 32
3.3 Link entity identifier 34
3.4 Recursive relationships 37
3.5 Sub types 40
3.6 Exclusive relationships 42
3.7 Summary 42

4 Logical Database Design 44
4.1 Introduction 44
4.2 Relations 44
4.3 Keys 45
4.4 Identifying relations 46

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Database Design and Implementation:
A practical introduction using Oracle SQL

6

Contents

4.5 Resolving many-to-many relationships 49
4.6 Resolving one-to-many relationships with optionality 51
4.7 Resolving one-to-one relationships 52
4.8 Recursive relationships 54
4.9 Exclusive relationships 55
4.10 Identification Dependency 55
4.11 Modelling problems 57
4.12 Summary 58

5 Normalisation 62
5.1 Introduction 62
5.2 Un-normalised form (UNF) 63
5.3 First Normal Form (1NF) 69
5.4 Second Normal Form (2NF) 72
5.5 Third Normal Form (3NF) 77
5.6 Denormalisation 80
5.7 Checking the model 80
5.8 Summary 80

6 Introduction to Oracle SQL 85

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Database Design and Implementation:
A practical introduction using Oracle SQL

7

Contents

7 Using Foreign Keys 104

8 Selecting data from a table 108

9 Selecting data from multiple tables 115

10 Subqueries and group functions 123

11 Creating pages & reports 129

12 Appendices 153
12.1 Appendix A. UML Modelling Notation 153
12.2 Appendix B. Music System Specification (ERD and Tables) 156
12.3 Appendix C. Order System Specification (ERD and Tables) 160
12.4 Appendix D. Normalisation Template 163

13 Bibliography 164

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Database Design and Implementation:
A practical introduction using Oracle SQL

8

Acknowledgements

Acknowledgements
I should like to express my gratitude to colleagues at Leeds Beckett University (formerly known as Leeds
Metropolitan University) for reviewing the manuscript and making helpful suggestions. Particular thanks
go to Dr Mark Dixon for developing the QSEE CASE tool. The idea for this book evolved from teaching
an introductory level databases module to undergraduate computing students for many years. The main
material used by the module was a workbook developed and delivered by a number of staff at Leeds
Beckett University, and this book is based on some of the ideas and content of the workbook; I would
like to thank colleagues past and present for their contributions to the original student workbook, and
apologise to those who I have been unable to formally acknowledge here.

Trademarks

Some of the product and company names used in this book have been used for the purpose of identification
only and may be trademarks or registered trademarks of their respective manufacturers and sellers.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Unified Modelling Language and UML are either registered trademarks or trademarks of Object
Management Group, Inc. in the United States and/or other countries.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

9

Foreword

Foreword
This book has been written to provide a practical introduction to relational database design and database
development for students studying computing-related courses and anyone else who needs to work with
relational databases, either as users, designers or developers. Similarly, people who are commissioning
a database may benefit from an understanding of this content.

This book is based on an approach that has been used successfully over a number of years to teach many
undergraduate computing students, and is presented in a concise form that will make it easy for you to
grasp the essential principles and techniques and apply these in any relational database environment.

An established data modelling methodology is explained which includes Entity Relationship models.
These are presented using the long-established crow’s foot notation; however, as the Unified Modelling
Language (UML) has become an industry standard, the Class Diagram notation is also introduced to
show how it can also be used for ER modelling, though there are differences (Hay & Lynott, 2008).

The modelling diagrams used in this book have been drawn using the QSEE SuperLite v1.1.2 CASE tool
which is available to download from http://www.leedsbeckett.ac.uk/qsee/.

The Oracle database management system and Oracle Application Express (APEX) development
environment are used to introduce the industry standard Structured Query Language (SQL). An APEX
user account can be obtained from apex.oracle.com for web access; alternatively, a copy of Oracle
Database 11g Express Edition and Oracle APEX can be downloaded from Oracle.com for installation
on your own system.

Further supporting materials can be found at the author’s website howard-gould.co.uk.

Download free eBooks at bookboon.com

http://www.leedsbeckett.ac.uk/qsee/
howard-gould.co.uk

Database Design and Implementation:
A practical introduction using Oracle SQL

10

Introduction to database development

1 Introduction to database
development

On completion of this chapter you should be able to:

• be aware of the database development lifecycle
• understand the purpose of data modelling
• identify the key terms used in data modelling.

Databases are at the centre of most information systems in everyday use, therefore it is important that
they are designed and built using appropriate methods to ensure that they meet users’ requirements whilst
being robust and maintainable. A database system is usually regarded as the database which contains
related tables of data maintained by a database management system (DBMS), along with applications
that provide controlled access to the database.

In order to build an effective database system it is important to understand and apply the database
development lifecycle, which includes the following phases:-

1. Strategy and planning
2. Requirements analysis
3. Design
4. Development
5. Deployment/implementation
6. Operations and maintenance.

1. Strategy and planning – typically the cycle starts with the strategy and planning phase to identify the
need and scope of a new system.

2. Requirements analysis phase – a more detailed requirements analysis will be carried out which will
include identifying what the users require of the system; this will involve conceptual analysis.

3. Design phase – this will involve producing a conceptual, logical and physical design. To undertake
these processes it is important to be able to understand and apply the data modelling techniques
which are covered in this book. When a suitable logical design has been obtained the development
phase can begin.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

11

Introduction to database development

4. Development phase – this involves creating the database structure using an appropriate Database
Management System (DBMS) and usually includes the development of applications that provide a
user interface consisting of forms and reports which will allow controlled access to the data held in
the database. This book will show how the Oracle relational database management system and the
Oracle Application Express (APEX) application developer tool can be used for this purpose.

5. Deployment/implementation – when the system has been developed it will be tested, it will then be
deployed ready for use.

6. Operations and maintenance – following the system release for use it will be maintained until it reaches
the end of its useful life, at this stage the development lifecycle may restart.

1.1 Conceptual data modelling

Why do you need to model?

In many environments modelling is used to ensure that a product will satisfy the user’s requirements
before it is produced. For example, an architect may use a scale model of a building so the client can see
what it will look like before it is built. This allows for any changes to be made to the design following
feedback and before any expensive building work takes place. Similarly, a modelling approach is needed
when designing a database system so that interested parties can check that the design will satisfy
the requirements.

How do you model a database system?

In order to design an effective database system you need to be able to understand an organisation’s
information needs and, in particular, identify the data needed to satisfy these needs. Entity Relationship
modelling (Chen P. 1976) is an important top-down analysis technique which is used to show the
structure of the data used by a system. Initially, a conceptual model is produced which is independent
of any hardware or DBMS system; this is achieved by using an Entity Relationship Diagram (ERD) or
alternatively a UML Class Diagram (CD). This modelling technique will be used to determine how this
business data is structured and show the relationships between the different data entities. The model
forms the basis for the design of the database system that will be built.

It is crucial to model an information system accurately before building it, to avoid costly mistakes.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

12

Introduction to database development

1.2 The Entity Relationship Diagram (ERD)

The Entity Relationship Diagram (ERD) shows “entities” and the “relationships” that link them. The
entities represent the data items needed by the system and the relationships show how the entities are
related to one another. An “entity” is formally called an “entity type” and can be defined as:

“A group of objects with the same properties which are identified by the enterprise as having an independent existence.”
(Connolly & Begg 2015, p. 406)

There are a number of notations used for drawing ERDs; this book will show you how to use the commonly
used Crow’s foot notation (Barker 1990). In addition, as the Unified Modelling Language (UML)
(www.uml.org) is becoming more widely established, Appendix A shows how the UML Class Diagram
can also be used for data modelling. Using the Crow’s foot notation, each entity type is modelled on the
ERD as a round-cornered box with the entity name inside it e.g.

Entity type

You should always use UPPER case letters for entity names, and the name of the entity type should be written in the
singular, e.g. INVOICE not INVOICES.

Remember, the entity symbol is used to represent the entity type, not the number of occurrences; this information will
be added to the ERD later.

An example ERD for the Music System from Appendix B is shown below. This shows four entities –
represented by round edge boxes – which are needed; production COMPANY, their music CDs which
consist of TRACKs (i.e. songs). Each track is classified by a music CATEGORY (e.g. Pop, Rock). The
lines and their symbols linking the entities are the relationships which provide further information
about the entities.

Music System ERD

1.3 Entity types

In order to produce an ERD you need to identify all the entity types that are relevant to the system
being modelled. Do not confuse an entity type with the occurrence of an entity.

Download free eBooks at bookboon.com

http://www.uml.org

Database Design and Implementation:
A practical introduction using Oracle SQL

13

Introduction to database development

If modelling using the Unified Modelling Language (UML) then the term “instance” is used to refer to
an entity occurrence.

You should consider the entity type as the definition or template of what data is to be held, and an occurrence as a
single set of actual data e.g. entity type: STUDENT, occurrence “Mike Jones”.

Often many entities can be identified, although they are not always relevant to the needs of the system
being considered, so care needs to be taken to ensure that only those that are needed are added to the
ERD. The following are examples of typical entity types:

For a business system: CUSTOMER, ORDER, INVOICE.
For a university system: STUDENT, LECTURER, COURSE.

Entities often fall into one of the following categories:
Physical – CAR, BUILDING
Human – CUSTOMER, EMPLOYEE
Place – FACTORY, SCHOOL
Group – DEPARTMENT, TEAM
Document – INVOICE, PAYSLIP

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids

Database Design and Implementation:
A practical introduction using Oracle SQL

14

Introduction to database development

1.4 Producing the ERD

When you have identified the entity types, these need to be added to the Entity Relationship Diagram
(ERD). Although ERDs can be drawn by hand, it is good practice to use a Computer Aided Software
Engineering (CASE) tool to ensure your models can be amended easily and presented in a professional
form to others. There are many CASE tools available to support modelling.

The QSEE tool can be used to draw ERDs and UML Class Diagrams and is available to download from
http://www.leedsbeckett.ac.uk/qsee/

CASE tools are more than just drawing tools; they are used to hold information about the data entities and their attributes
(Meta data) and can be used to assist in the development stage of the database development lifecycle.

Exercise 1

Identify which of the following are likely to be entity types and which occurrences. If an occurrence, suggest a suitable
entity type; if an entity type suggest a suitable occurrence:

PARIS, MODULE, AMIN KHAN, CUSTOMER, STUDENT, CITY

Exercise 1 feedback

ENTITY TYPE ENTITY OCCURRENCE

CITY Paris

MODULE Introduction to Databases

CUSTOMER or STUDENT Amin Khan

1.5 Entity attributes

When you have identified your entity types you then need to identify their attributes. An attribute is
defined as follows:

“A property of an entity or a relationship type” (Connolly & Begg 2015, p. 413).

Each entity will usually have a number of attributes. These are the individual items of data that you need
to hold for each occurrence of an entity type. In some situations a relationship between a pair of entities
may also yield attributes; this situation will be discussed later.

The entity type INVOICE may include the following attributes: Invoice number, Invoice date, Invoice
amount and Customer code.

Download free eBooks at bookboon.com

http://www.leedsbeckett.ac.uk/qsee/

Database Design and Implementation:
A practical introduction using Oracle SQL

15

Introduction to database development

An example entity occurrence of the entity type INVOICE would be as follows:

Invoice number 1102
Invoice date 12-Jan-2015
Invoice amount 1000
Customer code C101

Exercise 2

Which of the following are likely to be attributes and which are likely to be entity types?
CUSTOMER, PRODUCT, ORDER, ORDER DATE, SIZE, QUANTITY, NAME.

Exercise 2 feedback

ENTITY TYPES: CUSTOMER, PRODUCT, ORDER.
ATTRIBUTES: ORDER DATE, SIZE, QUANTITY, NAME.

1.6 Entity selection and validation

In order to produce the ERD you need to ensure you have identified the entities that are suitable for
inclusion. The entities initially selected are usually referred to as “candidate entities” as not all may be
suitable for inclusion. Entity names are normally nouns not verbs. The candidate entities are usually
identified by referring to a written system description, a set of requirements, or perhaps the notes from
a discussion with a person who has knowledge of the system under consideration. Read through the
relevant documents and underline, highlight or draw a box around each noun (an item you can store
information about). These nouns will form the candidate entity list.

To ensure that a candidate entity is valid for inclusion on the ERD it should satisfy the following
three checks:

1. It should not be the name of the system being modelled
It is a common mistake to include an entity which has the name of the system or organisation
that is being modelled. For example, if you were producing a model of “Yorkshire University”
it would not be appropriate to include an entity type called YORKSHIRE UNIVERSITY or
even UNIVERSITY as there is only one occurrence of this university. The whole model would,
in reality, represent the university. However, if you were modelling a system that needed
to hold data for more than one university, then you would need to include an entity type
called UNIVERSITY.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

16

Introduction to database development

2. The object should be of importance to the system being studied
There are likely to be many objects in the system being studied but you have to decide whether
the object is relevant. This usually means determining if the system users are likely to need to
retrieve information about the object. For example, if you were designing a university student
information system is a “litter bin” likely to satisfy the check? The answer would be no, but
are there any circumstances in which it might? If the purpose of the system was to record all
university assets, then you might need to record information about the litter bins. In that case
you would need an entity type to represent this information, though the entity type would be
called ASSET and bin would be an entity occurrence.

3. There should be data attributes that can be associated with the entity
There must be at least two attributes for an entity type. If you cannot identify any or only one
attribute for the entity then you may need to consider whether, in fact, it is actually an attribute
of another entity type.

Exercise 3

Identify the candidate entities for the following brief business system description. Then remove any of the candidates
that do not satisfy the checks for an entity.

“Customers of the Yorkshire Supplies Co. order high and low value products. Most customers use a computer and so
have an email address.”

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Database Design and Implementation:
A practical introduction using Oracle SQL

17

Introduction to database development

Exercise 3 feedback

“Customers of the Yorkshire Supplies Co. place orders for high and low value products. Most customers use a
computer and so have an email address.”

An initial search for candidate entities may produce the following list:

CUSTOMER
YORKSHIRE SUPPLIES CO.
ORDER
PRODUCT
COMPUTER
EMAIL ADDRESS

If you now apply the three checks, YORKSHIRE SUPPLIES CO. would be eliminated as it fails the first check. There is only
one, i.e. the system being modelled is the “Yorkshire Supplies Co.”

COMPUTER would be eliminated as it would not satisfy the second check, as it is unlikely that there would be a need to
store details about a customer’s computer.

EMAIL ADDRESS would be eliminated too, as it fails the third check, however it is likely to be an attribute of CUSTOMER.

So you would be left with the following entity types which would be added to the ERD:
CUSTOMER, ORDER, PRODUCT.

Once you have identified the entities needed for the system these can be added to the ERD. You should
now try and identify the entity attributes. Following the entity checks some attributes may have come
to light, either as a result of applying check two where the item may in fact be an attribute rather than
an entity, or check three because you only have one attribute. To ensure you have identified all the
required attributes you will need to analyse the system documentation which was used to identify the
entities and discuss the system with its users to identify and extract all the items of data that are needed
for each entity type. The entity and attribute information is usually recorded in a CASE tool repository
to make it easier to reference during the system design and development phases. It is unlikely that you
will identify all the attributes initially so you should always try and check with the users of the system
to ensure that you have not missed any.

All entities require an entity identifier. This is an identifying attribute (or attributes) which is used to uniquely identify
an occurrence of an entity type.

For example:

A motor VEHICLE entity type can use the vehicle registration number as its unique identifier.

Often an attribute presents itself as the natural identifying attribute as in the example above. However,
if there is no natural candidate for this you must introduce an artificial one. This is usually achieved by
creating a reference code, e.g. Client ID.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

18

Introduction to database development

Q. Why can you not use ‘student name’ as the entity identifier for the STUDENT?

A. Because it is possible that you could have two or more students with the same name. In this case, the
artificial identifier student id could be used as the unique identifier.

Exercise 4

What would be the identifying attribute in each of the following examples of entity types where some attributes have
been identified?

CUSTOMER – Customer name, Address, Postcode, Customer code, Phone number.
INVOICE –. Invoice Date, Invoice number, Invoice Amount, Customer code.

Remember, wherever possible you should use an existing attribute for the entity identifier and make sure that it will
always uniquely identify an occurrence of an entity type.

Exercise 4 feedback

For CUSTOMER the obvious choice would be Customer code.

Although Customer name might be considered, there may be more than one customer with the same name. Postcode
may also be considered but this should be rejected as more than one customer may have the same postcode. Likewise,
whilst no two customers should have the same phone number, this would not be a suitable choice as not all customers
may have a phone number.

For INVOICE, the obvious choice would be Invoice number as this would be unique for each invoice. The other attributes
would not be suitable as their values could be duplicated amongst all the invoices.

Exercise 5

For a university student information system list two entity types.

1. For each entity type list some of their attributes including an identifying attribute.
2. Produce a sample entity occurrence for each entity type.

Exercise 5 feedback

Entity type: STUDENT

Attributes: Student ID, Name, Address, Post Code, Date of Birth

Identifier: Student ID

Occurrence: S101, Paul Adams, 4 Long Row Leeds, LS6 3QS, 12-Jan-1960

Entity: COURSE

Attributes: Course code, Course name, Start date

Identifier: Course code

Occurrence: COMP, BSc. Computing, 01-Sep-2015

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

19

Introduction to database development

1.7 Entity definitions

It is important to ensure that anyone involved with designing the system is clear about the meaning of
the entities being modelled. This is achieved by clearly documenting each entity type with a concise
unambiguous definition. The list of definitions is referred to as the “data dictionary” or “data repository”
and is usually stored within a CASE tool as this provides a central reference point and allows for easy
searching, amendment and reporting. Other information relating to the entities and their attributes may
also be added to the data dictionary such as the number of likely entity occurrences and the data types
and sizes of the attributes. This information may be needed in the design phase.

Here are examples of full definitions for some entity types.

Entity type Entity definition Entity Attributes

CUSTOMER A person or organisation who purchases products
or services from the business.

Customer name, Address, Postcode,
Customer code, Phone number.

INVOICE A request to a customer for payment for products
or services supplied by the business.

Invoice Date, Invoice number, Invoice
Amount, Customer code.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Database Design and Implementation:
A practical introduction using Oracle SQL

20

Introduction to database development

1.8 Validating the model

The model should be checked with the client or system users to ensure that all relevant entities have
been identified, along with the required attributes. This process may need to be repeated a number of
times until everyone is satisfied that all requirements have been met.

Remember it is easier and cheaper to change a model than it is to change a developed system.

Exercise 6

For the following business descriptions identify the candidate entities and eliminate any which are not entities, giving
a reason for this.

For each remaining entity provide an entity definition and some suitable attributes including the identifying attribute.

1. A large business consists of a number of divisions. Each division has a number of departments. Each employee
works for a department.

2. A car hire company’s customers make bookings to hire its cars. When a booking is made it is for a specific
model of car and includes the collection and return dates. At the time of the booking the company may assign
a particular car, however at the time of collection a different car may be provided. The company needs to keep
records of which car each customer actually hired.

Activity 6 feedback

The identifying attributes are shown in bold. The # symbol is used to represent a number e.g. Employee number.

1. BUSINESS is eliminated as there is only one occurrence; you are modelling the business.

DIVISION Attributes: Division Name, location, …

 Description: A major functional area of the business.

DEPARTMENT Attributes: Department Name, office location, …

 Description: A functional section within a division of the business.

EMPLOYEE Attributes: Employee#, name, office, grade, ….

 Description: A member of staff who works for one of the departments within the business.

2. CAR HIRE COMPANY is eliminated as you are only modelling the one.

CUSTOMER Attributes: Customer#, name, address, Tel no. …

 Description: A person registered to hire cars from the company.

BOOKING Attributes: Booking Ref, booking date, Customer#, car, collection date, return date, …

 Description: A booking of a car for use by a customer of the company.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

21

Entity Relationships

2 Entity Relationships
On completion of this chapter you should be able to:

• understand what is meant by an entity relationship
• identify and model entity relationships.

2.1 Introduction

In the previous chapter you started to use analysis techniques to try and identify a system’s entities and
their attributes in order to model the system. As entities do not exist in isolation you need to be able to
identify the relationships that link them together and so complete the entity relationship diagram (ERD).

2.2 Relationships

In order to see what is meant by a relationship, consider the following example which uses the music
system entity types COMPANY, CD, TRACK and CATEGORY.

There are a number of relationships between these entity types as follows:

 - A COMPANY produces CDs
 - A CD contains music TRACKs
 - A TRACK belongs to a music CATEGORY

It is important to understand how one occurrence of an entity relates to an occurrence of another entity in order to
define the relationship between them accurately.

To help you understand the nature of a relationship you may initially find it helpful to see the entity
occurrences in a graphical format. If you consider the relationship “COMPANY produces a CD” the
diagram below shows how one occurrence of COMPANY relates to two occurrences of CD when looked
at from the viewpoint of the COMPANY, which is at the one end of the relationship. From this direction
the relationship can be read as “A COMPANY produces CDs.”

COMPANY produces CD

SONY The Rising

 Missundaztood

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

22

Entity Relationships

You now need to consider the relationship from the other direction, the CD to COMPANY. This
relationship direction could be described as “A CD is produced by a COMPANY.” As shown below:

COMPANY is produced by CD

SONY The Rising

Missundaztood

By looking at the relationship between two entities in both directions you can define the relationship
with meaningful labels. Do not confuse relationships between entity types and entity occurrences.

Exercise 1

Which of the following are relationships between entity types and which are relationships between occurrences?

1. CUSTOMER receives INVOICE
2. YORKSHIRE SUPPLIES sells TV
3. STUDENT studies COURSE
4. JOHN JACKSON studies COMPUTING

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

Database Design and Implementation:
A practical introduction using Oracle SQL

23

Entity Relationships

Exercise 1 feedback

1 and 3 are relationships between entity types, 2 and 4 are relationships between entity occurrences.

Exercise 2

The following table shows an extract from the records of a food store. It shows CUSTOMERs and the PRODUCTs that
they purchased.

CUSTOMER PRODUCT

Jones Eggs

Smith Eggs

Lewis Apples

Lewis Butter

Khan Butter

Draw a diagram showing:

a) how each occurrence of CUSTOMER is related to occurrence(s) of PRODUCT
b) how each occurrence of PRODUCT is related to occurrence(s) of CUSTOMER

Exercise 2 feedback

a) CUSTOMER is related to occurrence(s) of PRODUCT

CUSTOMER PRODUCT

Jones Eggs

Smith

Khan Butter

Lewis Apples

b) PRODUCT is related to occurrence(s) of CUSTOMER

Jones Eggs

Smith Butter

Khan

Lewis Apples

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

24

Entity Relationships

If there is a relationship between an occurrence of one entity type and an occurrence of another entity
type, then it is shown on the entity relationship diagram as a line linking the two entity symbols. The
relationship between the two entities should be labelled by using a suitable verb. For example the
relationship “STUDENT Studies a COURSE” would be represented as follows:

As it is important to consider a relationship from both directions you should also label the relationship
from COURSE to STUDENT as follows:

The relationship labels should be positioned as above, near to the relevant entities to aid readability.

Always use UPPER case text to label entities and lower case text to label relationships.

Exercise 3

Label the following relationship:- CUSTOMER receives INVOICE from the direction of INVOICE to CUSTOMER.

Exercise 3 feedback

INVOICE is sent to CUSTOMER

2.3 Relationship cardinality

Once you have established a relationship between two entity types it is important to consider how many
occurrences of one entity could be related to the other entity. This is referred to as “cardinality”.

There are three types of relationship cardinality:

One to One abbreviated as 1:1
One to many abbreviated as 1:M
Many to Many abbreviated as M:M or M:N

These will now be explained.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

25

Entity Relationships

Using the earlier example of the relationship between STUDENT and COURSE, consider the relationship
from the STUDENT’s viewpoint. You can say that a student can study a course and if you then consider
the relationship from the COURSE viewpoint, you can say that a COURSE can be studied by many
STUDENTs. This would be a “one to many” (1:M) relationship and would be drawn on the ERD as follows:

A one to many (1:M) relationship

The “crow’s foot” symbol is used to represent many and is placed at the “many” end of the relationship.
The relationship would be read formally as “a student studies one and only one course and a course
is studied by one or many students”. If you now reconsider the relationship between STUDENT and
COURSE but want to be able to show that a student may study more than one course, you now need to
alter the relationship to show as a “many to many” (M:M or M:N). A M:N relationship is sometimes
written as M:M though M:N is preferred so as to indicate that the number of occurrences at one end
of the relationship can be different from number at the other end of the relationship. This is drawn on
the ERD as follows:

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

Database Design and Implementation:
A practical introduction using Oracle SQL

26

Entity Relationships

A many to many (M:N) relationship

There are now crow’s foot symbols at both ends of the relationship, because they are both “many” ends.
This relationship would now be read as “a student studies one or many courses and a course is studied
by one or many students”.

The final cardinality type that needs to be examined is for the “one to one” relationship. If a STUDENT
is assigned a LECTURER as a supervisor and the LECTURER only supervises one student, you can
show this as follows on the ERD:

A one to one (1:1) relationship

In this case the relationship would be read as “a student is supervised by one and only one lecturer and
a lecturer supervises one and only one student.

Exercise 4

Draw a single Entity Relationship Diagram showing the four entities and three relationships for each of the following:

a) An ID CARD is issued to a STUDENT
 A STUDENT receives an ID CARD

b) A STUDENT studies one or more MODULEs
 A MODULE is studied by one or more STUDENTs

c) A MODULE LEADER leads many MODULEs
 A MODULE has one MODULE LEADER

Exercise 4 feedback

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

27

Entity Relationships

2.4 Relationship optionality

When describing an entity relationship you need to record the fact on the ERD that in some cases an
occurrence of an entity type may not always be present, in which case the relationship is said to be
optional. Using the previous cardinality example, the model states that a lecturer supervises a student.
However, what if some lecturers do not act as supervisors to students? In this situation an occurrence
of LECTURER will not always be related to an occurrence of STUDENT so it will be an optional
relationship. However, if you consider the relationship from the STUDENT perspective it is still present
as all students must have a supervising LECTURER.

To denote that a relationship can be optional a small circle is included on the relationship line at the end
that is optional. The following shows the optional 1:1 relationship between STUDENT and LECTURER:

A one to one (1:1) relationship with optionality.

The circle might be viewed as the letter O for optional but it is best considered as a zero.

As you will recall, you always consider the relationship from the perspective of a single occurrence of
each participating entity. This diagram would be read as “a student is supervised by one and only one
lecturer and a lecturer supervises zero or one student”. Notice that the optionality is placed at the opposite
end of the relationship to the entity on which you are concentrating. From the STUDENT end of the
relationship, this diagram shows that a STUDENT is always supervised by a LECTURER.

Referring to the previous M:N relationship between STUDENT and COURSE which shows a student
studies one or many courses and a course is studied by one or many students, could there be optionality
in this relationship? Consider this from both ends of the relationship; firstly do all students study a
course? Secondly are all courses studied by students?

The answer to the first question should be obvious, as if the student was not studying a course they
would not normally be classed as a student. To answer the second question you need to consider that a
university may advertise a new course which will not have enrolled any students yet. Consequently, at
any time, there could be at least one occurrence of COURSE that has zero STUDENTs attached to it.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

28

Entity Relationships

This optionality can now be shown on the ERD as follows:

A many to many (M:N) relationship with optionality

The alternative to an optional relationship is a mandatory relationship. If the relationship is mandatory
i.e. where there will always be at least one occurrence of the entity type, this is usually shown by a short
vertical line | on the relationship. If you recall that the O can be said to represent a zero, then the | can
be taken to represent the number one. The relationship as drawn above therefore shows the minimum
and the maximum cardinality for each direction of the relationship.

It is helpful to think of the inner relationship symbol as the minimum and the outer symbol as the maximum number
of occurrences. In the example above the inner symbols used ore o and | and the crow’s feet are the outer symbols.

The relationship is read as follows:

One STUDENT studies one or more COURSEs
One COURSE is studied by zero (possibly one) or many STUDENTs.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

95,000 km
In the past 5 years we have drilled around

—that’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading provider of reservoir characterization,
drilling, production, and processing technologies to the oil and
gas industry.

Who are we looking for?
We offer countless opportunities in the following domains:
n Operations
n Research, Engineering, and Manufacturing
n Geoscience and Petrotechnical
n Commercial and Business

We’re looking for high-energy, self-motivated graduates
with vision and integrity to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger

Database Design and Implementation:
A practical introduction using Oracle SQL

29

Entity Relationships

The reading of the relationship starts with “one” whatever the cardinality at that end is. Always read the relationship in
BOTH directions to ensure you have correctly identified the cardinality and optionality for both ends of the relationship.

It is important to label relationships clearly. If you do not, readers may misinterpret the relationship and
choose the wrong cardinality or optionality. For example, the following pair of entities is shown to have
two different relationships, each requiring different cardinality and optionality values.

LECTURER STUDENTteaches

is taught by

Different relationships

Exercise 5

Here is a revised version of Exercise 4. The relationships have now been altered to include optionality in some areas.
Produce an amended ERD to reflect this.

a) An ID CARD is issued to a STUDENT
 A STUDENT receives an ID CARD

b) A STUDENT studies one or more MODULEs
 A MODULE is studied by zero, one or more STUDENTs

c) A MODULE LEADER leads many MODULEs
 A MODULE may have a MODULE LEADER

Exercise 5 feedback

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

30

Entity Relationships

Exercise 6

Below are the exercises that you modelled in the last chapter. Using the entities you identified, draw ERDs showing all
the entities and relationships for each scenario. Remember to use meaningful relationship names and determine the
cardinality and optionality.

1. A large business consists of a number of divisions. Each division has a number of departments. Each employee
works for a department.

2. A car hire company’s customers make bookings to hire its cars. When a booking is made it is for a specific
model of car and includes the collection and return dates. At the time of the booking the company may assign
a particular car, however at the time of collection a different car may be provided. The company needs to keep
records of which car each customer actually hired.

Exercise 6 feedback

1.

2. Note it is assumed that there may be some cars that have not received any bookings

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

31

Complex relationships

3 Complex relationships
On completion of this chapter you should be able to:

• build a more complex entity relationship diagram
• identify relationships that have data associated with them
• model entities in which occurrences are related to each other.

3.1 Introduction

The previous chapters have introduced you to the basic concepts of the entity relationship modelling
technique. You are now going to look at some modelling situations in more detail. In particular you are
going to consider a technique to enable you to deal with modelling relationships that have data associated
with them. You will also be introduced to extended entity-relationship modelling techniques (sub types
and exclusive relationships) that can be used in more complex situations.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Database Design and Implementation:
A practical introduction using Oracle SQL

32

Complex relationships

3.2 Associative relationships

An ERD may contain several many-to-many relationships. If you consider these many-to-many
relationships in more detail you are likely to discover that they actually hold attributes of data. To
understand this, consider the following example.

In a business situation an invoice showing products purchased could be represented by an INVOICE
entity type related to a PRODUCT entity type as a M:N relationship shown as follows:

Many to many relationship between INVOICE and PRODUCT

If you consider the data attributes that might be stored for INVOICE, these might include the invoice
number (unique identifier), invoice date and customer code. The PRODUCT attributes would include
product code, description and unit price. However, this combined set of attributes does not actually
represent the complete set of data needed to represent an actual business invoice, as you cannot identify
the quantity purchased of a product for a specific invoice.

This is clearly data that needs to be recorded, but it cannot be recorded as an attribute of either of the
relationship entities. In fact, it needs to be placed somewhere else, as will be explained shortly. It is
desirable to show this hidden information on the ERD. This is accomplished by resolving the many-to-
many relationship and capturing the data in a third entity type. This new entity links together a single
occurrence of each of the other two entities.

The process used to resolve a many-to-many relationship involves adding a new entity type which is often
referred to as an associative or link entity, and replacing the original relationship with two one-to-many
relationships linking each of the existing entities to the new link entity, as shown below:

Resolved M:N

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

33

Complex relationships

The new link entity can now be used to hold the quantity purchased of a product. It will also need other
attributes which will be used as the entity identifier and also to link to the appropriate occurrence of
the INVOICE and PRODUCT entities; this will be explained later. In this example the new link entity
has been called ITEM as it represents an invoice item line. However, it is not always easy to think of
a meaningful name for the link entity, although if the original relationship name was meaningful this
may provide the answer. Alternatively, if you consider the purpose of the new entity and, in particular,
what attributes will be included it should make it easier to choose one. If you cannot identify a suitable
name, you could combine the two entity names e.g. INVOICE and PRODUCT.

A M:N relationship is replaced with a new entity and two 1:M relationships. The new link entity uses both original entity
identifiers together to form its identifier.

Exercise 1

For a car hire business consider one occurrence of CUSTOMER and one occurrence of a HIRE CAR. What data might you
need to record about that particular customer’s use of the hire car?

Exercise 1 feedback

The main data values to be recorded would be the collection date and return date, though you may choose to store
other information as well.

Exercise 2

a) Resolve the many-to-many relationship between CUSTOMER and HIRE CAR. Make sure that you show the
cardinality of the relationships correctly. First choose a suitable name for the new link entity. Then you can
decide on sensible names for the relationships.

b) Suggest some suitable attributes for CUSTOMER and HIRE CAR.
c) Suggest some suitable attributes for the new link entity.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

34

Complex relationships

Exercise 2 feedback

Based on Exercise 1 you may choose to call the new entity type RENTAL or HIRE.

a)

If it is likely that a car may not be hired out, the optionality symbol could be placed on the relationship between hire
car and rental at the rental end of the relationship.

b) CUSTOMER (Customer no., booking date, customer name,…..)

HIRE CAR (Car reg., model, …)

c) RENTAL (Customer no., collection date, return date, Car reg, …)

3.3 Link entity identifier

As mentioned in Chapter 1, all entities must have a unique identifying attribute, and those looked at so
far have all been single attributes. However this is not appropriate for a link entity.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Database Design and Implementation:
A practical introduction using Oracle SQL

35

Complex relationships

It is unlikely that there will be a suitable natural single attribute for identifying the new entity. The
identifier for a CUSTOMER is its Customer no. and the identifier for a HIRE CAR is its Car Registration.
However, neither of these identifying attributes can be used alone in the new entity as they may have
repeat occurrences, as shown in the example tables below. In this situation, the identifier is usually
formed by combining the identifiers from the original pair of entities.

Let us apply this to the car hire system that was modelled in Exercise 2. The unique identifier that will
identify a single occurrence of RENTAL will be the combination of Customer no. and Car Registration.

Now, if you examine some occurrences of these entities, you can clearly see that a combined identifier
is needed to uniquely locate a specific RENTAL of a particular HIRE CAR by a CUSTOMER.

What issue might arise relating to the identifier if a customer could rent a car more than once?

If the following sample data is used:-

CUSTOMER

Customer no. Name

C101 M Jones

C102 A Khan

HIRE CAR

Car reg. Model

A77 NWW Peugeot 205Gti

F123 XWX Subaru Imprezza

RS101 Ford Focus RS

RENTAL

Customer no. Car reg. Collection date Return date

C101 A77 NWW 10-Jan-2015 15-Jan-2015

C102 A77 NWW 3-Mar-2015 3-Mar-2015

C101 F123 XWX 7-Apr-2015 8-apr-2015

C102 RS101 11-Jun-2015 22-Jun-2015

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

36

Complex relationships

If customer C101, having hired car A77 NWW in January 2015, then hired it again in March, including
the data in the table above would cause the combined identifier C101and A77 NWW to be duplicated,
so a further attribute, collection date, would be needed as part of the identifier to uniquely identify
the occurrences.

RENTAL

Customer no. Car reg. Collection date Return date

C101 A77 NWW 10-Jan-2015 15-Jan-2015

C102 A77 NWW 3-Mar-2015 3-Mar-2015

C101 A77 NWW 7-Mar-2015 9-Mar-2015

C101 F123 XWX 7-Apr-2015 8-apr-2015

C102 RS101 11-Jun-2015 22-Jun-2015

Exercise 3

Model the following situation:

The small independent “Yorkshire Cinema” has two screens, Screen one and Screen two. Only one film each evening is
shown on each screen. Cinemagoers can make online bookings for films currently being screened. To make a booking
the person selects the screen and the screening date. A booking reference number is emailed to the purchaser.
Cinemagoers sometimes enquire about current films and information about the film actors appearing in them, film
length etc. is supplied.

The entity types have already been identified for this system as SCREEN, CINEMAGOER, BOOKING, SCREENING,
FILM and ACTOR.

a). Draw the ERD for this case study including these entity types and the relationships linking them. Remember to name
the relationship from both entity types involved and also to include the cardinality and any potential optionality.
There is one many-to-many relationship; resolve this by including a link entity.

b). List at least TWO possible attributes including the identifier for each entity type.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

37

Complex relationships

Exercise 3 feedback

This ERD shows the entity types with two attributes and their data types (data types will be discussed in Chapter 6), the
identifiers are shown underlined. This is made possible as the attributes were entered into the case tool.

The many-to-many relationship between FILM and ACTOR has been resolved by including the link entity CAST MEMBER.

3.4 Recursive relationships

So far you have concentrated on identifying and modelling relationships between pairs of entity types.
Most of these relationships will be one-to-many, a few might be many-to-many and some might be one-
to-one. You have also discovered how to resolve many-to-many relationships that contain data which is
of interest in the situation being modelled.

You may also encounter entities that are related to themselves. To be more specific, occurrences of the
entity type are related to other occurrences of the same entity type. This is called a recursive relationship.

Consider the entity type EMPLOYEE in a university where there are approximately 500 employees,
resulting in 500 occurrences of the entity. The Vice-chancellor manages the Deans of Faculty and each
Dean manages several Heads of Department. The Heads of Department manage the lecturers.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

38

Complex relationships

This gives rise to a hierarchical relationship within this single EMPLOYEE entity type. This can be
represented graphically using a hierarchy diagram, as follows:

The “manages” relationship between occurrences of EMPLOYEE

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca

Database Design and Implementation:
A practical introduction using Oracle SQL

39

Complex relationships

This hierarchy diagram clearly shows that an occurrence of the entity EMPLOYEE, say Dean, manages
one or more other occurrences of EMPLOYEE. Another occurrence of the entity, a Head of department,
also manages one or more other occurrences of the same entity, Lecturer.

To show this 1:M recursive relationship on an ERD you draw a relationship line starting and finishing
at the entity, as follows:

Modelling a recursive relationship

This relationship would be read from the ‘one’ end as, “an EMPLOYEE manages one or more other
EMPLOYEEs”. Reading the relationship from the other end, you can say an EMPLOYEE is managed by
one and only one EMPLOYEE.

Following a more detailed analysis, this model does not accurately model the ‘manages’ relationship
between occurrences of university employees. The reason for this is that there is an optional participation
in the relationship. The Vice-chancellor in effect manages all employees. However, the Vice-chancellor is
not managed by another member of staff. (His/her activity is monitored by a Board of Governors, but the
Governors are not occurrences of the entity EMPLOYEE). Similarly, there are many individual lecturers
who do not manage any other staff. Consequently, this optionality needs to be modelled on the ERD:

Recursive relationship with optionality

The ERD now accurately shows the ‘manages’ relationship and can be read as an EMPLOYEE manages
zero, one or more other EMPLOYEEs, and an EMPLOYEE is managed by zero or one other EMPLOYEEs.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

40

Complex relationships

Exercise 4

Model the following situation:

A car manufacturer makes a number of different models of car, each of which comprises many components. Some
components are used in many models. A number of suppliers supply the components and each supplier supplies a
number of different components. In some cases components are used to build other components, e.g. pistons, crankshaft
etc. are used to build an engine which is a component of a car. Each component is checked by the quality inspector
before use; the inspector will be responsible for checking many different components.

Exercise 4 feedback

The recursive relationship is read as “a component may be used in zero, one or many components and a component
may use zero one or many components”.

3.5 Sub types

When studying some entity types it becomes apparent that they have sub types this is usually the case
when the sub types contain different sets of data attributes. The main entity is usually referred to as
the Super type and contains attributes that are common to all of the entity’s sub types. It is possible to
have sub types within a sub type, although it is not advisable to have too many sub levels. The sub type
identifier is the same as its super type identifier. The use of sub types also allows you to show relationships
more accurately. An example of this is given below, where a CUSTOMER only has contacts with an
administrative employee. This is shown by the relationship to the sub type RECEPTION, rather than
the more general super type EMPLOYEE.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

41

Complex relationships

E.g. An employee at a car hire company could be modelled using sub types to show the different categories
of employee.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Database Design and Implementation:
A practical introduction using Oracle SQL

42

Complex relationships

3.6 Exclusive relationships

Sometimes two or more relationships are mutually exclusive, e.g. a VEHICLE may be undergoing a
SERVICE or an INSPECTION but not both at the same time. This is shown by an arc symbol pointing
towards the mutually exclusive options.

3.7 Summary

Here is a summary of the main terminology relating to entities and relationships that you have now
been introduced to:

Entity A data object of interest to the system

Attribute A property of an entity

Identifying attribute An attribute or combination of attributes that uniquely identifies an entity occurrence

Relationship An association between two entities

Cardinality The number of occurrences in one entity that can have a relationship with the occurrences
in another entity

one to one 1:1

one to many 1:M or 1:m

many to one M:1 or m:1

many to many M:N or m:n (or M:M)

Optionality Participation in a relationship

Exercise 5

1. A car hire company takes bookings from customers for hire vehicles. A booking may relate to a group of other
bookings i.e. when a customer has made multiple bookings for vehicles to be collected at the same time.
Vehicles receive regular services. When vehicles are returned following a hire they may be inspected. Following
an inspection the vehicle may need repairs. A repair will result in further inspections.

a) Produce a list of entity types then draw an entity relationship diagram for the system which includes appropriate
relationship names, cardinality and optionality.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

43

Complex relationships

Exercise 5 feedback

a)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Database Design and Implementation:
A practical introduction using Oracle SQL

44

Logical Database Design

4 Logical Database Design
On completion of this chapter you should be able to:

• convert an ERD into a logical database design
• identify primary and foreign keys
• provide a logical design for relationships of different cardinalities.

4.1 Introduction

Once you have completed the conceptual design and have produced your Entity Relationship Diagram
you can move on to the next stage in the database development lifecycle, namely Logical Design. You
will produce an initial logical design for a database in this chapter, and in the next chapter you will
study the process of Normalisation. This is used to check the structure of your database tables with a
view to eliminating data redundancy and ensuring that you have produced an efficient set of tables to
be implemented in the final design stage Physical Design.

In this chapter you will learn how to turn an Entity Relationship Diagram into a logical design comprising
a set of relations (not to be confused with relationships). This design will become a set of tables suitable
for implementation using a relational database management system such as Microsoft Access, MySQL
or Oracle. A relation is a table-like structure made up of columns (attributes) and rows. Each column
has a domain name and this defines the nature of the data to be held.

4.2 Relations

The relational database derives from the relational model which is based on mathematical concepts
introduced by (E.F. Codd, 1970). A relation is a logical construct that is similar to a table. (Please note
that a relation is not the same as a relationship). However, as you will see below, the term relation can
be used in a slightly different context.

A relational database just stores data, and nothing more, inside tables. Any processing of the data is
done by using a data manipulation language which works on the tables to output information or alter
values stored within the tables. The most commonly used data manipulation language used for accessing
relational databases is the Structured Query Language (SQL).

Although SQL has an American National Standard (ANSI) there are some differences between the implementations used
by the different database management systems.

A relation can be defined as a logical representation of an entity type with its attributes and keys.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

45

Logical Database Design

Here is an example of a relation for the entity type CUSTOMER:

CUSTOMER (Customer_no., name, address, date_of_birth, ………)

Customer no. is the unique identifier, but in the relation it is referred to as the Primary Key (PK).

Just as all entity types have a unique identifier, all relations have a Primary Key.

The alternative definition of a relation is the relational database table itself. However, to avoid confusion
in this context you would normally refer to it as a ‘table’. You can now visualise the relation CUSTOMER
as a table showing occurrences of entity types as follows:

Customer_no. Name Address Date_of_birth …

C4347888 Amin Khan 103, Short Street, Wakefield WYS6 2EG 13-Jan-1987

C8365872 Sarah Jones 13, Gain Lane, Sheffield SS7 1AX 09-Dec-1980

Although all tables consists of rows and columns, a relational database table has to satisfy the
following rules.

 - Each row of the table (also called a ‘tuple’ – sounds like ‘couple’) is associated with exactly one
entity occurrence so no two are identical (although column values other than the primary key
could be identical)

 - Rows can be in any order
 - Each table column contains attribute values.

4.3 Keys

Keys play a vital role in database design and have to be identified and used correctly. The following
terminology is used in association with relational database keys:

 - a key uniquely identifies an entity occurrence: it is the entity identifier
 - a primary key is the key ‘chosen’ for a given relation / table
 - a candidate key is a ‘possible’ primary key (several candidate keys may exist for a relation)
 - a compound key is a key consisting of two or more attributes.

In the following relation:

VEHICLE (vehicle_identification_no., registration_no., vehicle_make, vehicle_model, …)

both vehicle_identification_no. and registration_no are candidate keys.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

46

Logical Database Design

(Note that from now on, spaces in the names of attributes will be replaced by underscore characters like
this: An_attribute_name_of_several_words. This is because when the design is implemented the database
management system will not allow column names which include spaces.)

Exercise 1

Which candidate key from the VEHICLE relation above would you choose as the primary key and why?

Exercise 1 feedback

A manufacturer-assigned vehicle_identification_no. would be chosen, as the vehicle registration_no. may change over
the lifetime of the vehicle. Though depending on the use of the system, vehicle registration no. may be a better choice,
i.e. in a car hire business.

Exercise 2

a) Consider the following ERD:

Choose a Primary Key for each of the entities.

b) Which of these applies to the key for BOOKING?

- a compound key
- a candidate key

Exercise 2 feedback

a) Primary key for entity type CUSTOMER would be Customer_no.
Primary key for entity type CAR would be vehicle_identification no. or registration number.
Primary key for entity type BOOKING would be Customer_no. and vehicle_identification no. together.

b) A compound key.

4.4 Identifying relations

From your conceptual data model you need eventually to generate a set of relations (tables) that will form
the basis of the database. You will need to link these tables in order to be able to reflect the relationships
that were modelled on the ERD at the conceptual stage. In order to get to the stage of producing the
tables, you first need to produce a complete set of relations in which all of the keys have been identified.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

47

Logical Database Design

In order to establish the relationships between entities you will make use of keys. In order to do this a
new type of key, the Foreign Key (FK), is needed.

For example, earlier you modelled the one-to-many relationship between CUSTOMER and BOOKING
on the conceptual level. To achieve a logical design for the tables in your database you will need to produce
two relations: CUSTOMER and BOOKING. In order to take into account the link between these two
relations you must copy the primary key of CUSTOMER (which is at the “one-end” of the relationship)
into the relation BOOKING (at the “many-end” of the relationship). So the Customer_no. becomes a
foreign key in the relation BOOKING. The following diagram emphasises this:

This ERD would result in the following two relataions:
CUSTOMER (Customer no., customer name, customer_address, …)
BOOOKING (Booking ref., Booking_date, Customer_no, …)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI

Database Design and Implementation:
A practical introduction using Oracle SQL

48

Logical Database Design

In order to identify all the relations and their keys you need to work methodically from your ERD,
checking each relationship in turn in order to produce a set of ‘skeleton relations’. A skeleton relation
shows only the name of the relation and all of the keys, i.e. the primary key and any foreign keys. The
additional attributes can be added at a later stage to form a completed set of relationships.

A skeleton relationship for the booking from above is shown as follows:

BOOKING (Booking ref., Customer_no)

It is important to ensure that keys are clearly identifiable, as such the following notation is used in printed
text when showing relations:

Primary key – bold or underline or both e.g. Student_ID

Foreign key – italicise e.g. Course_Code

In handwritten text you can use a dotted underline for a foreign key.

In handwritten text a key that is both a primary key and a foreign key can be underlined twice, once
with dotted and once with normal underline.

Also note that if underlining a compound key consisting of 2 or more attributes, ensure the underline
under them is continuous e.g. order_no, line_no

Whichever notation you choose, you should ensure that you use it consistently.

A foreign key is an attribute (or combination of attributes) in one relation which exists as a primary key in some
other relation.

Remember for a 1:M relationship with no optionality at the one end, the primary key from the one end of the relationship
goes in at the many end as the foreign key.

Exercise 3

Can you think of a reason why you must put the foreign key into the BOOKING table and not the other way around?

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

49

Logical Database Design

Exercise 3 feedback

As a customer may make many bookings you would need to make provision to hold all of the Booking references in
customer. This is not practical, as you would need to decide the maximum number of bookings to allow for, and if this
number altered it would need a change to the implemented table structure. If a large number of Booking Refs. were
allowed for this could also result in many of them being left empty in the customer row. Finally, it is much more difficult
to search through a repeating list of attributes, so whilst it is technically possible to store repeating attributes this is not
normally acceptable so you should avoid doing this.

Exercise 4

a) Which of the following would you do to represent the above relationship between a hire CAR and CUSTOMER
on the logical level?

• put Car_reg. as an attribute of CUSTOMER
• put Customer_no. as an attribute of CAR
• both
• neither

b) What would be the skeletal logical relations in this case? Choose a sensible notation for the primary and
foreign keys.

Exercise 4 feedback

a) put Car_reg. as an attribute of CUSTOMER

b) CAR (Car_reg.) Car_reg. is the primary key in CAR

 CUSTOMER (Customer_no., Car_reg.) Car_reg becomes a foreign key in CUSTOMER.

4.5 Resolving many-to-many relationships

In Chapter 3 the M:N relationship was examined and it was shown that it has data associated with it.
It was also shown that this could be resolved by inserting a link or associative entity. Although it was
convenient to expand the relationship at that time, it could have been postponed until the logical design
stage. In the logical design whenever you are dealing with an M:N relationship, whatever the optionality
you will need to create a new relation to represent the relationship and produce a skeleton relationship
for it.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

50

Logical Database Design

For example, the following ERD will require three skeletal relations:

STUDENT (Student_id)
MODULE (Module_Id)
STUDY (Student_id, Module_id)

Note that in the last relation here, which represents the M:N relationship, both foreign keys are needed
together to form a compound primary key, which will uniquely identify occurrences that will exist in
the resulting relationship table STUDY.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Database Design and Implementation:
A practical introduction using Oracle SQL

51

Logical Database Design

4.6 Resolving one-to-many relationships with optionality

You have already seen how a one-to-many relationship without optionality is resolved to produce
two relations. You now need to consider how to deal with optionality in a one-to-many relationship. If
optionality is shown at the many end of the relationship then the previous approach can still be applied.
The primary key from the one end of the relationship will be placed in the relation at the many end. If,
however, there is optionality at the “one” end this will not work!

Consider the example used in Exercise 4, only now there is optionality at the one end of the relationship:

This would be interpreted as “a customer may not be allocated a car for hire immediately i.e. when they
make a booking”. In this situation, if you tried to assign the Car_reg. as the foreign key in CUSTOMER
this would result in an empty value as there is no car reg. to enter! The value would be what is referred
to as null; however it is not acceptable to allow a null value for any key. To avoid this situation, three
relations are created in the logical design:

CAR (Car_reg.)
CUSTOMER (Customer_no.)
HIRED_CAR (Customer_no., Car_reg.)

Note that the new relation contains two foreign keys Customer_no. and Car_reg. The Customer_no.
was chosen as the primary key for the new relation as the customer is only allocated one hire car at
a time. With this arrangement an entry is only made in the HIRED_CAR table when a car is actually
allocated to a customer.

Exercise 5

What changes to the above relations would you make if you wanted to record the history of a customer who may, over
time, hire a number of cars?

Exercise 5 feedback

You would need to add the hire date to the HIRED_CAR table. The Customer_no. would no longer be a suitable primary
key for this table as it could duplicate, so a compound key would be needed using the Customer_no. with the hire date.
Note the Car_reg. would not be a suitable alternative as the customer could over time hire the same car again.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

52

Logical Database Design

4.7 Resolving one-to-one relationships

There are three possible combinations for one-to-one (1:1) relationships and each requires a different
process.

Firstly, you may have a 1:1 relationship which is mandatory at each end, for example:

In this type of relationship there will only ever be one set of attributes from one entity type matched
with one set of attributes from the other entity type, so both sets can be merged to form one database
table. At the logical design stage the two entities are effectively merged into one relation with a single
primary key. Either of the following skeleton relations could be used:

EMPLOYEE (Employee_No, Computer_ID)
or
COMPUTER (Computer_ID, Employee_No)

Which you choose depends on the purpose of the system.
If it is for staff management then the first alternative would be chosen.
If it is equipment maintenance then the second would be chosen.
Note that the remaining attributes would still be the same whichever is chosen.

The second situation is a one-to-one relationship with optionality at one end, for example:

If an employee may not be allocated a computer then in this situation a relation must be created for each
of the entities. The key of the entity at the non-optional end is posted into the relation for the optional
entity. This approach avoids ending up with null value Employee_No attribute in the COMPUTER table

EMPLOYEE (Employee_No)
COMPUTER (Computer_ID, Employee No)

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

53

Logical Database Design

Finally, consider the third situation, which is a one-to-one relationship with optionality at both ends,
for example where an employee may not be allocated a computer or where a computer may not be
allocated to an employee:

Three relations are needed, one for each entity and one to express the relationship between the employees
and their computers:

EMPLOYEE (Employee_No)
COMPUTER (Computer_ID)
COMPUTER_ALLOCATION (Employee_No, Computer_ID)

Note that either of the original identifiers could have been used as the primary key for the third relation.
If a history of which computers have been allocated to an employee is needed, a further attribute would
need to be included in the primary key e.g. date_allocated.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Database Design and Implementation:
A practical introduction using Oracle SQL

54

Logical Database Design

4.8 Recursive relationships

When you have an entity type which can have an occurrence that relates to other occurrences of the
same entity type this is called a recursive relationship and can be shown as follows:

For a 1:M with or without optionality at the “many” end of the relationship, include a foreign key attribute
to hold the primary key value of the one end record, i.e. the employee’s manager’s Employee_No. This
would be read as “an employee manages zero, one or many employees and an employee is managed by
one and only one employee”.

EMPLOYEE (Employee_No, emp_name)

becomes

EMPLOYEE (Employee_No, emp_name, mgr_emp_no)

For a 1:M with optionality at the one end, a new relation is needed to avoid holding a null foreign key
value. In this example not all employees have a manager, so a manager relation is needed which will
hold the employee’s Employee_No (Primary key) and their manager’s emp_no (Foreign key), for each
employee who has a manager.

EMPLOYEE (Employee_No, emp_name)

and

MANAGER (Employee_No, mgr_emp_no)

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

55

Logical Database Design

Where there is a M:N relationship a new relation is used to hold the employee’s Employer_No and their
manager’s emp_no. Both foreign keys are used to form a compound primary key

EMPLOYEE (Employee_No, emp_name,)

and

MANAGER (Employee_No, mgr_emp_no)

4.9 Exclusive relationships

In some situations you may wish to show that a relationship is mutually exclusive. This is shown using
an exclusive arc facing towards what would in effect be the optional entities. In this example a vehicle
may receive a service or an inspection, but not both.

This results in the following relations, which avoids the null foreign key problem.

VEHICLE (Registration_no)
SERVICE (Service_no, Registration_no)
INSPECTION (Inspection_no, Registration_no)

4.10 Identification Dependency

In some situations the primary key from the non-dependent (one) end of a relationship becomes part of
the key at the dependent (weak) end of the relationship. An entity is said to be dependent or weak if it
cannot exist without the existence of a strong entity i.e. if it inherits part of its identifier from another entity.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

56

Logical Database Design

The following shows an example for a student hall of residence where a number of halls exist, each have a
number of apartments and within each apartment there are a number of student rooms. In this situation
the apartment entity is dependent on the hall, as each apartment would be identified by a hall name
and the apartment number together. Likewise, the room entity would also be dependent as its identifier
would be made up of the primary key from the apartment entity and the room number. A large I symbol
is shown on the relationship to indicate an identifying relationship as follows:

Identifying dependency relationships

These are the relations showing the keys:

HALL (Hall_name)
APARTMENT (Hall_name, Apartment_no)
ROOM (Hall_name, Apartment_no, Room_no)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe

Database Design and Implementation:
A practical introduction using Oracle SQL

57

Logical Database Design

An entity is referred to as strong if its primary key is not dependent on another entity.
An entity is referred to as weak if its primary key is partially or wholly made up of attributes from other entities, as in
a link entity created from a M:N relationship, or where an attribute from within an entity is used with a foreign key to
form a compound primary key.

4.11 Modelling problems

Care needs to be taken when modelling systems to ensure that you avoid producing a design which, if
implemented, will not allow the system to extract all of the required information needed to answer user
queries. With this is mind you should check your model for the following problems:

Fan trap

A fan trap is caused when it is not possible to link from one entity to another entity via a linking entity
because the two 1:M relationships point away (fan out) from the linking entity.

For example, suppose you want to know if a student is studying the module Databases. The model below
will not allow you to answer this query. Although the module is related to a course by the foreign key
Course_ID, there is no suitable link from course to student as there is no foreign key Student_ID in
course for student.

To resolve this problem a new relationship could be added, linking module directly with student, though
a neater solution would be to rearrange the model as follows:-

The student relation will now hold the Module_ ID as a foreign key. This would also be used to form a
compound primary key with the Student_ID, as a student would normally be expected to study more than
one module. It is still possible to identify which course a student is studying because the Course_ID is
stored as a foreign key within the module relation and so provides a link to the course title in the course
relation. As well, the student relation is linked to the module relation using the foreign key Module_ID.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

58

Logical Database Design

Chasm trap

A chasm trap is created when relationships between entity types indicate a route linking them, but due
to optionality it is not possible to make the required connection for all occurrences.

For example, suppose you want to identify which course a student is taking. The following model will
not work if the student has not been assigned to a module. Although there is a link between course
and module due to the Course_ID foreign key in the module relation, there would be no link between
student and module if the student was not taking a module – there would be no foreign key Module_ID
in student to provide a link to the module relation.

This problem can be resolved by adding a 1:M relationship linking course to student directly.

4.12 Summary

An ERD can be converted into a logical design suitable for a relational database by defining a set of
relations, some of which have been derived directly from the ERD entities, others coming from the
relationships. The relations include all the keys which will be required to link the tables in the database
when it is created.

Summary of the rules for deriving the relations and their keys from the relationships:

1:1, the FK can go in either relation or combine to form one relation
1:1 with optionality at one end, the PK from the mandatory end is stored as FK at optional end
1:1 with optionality at both ends, create a new relation including a FK from either end used as PK
1:M, the PK from the one end goes in the many end as a FK
1:M optionality at the one end, create a new relation with FK from many end it becomes the PK
M:M, create a new relation with a compound PK made up of the FKs from both relations

Key things to bear in mind are:
 - tables should not have repeating attributes
 - a foreign key should never hold a null value.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

59

Logical Database Design

Exercise 6

1. Produce the logical design for the following ERD.

2. Produce the logical design for the following ERD.

It should be noted that this diagram has been drawn for a system that only needs to store information on cars currently
hired (i.e. on loan now).

3. Sub type task
Identify some sub types for the car hire model above and redraw the model.

4. Exclusive arc task
Model and show the relations for the relationship “A student studies either an undergraduate course or a
postgraduate course”.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

60

Logical Database Design

Exercise 6 feedback

1. The M:M relationship between PRODUCT and CUSTOMER is resolved by creating a new relation called PURCHASE
giving the following relations:

SUPPLIER (Supplier_code, Name, ..)
PRODUCT (Product_ID, Name, Price, Supplier_code, ..)
CUSTOMER (Customer_code, Name, Address, ..)
PURCHASE (Product_ID, Customer_code, quantity)

2. CAR MODEL (Model_name, manufacturer, size,…)
CAR (Registration_no, …)
CUSTOMER (Customer_code, Name, Address, ..)
RESERVATION (Model_name, Customer_code,…)
HIRE (Registration_no, Customer_code, ..)

HIRE is created to handle the relationship between CUSTOMER and CAR (as customer is optional). RESERVATION is created
to handle the M:M relationship between CAR_MODEL and CUSTOMER.

Note: In reality, further information would need to be stored for HIRE and RESERVATION e.g. hire and return date etc.

3. For CUSTOMER you may want to define the sub types RETAIL customer and COMMERCIAL borrower.

CUSTOMER (Customer_code, Name, Address,..)
RETAIL (Customer_code, preferences,….)
BUSINESS (Customer_code, Company_name,….)

All sub type relations must have the same primary key (also a foreign key) as the super type. Additionally, you may
consider sub types for CAR MODEL.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

61

Logical Database Design

4. A Student studies either an undergraduate course (UG) or a postgraduate course (PG).

STUDENT

UG COURSE

PG COURSE

studies

studies

The UG COURSE and PG COURSE entities could also be shown as sub types of COURSE

STUDENT (student_id, …..)
UG_COURSE (ug_course_id, Student_id)
PG_COURSE (pg_course_id, Student_id)

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Database Design and Implementation:
A practical introduction using Oracle SQL

62

Normalisation

5 Normalisation
On completion of this chapter you should be able to:

• understand the differences between normalised and un-normalised data
• convert un-normalised data to third normal form.

5.1 Introduction

You have now seen how a system can be modelled from a “top-down” perspective, starting with entities,
then producing an entity relationship diagram and finally converting this into a set of relations. Although
the top-down approach is the initial approach adopted, another modelling approach called “bottom-
up” can be used to ensure that all the relations have been identified correctly. The bottom-up approach
is based on looking at the attributes which exist in the system being analysed and grouping them into
logical relations.

In this chapter the ‘bottom-up’ approach will be introduced to enable you to become familiar with the
important general idea of “normal forms” of data and the process of normalisation.

Normalisation is a process undertaken to minimise data redundancy and produce efficient table
structures. It is a formal technique for analysing individual relations and was introduced by (E.F. Codd,
1970). A set of steps is followed to ensure that the relation is transformed through a number of states
into a form which is generally referred to as ‘normalised’.

At the logical design stage relations can be in one of four states, depending on whether certain conditions
are satisfied.

These states are:

 - Un-normalised (UNF),
 - 1st Normal Form (1NF),
 - 2nd Normal Form (2NF),
 - 3rd Normal Form (3NF).

Each state imposes further conditions on those required by the previous one.

The process of normalisation is used to produce a logical design which will lead to an efficient and effective database.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

63

Normalisation

In particular, the aim is to avoid in the database:

 - unnecessary wastage of storage space
 - data redundancy (or data duplication – data (attributes) held in more than one place).

It is important to avoid data redundancy – storing the same data in more than one place has the potential
to produce anomalies that can arise when data is inserted, amended or deleted. This is to be avoided in
order not to compromise the integrity of the system. For example, if a customer’s details were stored in
many different places and they were not all updated at the same time this could cause inconsistencies
which would be likely to result in out of date information being used.

If the ERD has been produced correctly, the resulting logical design will already be normalised to some
extent. In this case, the normalisation process is used to check the definitions of the relations and, if
necessary, refine them.

If the database is designed using a bottom-up approach where existing system documents, e.g. forms
and reports have been considered, the initial logical design is unlikely to be normalised and applying
the normalisation process is likely to cause changes to the original set of relations.

You are now going to be introduced to the process of normalisation and its normal forms.

5.2 Un-normalised form (UNF)

An un-normalised table can be defined as having any of the following issues:

 - there are repeating groups (of attribute names)
 - the attribute values are not atomic (single)
 - there are “embedded tables”

To start the process you have to identify whether the data is in un-normalised form. The following is a
representation of a typical business invoice. The invoice, which has a number of invoice item lines shown
on it, will be used to illustrate the process.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

64

Normalisation

Yorkshire Computer Supplies
1 Long Road, Leeds, LS3 3QS, West Yorkshire, UK. Tel: 0113 2832700

INVOICE

Invoice No: 1034 Invoice Name / Address

Invoice Date: 31/1/2015 H. Jones

Customer No: C101 9 The Avenue
Harrogate
HG2 7LR

ITEM ID DESCRIPTION QTY PRICE AMOUNT

PC1 Computer 3 500.00 1500.00

MN2 Monitor 3 200.00 600.00

LP1 Printer 1 156.00 156.00

SUBTOTAL 2256.00

TAX @ 20% 451.20

DELIVERY 35.00

TOTAL 2742.20

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/volvo

Database Design and Implementation:
A practical introduction using Oracle SQL

65

Normalisation

The first step is to identify a list of attributes including an identifying attribute from the invoice that you
want to hold within the database system:

 - Invoice_No
 - Invoice_Date
 - Customer_No
 - Invoice_Name
 - Invoice_Address

(Item_ID
 - Description The attributes shown between the (…) form a repeating group.

 - Qty
 - Price
 - Amount)
 - Subtotal
 - Tax
 - Delivery
 - Total

Note that the company name, address and telephone number for Yorkshire Computer Supplies are not
included on the list as the system is only being used by them, so this information does not need to be
stored in the database.

Although it is possible your lists of attributes may already be in a normalised form you should always apply the rules of
normalisation to ensure that all your relations have been normalised before progressing to the physical design stage.

The problems of trying to build a single table with all of the un-normalised data attributes are
explained below.

The INVOICE table created from the attributes identified shows that for the following columns Item_ID,
Desc, Qty, Price and Amount the data is not atomic – the cells contain more than one attribute value.

Inv
No

Date Cust
No

Inv
Name

Inv Addr Item
ID

Desc Qty Price Amt Sub
Tot

T
a
x

D
e
l

Total

1034 31/1/15 C101 H
Jones

9 The
Avenue

Harrogate

HG2 7LR

PC1

MN2

LP1

Computer

Monitor

Printer

3

3

1

500

200

156

1500

600

156

2256 … … 2742.20

1035 … … … … … … … … … … …

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

66

Normalisation

You can also see that, just as the original invoice document included a table of values for Item_ID,
Description, Qty, Price and Amount showing three rows of values, this table still appears to be embedded
in the INVOICE table. These issues mean that it would not be appropriate to implement this table within
the database as it would prove difficult to extract the individual invoice items from it.

In order to remove the embedded table it would be possible to redesign the table with repeating groups
of attributes. The data could be rearranged by moving all the groups of invoice item data together in
one long row, as illustrated by the following:

The five columns would have to be repeated 3 times.

Item

ID

Desc Qty Price Amt Item

ID

Desc Qty Price Amt Item

ID

Desc Qty Price Amt

…Other

cols

PC1

Com

puter

3 500 1500 MN2 Moni

tor

3 200 600 LP1 Printe

r

1 156 156

Duplicate columns added to the original

If this approach was adopted you would need to decide on the maximum number of invoice items per
invoice. However, if a large number was chosen the cells would often be left empty because not all invoices
would have the maximum number of items, thus wasting storage space. This also makes searching for
data more complicated and if there was a need in future to increase the number of repeating groups,
the table structure would need altering. Having considered the issues for this example you can now see
that it is in an un-normalised state and so will need normalising to avoid these issues.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

67

Normalisation

Exercise 1

a) In the invoice table below can you identify the embedded table?

Invoice

No

Invoice

Name

Invoice

Address

Item ID Description Qty Unit

Price

Amount Del

1034 H. Jones 9 The Avenue

Harrogate

HG2 7LR

PC1 Computer 3 500.00 1500.00 35.00

MN2 Monitor 3 200.00 600.00

LP1 Laser Printer 1 156.00 156.00

1044 Etc.

b) It might be considered that a way round the problem would be to design the table in the following way:

oad free eBooks at bookboon.com

74

Invoice

No

Date Invoice

Name

Invoice

Address

Item ID etc. Del

1034 31.01.15 H. Jones 9 The Avenue

Harrogate

HG2 7LR

PC1

 35.00

1034 31.01.15 H. Jones 9 The Avenue

Harrogate

HG2 7LR

MN2

 35.00

1034 31.01.15 H. Jones 9 The Avenue

Harrogate

HG2 7LR

LP1

 35.00

1044 �tc.

Can you see why this should not be allowed?

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

68

Normalisation

Exercise 1 feedback

a) The embedded table

Item ID Description Qty Unit

Price

Amount

PC1 Computer 3 500.00 1500.00

MN2 Monitor 3 200.00 600.00

LP1 Laser Printer 1 156.00 156.00

b) The amended table should not be allowed as all the non-item columns Invoice_no, date, Invoice_Address,
Sub total, Tax, Delivery and Total would be repeated for each item, a very wasteful situation.

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Database Design and Implementation:
A practical introduction using Oracle SQL

69

Normalisation

5.3 First Normal Form (1NF)

First Normal Form

A relation is in First Normal Form if all attributes are functionally dependent on the primary key. In other words, for
each value of the primary key there is only one value for each attribute in the relation. Or, put simply, if you entered a
Student_ID to search the database you would expect it to return just one set of student attributes.

To convert a table to First Normal Form, multiple values or repeating groups of attributes must be
removed to form another relation. To do this the following steps are carried out:

1. Identify the primary key for the relation (you may have to invent one)
2. Identify the repeating group or groups
3. Remove the repeating group completely from the original relation and place it in a newly- created relation
4. Ensure the relations are linked by putting the primary key of the original relation into the new one as a foreign key
5. Define a primary key for the new relation. This usually consists of two attributes, one of which is the Foreign

Key, but there could be more than two.

To help with the conversion process you can use the Normalisation Template available in Appendix D.

To convert to First Normal Form, start with the original un-normalised list of attributes and identify
a unique identifier for the whole list of attributes. This becomes the primary key; in this example it is
Invoice_No.

The next step is to look for any repeating groups of attributes. In this example each group of ‘invoice
items’ will be repeated for each item being invoiced. The repeating group consists of Item_ID, Description,
Qty, Price and Amount and is shown in () in the list of attributes. The repeating group is removed from
the original group and placed in another relation.

In some situations there may be no obvious unique identifier attribute(s). In these cases you can invent an artificial
identifier to act as the primary key, e.g. for a list of student details you could choose Student_ID.

If you find more than one repeating group of attributes, each group must be placed separately in its own relation.

You can now see how the original list of attributes has been broken down into two separate lists, therefore
a foreign key needs to be identified for the new relation; this will be the primary key of the original
relation Invoice_No. A foreign key is needed otherwise there will be no way of linking the new relation
with the original one

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

70

Normalisation

Un-normalised form First normal form

Invoice_No Invoice_No

Date Date

Customer_No Customer_No

Invoice_Name Invoice_Name

Invoice_Address Invoice_Address

(Item_ID Subtotal

Description Tax

Qty Delivery

Price Total

Amount)

Subtotal Invoice_No

Tax Item_ID

Delivery Description

Total Qty

Price

Amount

Finally, you need to ensure that the new relation is assigned a primary key. This will be a compound key
which will use the foreign key and another attribute(s) which is chosen from the new relation in order
to provide a unique identifier. In this example Invoice_No and Item_ID are used together.

The resulting attribute lists are in effect relations, though they need to be given meaningful names. The
original relation is now named as INVOICE and the new relation INVOICE_ITEM.

The following show how these 1NF database tables based on these relations would look.
You could create an INVOICE table:

Invoice
No

Date Customer
No

Invoice
Name

Invoice
Address

Sub Total Tax Delivery Total

1034 31.01.15 C101 H. Jones 9 The
Avenue
Harrogate
HG2 7LR

2256.95 451.20 35.00 2742.20

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

71

Normalisation

and an INVOICE_ITEM table:

Invoice No Item ID Description Qty Unit Price Amount

1034 PC1 Computer 3 500.00 1500.00

1034 MN2 Monitor 3 200.00 600.00

1034 LP1 Laser Printer 1 156.00 156.00

You can see that for order number 1034 there is one row in the INVOICE table and three in the
INVOICE_ITEM table. There are no repeating columns and no empty cells.

Exercise 2

A manufacturer obtains materials from a number of different suppliers which are used to make up products. The
information about the suppliers and what they can supply is shown below.

Material

No

Description Unit Of

Ordering

Supplier

No

Supplier

Name

Supplier

Address

Minimum

Order

Quantity

Delivery

Time

Price

B301 1cm Steel

Bar

Metre S455

J. Jones

plc

12 May

St

Bootle

1000 1 weeks

4.45

 S126 Fabric

2 Green

St

Leeds

1500 2 weeks 4.50

 S312 F. Dunn

Ltd

Oddy

Way

Grimsby

500 2 weeks 4.67

B377 50mm Bolts Each S007 Metalco Axo

Works

Back

Lane

Sheffield

3000 3 days 0.01

 S402 GST plc 31

Bridge

Rd

Leeds

2000 1 week 0.01

a) Mark the column range for the embedded table(s) in the MATERIAL table above.
b) List all the attributes in tabular form (UNF).
c) Convert the data from UNF to 1NF
d) Draw the conceptual data model (ERD) for the two resulting relations.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

72

Normalisation

Second Normal Form

A relation is in Second Normal Form if it is already in First Normal Form and all non-key

attributes are fully functionally dependent on the key.

The definition of functional dependency (which means single-valued) can be extended to the idea

of full functional dependency (which means dependent on the whole, not part).

Exercise 2 Feedback

a)

Supplier

No

Supplier

Name

Supplier

Address

Minimum Order

Quantity

Delivery

Time

Price

b) & c)

UNF 1NF

Material no. Material no.

Description Description

Unit of Ordering Unit of Ordering

Supplier No.

Supplier Name Material no.

Supplier Address Supplier No.

Minimum Order Quantity Supplier Name

Delivery Time Supplier Address

Price Minimum Order Quantity

 Delivery Time

 Price

d)

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

73

Normalisation

5.4 Second Normal Form (2NF)

Second Normal Form
A relation is in Second Normal Form if –

- It is already in 1NF and
- All non-key attributes are fully functionally dependent on the whole key.

Conversion from 1NF to 2NF

This conversion only applies to relations that have a compound key. i.e. any relation with a simple (single
attribute) key is already in 2NF, if it is already in 1NF.

The process involves checking whether or not there are attributes that depend on only one part of the
compound key. To do this, follow the steps below:

1. Identify attributes with partial key dependencies
2. Remove the attributes with partial key dependencies into a new relation
3. Make the part key they are dependent on the primary key for the new relation

Do not forget to ensure that the original relation retains its compound key.

Consider the INVOICE_ITEM relation example which is in 1NF but is not in 2NF.

You are not interested in the INVOICE relation because its primary key is a single attribute, so in effect
is already in 2NF. So, that just leaves the INVOICE_ITEM relation. The compound primary key for
this relation consists of the Invoice_No and Item_ID. So you need to determine which, if any, of the
non-key attributes are dependent on only part of this key.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

74

Normalisation

The following table shows the dependencies:

Non-key attributes Invoice_No + Item_ID Invoice_No Item_ID

Qty �

Description �

Price �

Amount �

You can see that the Description and Price attributes only depend on the Item_ID part of the compound
key and so need to be removed to a separate relation.

Continuing the conversion using the template will produce the following results:

Un-normalised form First Normal Form Second Normal Form

Invoice_No Invoice_No Invoice_No

Date Date Date

Customer_No Customer_No Customer_No

Invoice_Name Invoice_Name Invoice_Name

Invoice_Address Invoice_Address Invoice_Address

(Item_ID Subtotal Subtotal

Description Tax Tax

Qty Delivery Delivery

Price Total Total

Amount)

Subtotal Invoice_No Invoice_No

Tax Item_ID Item_ID

Delivery Description Qty

Total Qty Amount

Price

Amount Item_ID

Description

Price

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

75

Normalisation

Note that there are now two foreign keys defined (Invoice_No and Item_ID) and they would be used
together to form a compound primary key in the new INVOICE_ITEM relation. If the 2NF relations
were implemented as tables, the INVOICE table would remain unchanged and the INVOICE_ITEM
table would now have fewer columns than before:

Invoice
No

Item ID Qty Amount

1034

1034

1034

PC1 3 1500.00

MN2 3 600.00

LP1 1 156.00

1044 Etc…

There would also be a new table which would be named PRODUCT:

Item ID Description Price

PC1 Computer 500.00

MN Monitor 200.00

LP1 Laser Printer 156.00

Etc…

The advantage of having data in 2NF is that redundancy has been removed. In 1NF for instance, you
would have had to provide the value for the attribute “Description” in the INVOICE_ITEM table every
time a new invoice was produced which had that particular product on it. In 2NF the value is provided
once only in the PRODUCT table.

Exercise 3

a) Check the two relations resulting from the conversion to 1NF in Exercise 2.

b) Does one or both need converting?

c) Convert the data into 2NF by following the appropriate steps.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

76

Normalisation

Exercise 3 Feedback

a), b) and c) Only the following 1NF table needs to be checked for 2NF as it has a compound primary key. This results
in two tables at 2NF.

1NF 2NF

Material no. Material no.

Supplier No. Supplier No.

Supplier Name

Supplier Address Supplier No.

Minimum Order Quantity Supplier Name

Delivery Time Supplier Address

Price Minimum Order Quantity

Delivery Time

Price

Notice that in 2NF the original 1NF Material relation only consists of the compound primary key, and the Supplier No.
is now acting as a foreign key to the new SUPPLIER details relation.

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Database Design and Implementation:
A practical introduction using Oracle SQL

77

Normalisation

5.5 Third Normal Form (3NF)

Third Normal Form

A relation is in Third Normal Form if -
 - it is already in 2NF
 - there are no functional dependencies between any pair of non-key attributes (i.e. there are no transitive

dependencies)

If an attribute is functionally dependent on another attribute, that one is referred to as the determinant. For example:

Is Invoice No. a determinant of Invoice Name? Yes
Is Invoice Name a determinant of Invoice_No.? No

If an attribute is the determinant of a second attribute and that attribute is the determinant of a third attribute then the
third attribute is transitively dependent on the first attribute.

Converting the data tables to the third normal form will further improve the logical design of the database.

Conversion to 3NF

This is a very similar process to the one for 2NF. To do this, follow the steps below:

1. Identify any attributes that are determined by another non-key attribute
2. Remove these attributes to a new relation
3. Set the non-key attribute to be the Primary key in the new relation
4. Convert the non-key attribute to a foreign key in the original relation.

The Third Normal Form is very similar to the Second Normal Form. However, instead of considering
whether some attributes in the table are dependent on only part of a compound key, a check is made
to see whether they are dependent on attributes which are not part of the key. In a very similar way to
2NF, you remove the attributes which depend on this (non-key) attribute into a new table.

As an example of a table being in 2NF but not in 3NF, consider the INVOICE relation:-

Invoice
No

Date Customer
No

Invoice
Name

Invoice
Address

Sub Total Tax Delivery Total

1034 31.01.15 C101 H. Jones 9 The
Avenue
Harrogate
HG2 7LR

2256.95 451.20 35.00 2742.20

If you look carefully at this relation you will see that there is a functional dependency between the
non-key attributes Invoice Name and Invoice Address. Invoice address is actually dependent on (or
determined by) the Invoice Name, not by the Invoice No. The Invoice Address is said to be transitively
dependent on the Invoice No.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

78

Normalisation

This is not an ideal situation as every time an invoice for a customer was produced, the customer’s address
would be duplicated. By converting to 3NF the Invoice Name and Address attributes are removed to
a new relation, and the Invoice Name would become the primary key of the new relation. The Invoice
Name would remain in the existing table but would now be acting as a foreign key. The relations are now
in 3NF and so you can say they have been ‘normalised’, thus providing you with a set of efficient table
structures which can now be considered for use in the physical design stage. The completed template
below shows all the relations and their names.

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

Database Design and Implementation:
A practical introduction using Oracle SQL

79

Normalisation

Un-Normalised

Form UNF

First Normal

Form

1NF

Second Normal

Form 2NF

Third Normal

Form 3NF

Relation

Name

Invoice_No Invoice_No Invoice_No Invoice_No INVOICE

Date Date Date Date

Customer_No Customer_No Customer_No Customer_No

Invoice_Name Invoice_Name Invoice_Name Invoice_Name

Invoice_Address Invoice_Address Invoice_Address Subtotal

(Item_ID Subtotal Subtotal Tax

Qty Tax Tax Delivery

Description Delivery Delivery Total

Price Total Total

Amount) Invoice_Name INVOICE

ADDRESS Subtotal Invoice_No Invoice_No Invoice_Address

Tax Item_ID Item_ID

Delivery Qty Qty Invoice_No INVOICE

ITEM Total Description Amount Item_ID

 Price Qty

 Amount Item_ID Amount

 Description

 Price Item_ID ITEM

 Description

 Price

In order to see how the bottom-up approach compares with the top-down approach here is the
corresponding ERD for the Invoice:

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

80

Normalisation

5.6 Denormalisation

Although you should always aim to implement a normalised set of tables where possible, there are
occasions when you might consider denormalising, usually for performance reasons. In the following
tables, if the Invoice Item’s tax amount was a calculated value, the item’s tax code would be used to
search the Tax table for the appropriate row, and the corresponding tax % value would then be used to
calculate the invoice item tax amount.

Item ID Description Quantity Price Total Price Tax Code Tax Amount

A101 Laptop 1 450 450 01 90

Invoice Item Table

Tax Code Tax %

01 20

Tax Table

Denormalisation could be applied to speed up the calculation. The tax % amount could be stored within
the Invoice Item table, thus saving a Tax table read, however the tax % value would now have to be
maintained in both tables.

In this example there is another reason to consider denormalisation. Storing the actual tax % amount
in the Invoice Item table would ensure that if the calculation had to be performed again in the future,
when the tax rate in the Tax table may have changed, the result would still produce the same value which
would have been calculated at the time the invoice item was initially created as it should.

5.7 Checking the model

Before moving on to the development phase it is important to check that the normalised set of relations
will support the business transactions that are required for the database system. This is usually achieved by
taking each transaction or search query and tracing the pathways from entity to entity on the composite
ERD in order to ensure that it is possible to link to the relevant entities and extract the relevant attributes
to satisfy the query.

5.8 Summary

The relations of the logical design can be improved in terms of reduction of wasted space and elimination
of redundancy by the process of normalisation. Relations derived from ERDs may well be already
normalised, but ones derived from other sources, e.g. forms or reports, will probably not be.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

81

Normalisation

Normalisation means transforming the relations by stages into:

a) First Normal Form – to ensure that an implemented table would have only a single value for each attribute
(there are no repeating groups).
To achieve 1NF: Remove the repeating group completely into a new table and place a link (Foreign Key) in the
NEW table. Remember to identify the compound Primary Key in the new table.

b) Second Normal Form – the non-key attributes depend on the whole (compound) key, not just part of it.
To achieve 2NF: Remove the attributes that are dependent on only one part of the key with that part key into
a new table, leaving a link (Foreign Key) behind in the ORIGINAL table.

c) Third Normal Form – all the attributes are dependent on the key.
To achieve 3NF: Remove any attributes which are dependent on another non-key attribute and place them in
a new table leaving a link (Foreign Key) behind in the ORIGINAL table.

Do not normalise all the attributes as one data set, normalise each logical data set separately.

To help you remember the 3 normal forms, the attributes in a relation should depend on:

1NF the key
2NF the whole key

3NF nothing but the key

When you have normalised all the individual data sets, you should check to see if any relations identified are not shown
as entities on the original ERD. If they are not, it is advisable to add them to form a complete (composite) ERD showing
all of the data requirements.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

Database Design and Implementation:
A practical introduction using Oracle SQL

82

Normalisation

Exercise 4

For each of the following statements decide which of the three normal forms would be applicable.

1. The non-key attributes depend on the whole (compound) key, not just part of it.
2. For each row of the table, there is a single entry in each column.
3. In a table in this form all non-key attributes are fully functionally dependent on the key.

Exercise 4 feedback

1) The non-key attributes depend on the whole
(compound) key, not just part of it

Second Normal Form

2) For each row of the table, there is a single entry in
each column

First Normal Form

3) In a table in this form all non-key attributes are fully
functionally dependent on the key

Third Normal Form

Exercise 5

A cycling organisation wishes to set up a database to record results for cycle races. The cyclists’ ID, name, address and
phone no. are to be held. In addition, their cycling club ID and name and its address need to be recorded. The database
will also need to hold all details of all the races that the cyclist takes part in. Each race has a unique number. Each cyclist
can only belong to one club though clubs can have many cyclists.

An initial un-normalised relation is:

CYCLIST (Cyclist#, Surname, Forename, Cyclist address, Cyclist_phone#, Race#, Race name, Race type, Race result, Club#,
Club name, Club address)

Convert this to 3NF using the normalisation template. A starting point is given in the table below.

Un-normalised form First normal form Second normal form Third normal form

Cyclist_ID

Surname

Forename

Cyclist_address

Cyclist_phone#

Race#

Race_name

Race_type

Race result

Club#

Club_name

Club_address

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

83

Normalisation

Exercise 5 feedback

Un-normalised form First normal form Second normal form Third normal form

Cyclist ID Cyclist ID Cyclist ID Cyclist ID

Surname Surname Surname Surname

Forename Forename Forename Forename

Cyclist_address Cyclist_address Cyclist_address Cyclist_address

Cyclist_phone# Cyclist_phone# Cyclist_phone# Cyclist_phone#

Race# Club# Club# Club#

Race_name Club_name Club_name

Race_type Club_address Club_address Club#

Race result Club_name

Club# Cyclist ID Cyclist ID Club_address

Club_name Race# Race#

Club_address Race_name Race result Cyclist ID

Race_type Race#

Race result Race# Race result

Race_name

Race_type Race#

Race_name

Race_type

The repeating group race is broken out at 1NF.
The part-key dependent race details are broken out at 2NF.
The non-key dependent club details are broken out at 3NF.

This would give the following set of relations:
CYCLIST, CLUB, RACE_RESULT, RACE,

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

84

Normalisation

Exercise 6

Normalise the following:

1. EMPLOYEE (Employee Name, Address, Age, Department, Division)

2. An airline wishes to keep the following information about each of the flights made:

Fight Reference Number, Departure Date, Pilot No, Arrival Date, Aircraft ID, Flight Destination, Name of Pilot,
Aircraft Name, Aircraft capacity, Aircraft Type, Aircraft max speed.

3. TEACHER (Teacher#, Teacher_Name, School_Ref, School_Name)

4. RACE(Race_ID, Competitor_ID, Competitor_Name, Position_Achieved, Race_Distance,)

5. CAR_RALLY_RESULT(Driver_ID, Driver_Name, Co_Driver_ID, Co_Driver_Name, Driver_Ranking, Rally_Name,
{Stage_No, Stage_Time}

Note: Rally Cars compete in motor rallies. Each rally car has a driver and a co- driver.
Each rally comprises a number of timed stages { }.

6. Derive a set of normalised relations (to 3NF) for the following data that is to form the basis of a database used
to hold computer repair records.

Customer Number, Customer Name, Customer Address, Repair Date, PC ID, Make, Model, Technician Name, Technician
Grade, Repair Cost.

Assume that each PC repair is assigned to one technician whose grade determines the rate to be charged for the work
done. The database must be able to record a series of repairs carried out on the same PC over a period of time. The
company identifies each PC with a single owner (the Customer).

Exercise 6 feedback

1. EMPLOYEE (Employee_Name, Address, Age, Department)
DEPARTMENT (Department, Division)

2. PILOT (Pilot#, Pilot_Name)
AIRCRAFT(Aircraft_ID, Aircraft_Name, Aircraft_Type, Aircraft_Capacity, Aircraft_max _Speed)
FLIGHT(Flight_Reference_No., Flight_Destination, Departure_Date, Arrival_Date, Aircraft_ID, Pilot#)

3. TEACHER(Teacher#, Teacher_Name, School_Ref)
SCHOOL(School_Ref, School_Name)

4. RACE (Race_ID, Race_Distance)
COMPETITOR (Competitor_ID,Competitor_Name)
RESULT (Race_ID, Competitor_ID, Position_Achieved)

5. DRIVER(Driver_ID, Driver_Name)
CO_DRIVER(Co_Driver_ID, Co_Driver_Name)
RALLY(Rally_Name, Driver_ID, Co_Driver_ID)
CAR_RALLY_RESULT (Rally_Name, Driver_ID , Stage_No, Stage_Time)

6. PC_REPAIR (PC_ID,Repair_Date, Customer#, Technician_Name, Repair_Cost)
CUSTOMER (Customer#, Customer_Name, Customer_Address)
PC (PC_ID, Make, Model)
TECHNICIAN (Technician_Name, Technician_Grade)

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

85

Introduction to Oracle SQL

6 Introduction to Oracle SQL
On completion of this chapter you should be able to:

• sign in and out of Oracle
• use a script file
• create tables
• insert data.

Introduction

You are now ready to implement physically a logical design, using a database management system
(DBMS). There are a number of Relational Database Management Systems (RDBMS) in use; popular
ones include Oracle, MySQL, Microsoft SQL Server and Microsoft Access.

In order to use a DBMS you need to be familiar with a data manipulation language. The most widely
used one is the Structured Query Language, commonly referred to as SQL.

Although SQL has become a standard and is used by many DBMSs there are slight differences between them so some
SQL code may not work on all systems without changes

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

Database Design and Implementation:
A practical introduction using Oracle SQL

86

Introduction to Oracle SQL

This book uses the Oracle database with the Oracle Application Express (APEX) version 5 toolset to
execute the presented SQL commands.

A free Oracle account can be obtained from apex.oracle.com. Alternatively, a copy of Oracle Database
Express Edition 11g and APEX can be downloaded from apex.oracle.com for installation on your own
PC. A web browser is used to access APEX and the database.

The following chapters will introduce you to the main SQL commands; a full Oracle SQL language
reference can be found at docs.oracle.com.

Signing In

To sign in to the database, open your web browser and go to apex.oracle.com or your system’s own login
page. You will need to enter your database workspace name, username and password. These will be
provided to you when you open an Oracle account or will be given to you by your system administrator.
The password can be reset by clicking on the Reset password option on the sign-in screen if required.
Your workspace within the Oracle database is where your data tables and SQL commands will be stored.

Oracle APEX Sign In screen

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

87

Introduction to Oracle SQL

Script files

Although you can enter SQL commands directly using the APEX SQL Command Tool, when developing
applications it is usual practice to create script files to store regularly used SQL commands along with
any supporting comments, e.g. commands for creating database tables.

A script file allows you to quickly retrieve, edit and rerun SQL commands. It is basically a simple text
file and can, if required, be created outside of APEX using any text editor such as Microsoft Notepad.

Do not confuse script files with database tables, even though they can both have the same name.
Script files should be saved with a suffix of .sql to avoid confusion with other file types.

1. Once signed in to APEX, on the Home page click on the SQL Workshop icon.

Apex Home Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

88

Introduction to Oracle SQL

The following screens will show you how to create and run a script file called music.sql which contains
SQL commands that will create four tables in your database workspace relating to a music system (see
Appendix B). The system will hold data about music companies that have produced music CDs, details
of each CD, the tracks (songs) on each CD and music categories which tracks belong to.

2. Click on SQL Scripts.

SQL Workshop Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

89

Introduction to Oracle SQL

3. Then click on Create >.

SQL Scripts Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

90

Introduction to Oracle SQL

4. Enter music in the Script Name box and then position the cursor in the editor area and enter
all the SQL commands from the music.sql script file in Appendix B. Take care when entering
these commands to ensure that they are all entered exactly as shown below.

Script Editor

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

91

Introduction to Oracle SQL

Alternatively, you can create a script file outside of Oracle using a simple text editor such as Microsoft Notepad.
Enter your SQL commands using the editor and save the file with a .sql suffix. To upload the script into APEX go to
the SQL Scripts tool and click on the Upload button, then choose the file name, enter a script name and click on the
Upload button.

Comments can be included in script files by preceding them with --

5. You are now ready to run the script file to execute its SQL commands; click on the Run button.
The script will be saved automatically. p y

Running a Script

To delete a script on the SQL Scripts page just tick the small box to the left of the script detail and click on the
Delete Checked button, then click OK when prompted to perform the delete action.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

92

Introduction to Oracle SQL

6. Click on the Run in Background button (or Run Now)

Run Script

Download free eBooks at bookboon.com

Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

Database Design and Implementation:
A practical introduction using Oracle SQL

93

Introduction to Oracle SQL

7. Click on the View Results icon for the music scriptp

Manage Script Results

A brief summary of the SQL commands with the execution feedback is displayed

Summary Script Results

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

94

Introduction to Oracle SQL

8. To see more details click on the View: Detail button and click on the Go button

The music script commands appear along with the Oracle run time messages.

Detail Results View

On examining the SQL run time messages you will see that four tables have been created. Each table
has a number of named columns (attributes) and each has a particular datatype. There are a number of
different datatypes available but these tables just use three. The VARCHAR2 datatype is used to hold
variable length character strings; the number inside the () specifies the maximum number of characters.
The NUMBER datatype can be used to hold an integer value (a number with no decimal places) or a
real number (includes decimal places). The DATE datatype holds dates.

The first time you run this script the following error message will appear for each table – “ORA-00942: table or view does
not exist.” This is not a problem as these errors are generated by the DROP TABLE commands because Oracle is trying to
drop (remove) the tables from the database, but as they do not yet exist it cannot do this. However, it is usual practice
to include a DROP TABLE command before a CREATE TABLE command as you cannot overwrite an existing table with
the CREATE TABLE command.

Therefore you should always DROP a TABLE before you try and CREATE it, in case there is one already there.

If you need to amend the music script, click on the Edit Script button.
Make any amendments you require to the SQL and then click on the Save button.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

95

Introduction to Oracle SQL

To run the script again, click on the Run button followed by the Run in Background button as in 5 above.

Script Results

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/elearningforkids

Database Design and Implementation:
A practical introduction using Oracle SQL

96

Introduction to Oracle SQL

Always remember to check the APEX output results and feedback messages to ensure that your SQL commands have
run successfully.

To enter and run individual SQL commands directly, rather than using a script file, you can use the
SQL Commands Tool. To access this, click on the SQL Workshop tab and then click on the SQL
Commands button.

SQL Workshop

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

97

Introduction to Oracle SQL

SQL Command window

Results window

SQL Command and Results windows

APEX by default displays 10 Rows of output in the results window. This is not usually sufficient to see all of your output
results, so alter the number of Rows displayed by clicking on the Rows box above the SQL commands window and
choose a larger number, e.g. 50.

Creating tables

The SQL CREATE TABLE command is used to create a database table and defines its data columns. It
has the following format:

CREATE TABLE tablename (column_name datatype [constraint_name constraint type], …..);

[] represents and optional clause

Table and column names must follow these rules:
 - the table name must be unique
 - it can be up to 30 characters long
 - it must start with a letter
 - it can have letters, digits and the symbols $, # and _
 - the name cannot be a reserved word (e.g. an Oracle SQL command)

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

98

Introduction to Oracle SQL

Columns must have a datatype and usually a size defined e.g.:
Fixed length character string CHAR
Variable length character string VARCHAR2
Numbers NUMBER
Date DATE
Timestamp TIMESTAMP

Example column sizes for CHAR, VARCHAR2 and NUMBER columns:
CHAR(3) Holds strings of 3 characters (right filled with spaces)
VARCHAR2(25) Holds strings up to 25 characters long (variable length no padding)
NUMBER(3) Holds integers up to three digits long e.g. -999 to 999
NUMBER(5,2) Holds real numbers e.g. -999.99 to 999.99 The total number of digits (5)

is referred to as the precision and the decimal places (2) are referred to
as the scale.

Constraints

Tables can have table and row level constraints. Once set, these are automatically applied to restrict the
data held, in order to maintain the integrity of the database by applying relational database rules. The
constraints are usually defined when the table is created, but can be applied later.

There are two categories of constraints, integrity and value.

Download free eBooks at bookboon.com

Click on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

Database Design and Implementation:
A practical introduction using Oracle SQL

99

Introduction to Oracle SQL

An integrity constraint ensures that you can define a Primary key to ensure duplicate rows cannot be
added to a table. A Foreign key can be defined which ensures a row must reference a primary key in
the referenced table.

A primary key can be defined at column level as in the company table:

Company_ID number(3) PRIMARY KEY,

Or at table level, usually when there is a compound key, for example in the track table:

PRIMARY KEY(track_cd,track_no));

Foreign keys can similarly be defined and will be discussed later.

The following value constraint types can be used to ensure either that a column does not have an empty
(NULL) value or that it contains a specific value:

NOT NULL ensures that a value must be entered (cannot be left empty)
CHECK ensures that a column has a value within a set range

e.g. CHECK (price > 10) and (price < 20)
UNIQUE ensures that a single column has a unique value or that a group of columns

is unique

If a column is defined as a PRIMARY or FOREIGN key then the column will not permit a NULL or empty value, so you
should not specify the NOT NULL constraint as well.

Constraints are given names by the system, although you can assign your own.

9. Consider the music.sql script to see which constraints have been used and why.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

100

Introduction to Oracle SQL

10. To see the structure of a table you can also use the SQL DESC command in the SQL Commands
tool e.g. DESC cd;

DESC cd

Inserting data

Now that you have created the music system tables you can enter rows of data into your tables. To do
this you will need to use the SQL INSERT command. The general format is:

 INSERT INTO table_name (column_name, …) VALUES (column_value, …);
or
 INSERT INTO table_name VALUES (column_value, …);

The first version lets you enter values for named columns, the second requires a data value for all the
table columns in the order they were defined.

e.g. INSERT INTO category(cat_id, cat_description) VALUES (10, ‘Bhangra’);
or
 INSERT INTO category VALUES (10, ‘Bhangra’);

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

101

Introduction to Oracle SQL

Ensure that the data values you are trying to enter match the type and fit the size of their defined data columns and
remember character strings and dates should be enclosed between a pair of single ‘quotation marks’ not double “marks”.
Note the single quotation marks will appear like this ‘ ‘ when viewed in Oracle APEX.

To enter a null or empty string into a column, just use two single quotation marks together with no space in
between them.

11. Create a new script file called music_data and enter all the INSERT commands as shown in
the music_data.sql script in Appendix B.

12. Save and run the music_data script. Check the results carefully. If you have been successful
the comment ‘1 row(s) inserted’ will appear for each row inserted into a table. If you have any
errors, edit the script file to make the corrections, save it, then re-run the script.

If you successfully insert rows and then run the script again you will see an Oracle error message ‘ORA-00001: unique
constraint (…) violated’ for each of those rows.

It is important to understand what this error means. The message is telling you that you have violated the unique
constraint, i.e. that you are trying to enter a row with a primary key value which already exists. Do not worry. In this case
no action is required as the rows have already been inserted.

Remember – duplicate primary key values in a table are not permitted.

Download free eBooks at bookboon.com

Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

Database Design and Implementation:
A practical introduction using Oracle SQL

102

Introduction to Oracle SQL

You are now going to add some data of your own.

13. Edit the music_data script file and enter an INSERT command to add a new company of your
choice to the company table and a new music category to the category table. Refer to Appendix
B for the table specifications.

Take care to ensure that you assign unique primary key values or you will get errors.
Also remember that any NOT NULL columns must have a value.

Save the script and run it. You should see the comment “1 row(s) inserted” for each new row
that was inserted correctly.

Exercise 1

It is important to be able to check if a table exists and what its structure is.
How can you check what the table structure is?

Exercise 1 feedback

DESC company;
DESC cd;
DESC category;
DESC track;

Deleting data

If you need to delete a row or rows of data you can use the DELETE command which has the following
format

DELETE FROM tablename
WHERE condition(s);

e.g.
DELETE FROM company
WHERE company_ID = 10;

In the above example only the row where the company ID is 10 will be deleted from the company table.
The “WHERE” condition allows you to specify the criteria for selecting the row(s) to be deleted. Chapter 8
explains the “WHERE” conditions in more detail.

Warning: DELETE FROM tablename without a WHERE condition will delete all the rows.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

103

Introduction to Oracle SQL

Updating data

To change a column value in a row or rows the UPDATE command can be used. This has the following
format

UPDATE tablename
SET condition
WHERE condition

e.g.
UPDATE company
SET company_name = ‘BMB’
WHERE company_ID = 10;

The above example would change the company name to BMB for the row which had a company_ID
value of 10.

Take care, if you leave off the WHERE condition all rows in the table will be updated.

Signing out

To sign out of Oracle at any time, click on the account menu tab and then click on the Sign out button.

You do not have to worry about saving your data before signing out as it will be maintained in the database until you
run SQL commands to delete it.

It is important to be able to understand oracle error messages and be able to identify and correct mistakes in your SQL
code, so for a summary of Oracle Errors see www.docs.oracle.com/

There are a number of support resources available for Oracle SQL and APEX including the Oracle Technology Network
www.oracle.com/technetwork/index.html

Other resources include www.w3schools.com/sql which offers SQL tutorials and quizzes. Remember, there may be
differences in SQL commands depending on which database product you are using.

Download free eBooks at bookboon.com

http://www.docs.oracle.com/
http://www.oracle.com/technetwork/index.html
http://www.w3schools.com/sql

Database Design and Implementation:
A practical introduction using Oracle SQL

104

Using Foreign Keys

7 Using Foreign Keys
On completion of this chapter you should be able to:

• create tables with foreign keys
• drop tables referenced by foreign keys
• insert data into tables with foreign keys.

In order to implement all the relationships from the logical design you will need to implement the foreign
keys that are used to link the tables. The value of the foreign key column in each row of the child table
(relationship many end) must match the value of the primary key column in a row of the parent table
(relationship one end). In Oracle, primary and foreign keys are referred to as integrity constraints and
a foreign key is a referential integrity constraint.

The ERD for the music system is shown below:

This shows that there are relationships which require foreign keys.

Download free eBooks at bookboon.com

Click on the ad to read more

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

Database Design and Implementation:
A practical introduction using Oracle SQL

105

Using Foreign Keys

There is a 1:M relationship between company and cd; each cd is produced by one company and each
company can produce one or more cds so the foreign key cd_company_Id is needed in the cd table.

The foreign key constraint for the cd table as it appears in the music script file is as follows:

cd_company_ID number(3) references company(company_Id));

There is also a 1:m relationship between cd and track and there is a 1:m relationship between category
and track. So the track table will need two foreign keys, the cd ID no from the cd table and a foreign
key, the cat_ID from the category table.

The foreign key constraints for the track table as they appear in the music script file are as follows:

track_cd number(3) references cd(cd_IDno),
and

track_cat_ID number(3) references category(cat_ID),

Remember the track_cd value must reference an existing primary key value, cd_IDno in the cd table,
and likewise the track_cat_ID must reference an existing music category, cat_ID in the category table.

You are now going to edit the music_data script to enter two more rows to the track table. These rows
should be for tracks 3 and 4 for cd_IDno 4, “The Rising”.

Note this table uses a compound primary key consisting of the cd ID number and track number
columns defined at the table level as:

Primary key(track_cd,track_no));

Ensure that the compound key value is unique i.e. the track_cd value 4 will be repeated but the track_no
should be unique for the cd.

Rerun the script and correct any errors with the new rows.

If defining a compound foreign key use the following table level definition:
FOREIGN KEY(column_name1, column_name2, …)
REFERENCES table_name (column_name1, column_name2, …));

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

106

Using Foreign Keys

Cascade constraints

If you need to drop a table which has a primary key and it is referenced by a foreign key, then you need
to include the CASCADE CONSTRAINTS clause in the DROP TABLE command, e.g. DROP TABLE
table_name CASCADE CONSTRAINTS. If you omit this clause, and such a referential integrity constraint
exists, then the database will return an error and will not drop the table.

In the music system this means that the company, cd and category tables will need the cascade constraints
adding to their drop table commands, e.g.

DROP TABLE cd CASCADE CONSTRAINTS.

It is important to understand that if a table is referenced by a foreign key constraint it must be created before any
tables that reference it are created. In the music system, the company table is created before the cd table because it is
referenced by the cd table foreign key, and the cd and category tables have to be created before the track table as this
table references both of them.

It is not always possible to do this where there are many table dependencies. In this situation the ALTER TABLE command
can be used to add constraints after the tables have been created. The format is

ALTER TABLE tablename
ADD [CONSTRAINT constraint_name] constraint_type (column,…);

For example,

ALTER TABLE CD
ADD FOREIGN KEY (cd_company_ID)
REFERENCES COMPANY (company_ID);

The following are typical errors that you may encounter if the above guidance is not followed

The error “ORA-00001: unique constraint … violated” means that a row has already been inserted into
the table with a matching value in the constrained column i.e. a primary key value that already exists.

The error “ORA-02291: integrity constraint … violated – parent key not found” means the foreign
key is not valid, either because you are trying to reference the primary key in a table that does not exist
yet or the value does not match with an existing row primary key value.

Now that you have created some tables containing data you can move on to see how the data can be
extracted by means of SQL queries.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

107

Using Foreign Keys

Exercise 1

You are now going to create the following set of tables:

CUSTOMER (Customer_No, Customer_Name, Customer_Address, Customer_Tel_No)
BOOKING (Booking_No, Booking_Date. Customer_No, Car_Reg)
CAR (Car_Reg, Car_Make, Car_Model)

1. Create a new script file called Bookings and create the three tables based on the relations above. Ensure you
choose suitable column data types and sizes and do not forget to specify a primary key for each table and the
two foreign keys Customer_No, Car_Reg in the booking table. Consider the order the tables will be created, as
the table at the one end of a relationship must be created before the many end one – you cannot reference a
table that does not exist.

2. Run the script file Bookings to create the tables.

3. Edit the script Bookings, and at the end of the script file write insert commands to insert data into all three
tables. Do not forget that the data at the one end of a relationship must exist before the many end, so the
booking data must be inserted last.

4. Run the Bookings script file to insert the data. Edit the file to correct any errors.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Database Design and Implementation:
A practical introduction using Oracle SQL

108

Selecting data from a table

8 Selecting data from a table
On completion of this chapter you should be able to:

• select all the data from a table
• select some columns from a table
• select some rows from a table
• select some rows and some columns from a table
• order the output from a select statement.

In order to query the database you will need to select data from your tables using the SQL SELECT
command. This is a versatile command which has a number of optional clauses [..] some of which are
shown below. The | symbol is used to separate alternatives:

SELECT [DISTINCT] column_name,….
FROM table_name [,….]
[WHERE condition(s)]
[ORDER BY column_name [ASC|DESC]];

The DISTINCT clause can be used to eliminate duplicate values being displayed
The WHERE condition allows you to specify selection criteria to restrict the data retrieved
The ORDER BY clause allows you to sort the output into Ascending (default) or Descending order
before it is displayed.

The SELECT command can be spread over a number of lines to aid readability, just remember to terminate the command
with a semi colon;

Selecting all the data from a table.

To show all the columns for each row in the category table use the following:

SELECT cat_ID, cat_description FROM category;

Alternatively, to view all the columns of data for a table without listing them by name, use the * symbol
as follows:

SELECT * FROM category;

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

109

Selecting data from a table

Selecting some rows of data from a table

If you need to select just some of the rows of data from a table you will need to use the WHERE clause
and a condition. A condition is the selection criteria that must be satisfied to select a row’s details.

A simple condition uses a column name, a comparison operator and either another column name or
a value. The following are the available comparison operators:

Comparison Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

!= Not equal to

BETWEEN val1 AND val2 Value range

IN(val1,val2, val3 …) In set of values

Here is a simple condition to show all the columns for UK companies and ordered by company name:

SELECT * FROM COMPANY
WHERE company_country = ‘UK’
ORDER BY company_name;

Compound conditions can be formed by combining two or more simple conditions with the logical
operators AND, OR and NOT

The AND operator is used when all the simple conditions must be true.
The OR operator is used when any simple condition can be true.
The NOT operator is used when a simple condition should be reversed i.e. not true.

Some examples of compound conditions:

SELECT * FROM cd
WHERE cd_payment_type = ‘cash’ AND cd_price > 10;

SELECT cat_description FROM category
WHERE cat_description = ‘pop’ OR ‘rock’;

SELECT company_name FROM company
WHERE NOT (company_country = ‘UK’);

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

110

Selecting data from a table

Computed columns

It is also possible to include computed columns (which are not stored within the table) in SELECT
commands. These contain values that are calculated using data columns and arithmetic operators. The
following operators can be used:

Arithmetic Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

An example which calculates the 20% tax exclusive element of a CD price:

SELECT cd_title, cd_price, (cd_price / 1.2) AS ExTax FROM cd;

Before commencing with the following practical activities you must ensure that the music system tables
have sufficient data in order to run the queries. Ensure that you have inserted all the data as per the
music_data script (see Appendix B). If necessary re-run the script.

Download free eBooks at bookboon.com

Click on the ad to read more

95,000 km
In the past 5 years we have drilled around

—that’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading provider of reservoir characterization,
drilling, production, and processing technologies to the oil and
gas industry.

Who are we looking for?
We offer countless opportunities in the following domains:
n Operations
n Research, Engineering, and Manufacturing
n Geoscience and Petrotechnical
n Commercial and Business

We’re looking for high-energy, self-motivated graduates
with vision and integrity to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger

Database Design and Implementation:
A practical introduction using Oracle SQL

111

Selecting data from a table

In order to construct your SELECT commands you will need to refer to the table structures defined in
the music system specification (Appendix B).

The SELECT commands in the following exercises can be run directly from within the SQL command
tool on an individual basis or alternatively run from within a script file.

Exercise 1

Selecting some columns from a table.

Decide which table columns are needed and which order they should appear. If the rows need to be ordered, use the
order by clause.

Using the SQL Workshop, SQL Commands tool, enter select statements for the following:

a) Select all artists

b) Select all the company names

c) Select the title and price of the cds

d) Select the track titles and length order by length

e) Select the category descriptions and output them in ascending order

Carefully examine the output to ensure that the command has worked correctly.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

112

Selecting data from a table

Exercise 1 feedback

a) Select all artists
SELECT cd_artist FROM cd;

SQL Command output

b) Select all the company names
SELECT company_name FROM company;

c) Select the title and price of the cds
SELECT cd_title, cd_price FROM cd;

d) Select the track titles and length order by length
SELECT track_title, track_length FROM track;

e) Select the category descriptions and output them in ascending (A-Z) order
SELECT cat_description FROM category ORDER BY cat_description;

If you do not want to see a column’s output duplicated you can use the optional DISTINCT clause before
the column name e.g.

SELECT DISTINCT cd_artist FROM cd;

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

113

Selecting data from a table

Exercise 2

Selecting some attributes and some rows from a table

Using the SQL Workshop, SQL Commands tool, enter select statements for the following:

a) Select the names of the companies which are based in the USA.
 Ensure you use upper case letters for USA or none will be selected.

b) Select the cd title and artist for the cd “THE RISING”

c) Select the track titles and track length where the length is more than 1, order by length

d) Select the cd title for cds produced by company number 1

e) Select the title, artist and price for cds where the price is greater than 6 but less than 13.

Download free eBooks at bookboon.com

Click on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Database Design and Implementation:
A practical introduction using Oracle SQL

114

Selecting data from a table

Exercise 2 feedback

a) Select the names of the companies which are based in the USA.
SELECT company_name, company_country
FROM company
WHERE company_country = ‘USA’;

b) Select the cd title and artist for the cd THE RISING
SELECT cd_ title, cd_artist FROM cd
WHERE cd_ title = ‘THE RISING’;

c) Select the track titles and track length where the length is more than 1, order by length
SELECT track_title, track_length FROM track
WHERE track_length > 1
ORDER BY track_length;

d) Select the cd title for cds produced by company number
1 SELECT cd_title FROM cd
WHERE cd_company_ID = 1;

e) Select the title, artist and price for cds where the price is greater than 6 but less than 13
SELECT cd_title, cd_artist, cd_price FROM cd
WHERE cd_price > 6 and cd_price < 13;

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

115

Selecting data from multiple tables

9 Selecting data from
multiple tables

On completion of this chapter you should be able to:

• select data from more than one table
• select data from a table using an alias.

In many cases, to satisfy a query you will need to obtain data from more than one table. If you are
extracting data from two or more tables the tables will need to be joined to ensure that the data from
one table matches correctly with the data in another table.

The join is established as a simple condition which usually includes the primary key of one table being
matched with an appropriate foreign key in another table. This type of join is sometimes referred to as
an equijoin or inner join.

Finally, include any other conditions which are needed to restrict the rows to those required and include
ORDER BY if needed.

As an example, suppose you want to obtain the course details for a given student.

CREATE TABLE course
(course_code CHAR(5) PRIMARY KEY,
course_name VARCHAR2(20)NOT NULL,
course_start_date DATE);

CREATE TABLE student
(student_ID VARCHAR2(6) PRIMARY KEY,
student_name VARCHAR2(50) NOT NULL,
student_address VARCHAR2(50),
course_code CHAR(5) REFERENCES course(course_code));

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

116

Selecting data from multiple tables

To do this you will need to construct a query that joins the course and student tables. This will be done by
matching the primary key column course_code of table course with the foreign key column course_code
from the student table as follows:

SELECT course_code, course_name, student_name,
FROM course, student
WHERE course.course_code = student.course_code
AND student.course_code = ‘COMP’;

The above query selects the course code and name from the course table and the student name from
the student table only for students studying the course with code ‘COMP’.

Note that the two columns being joined have the same name, so in order to avoid ambiguity each column
must be referred to by its full name i.e. table_name.column_name. This approach would also be used if
a column to be selected had the same name as a column in a different table that was used in the query.

Download free eBooks at bookboon.com

Click on the ad to read more

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

Database Design and Implementation:
A practical introduction using Oracle SQL

117

Selecting data from multiple tables

If you leave out the correct join when trying to match two tables you will obtain output which is based on every row
in the first table being combined with every row in the second table. This is called a Cartesian product.

E.g. Compare the correct output from:

SELECT cd_title, track_title
FROM cd,track
WHERE cd_IDno = track_cd;

With the incorrect output from:

SELECT cd_title, track_title
FROM cd,track;

Self joins

It is sometimes the case that you will need to join a table to itself in order to extract the required
information. This is referred to as a recursive or self join. In order to do this the table needs to be given
an alias so that it can be referenced simultaneously from two different row positions. In this type of
join the data from the primary key appears as data in another column, the foreign key. As an example,
suppose you have a situation where employees have a supervisor and some employees act as a supervisor.
In this case the employee details could be represented by the ERD and the single table and data below.

EMPLOYEE

superv ises

is superv ised by

CREATE TABLE employee (
employee_no VARCHAR2(6) PRIMARY KEY,
name VARCHAR2(20),
supervisor VARCHAR2(6) REFERENCES employee(employee_no));

employee_no, name, supervisor

701 B Boss
702 U Ling 701
703 A Lee 701

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

118

Selecting data from multiple tables

If you want to extract the name of the supervisor (B Boss) for employee no. 702 (U Ling) then you would
need to access the employee table from the perspective of the employee being supervised (alias e) using
the foreign key column supervisor and matching this with the supervisor’s perspective (alias s) primary
key column employee_no. The Select command needed is as follows:

SELECT s.name
FROM employee e, employee s
WHERE e.supervisor = s.employee_no
AND e.employee_no = ‘702’;

Outer joins

In some cases you may wish to extract data using two tables which do not have shared column values
and so cannot be joined as in previous examples. Suppose you wanted to see tracks and their music
categories, including those that have not been used in the track table. If you joined the track table with
the category table you would not obtain all the music categories; however, if you use an outer join this
would allow you to see the missing music categories.

The track table is regarded as a deficient table as it does not contain all the category table category IDs.
To specify an outer join, you use the + symbol in the selection condition on the deficient table side. This
can be on either side of the condition but not both.

The following format is used:

SELECT table1name.columnname, [tablen2ame.columnname]
FROM table1name, table2name
WHERE table1name.columnname(+) = table2name.columnname;

For the example described above this would be the following:

SELECT track_title, track_cat_ID, cat_ID, cat_description
FROM track, category
WHERE track.track_cat_ID(+) = category.cat_ID;

Note that there is no track with a cat_ID of 4 but the description “Classical” is still displayed.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

119

Selecting data from multiple tables

Using built-in functions

In some situations there is a need to use Oracle built-in functions which can be incorporated into
SELECT commands in order to extract the required data. For example, it is quite common to retrieve
rows that have a column which matches a particular date or date range. In order to compare a date with
a column date it is necessary to convert the required date character string into a valid format before the
comparison can take place. To do this you can use the TO_DATE function as follows:

SELECT cd_title, cd_date_purchased
FROM cd
WHERE cd_date_purchased = TO_DATE(‘28-JAN-2002’, ‘DD-MON-YYYY’);

Several different date formats can be used, so take care to ensure that the date format used in the
TO_DATE function matches that used by the stored data.

Similarly, there are some character functions that can be used to compare a CHAR or VARCHAR2
column value with a character string. Care must be taken to ensure that the values are in the same case
or they will not be treated as a match.

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/GTca

Database Design and Implementation:
A practical introduction using Oracle SQL

120

Selecting data from multiple tables

Oracle provides the built-in functions UPPER, LOWER and INITCAP which can be used for the purpose
of converting a value into either UPPER, lower or upper case just for the first character of each separate
group of characters within the string. These functions can be used to convert the character strings used
in the WHERE clause.

If using the UPPER OR LOWER function on a column, the conversion is only temporary in order to make the comparison,
it does not change the data value stored in the column.

Here are some examples that would allow you to match the data held in the cd_title column:

SELECT *
FROM cd
WHERE cd_title = UPPER(‘Best of Bowie’);

or
SELECT *
FROM cd
WHERE LOWER(cd_title) = ‘best of bowie’ ;

or
SELECT *
FROM cd
WHERE INITCAP(cd_title) = ‘Best Of Bowie’ ;

For more information on built-in functions visit
https://docs.oracle.com/javadb/10.6.2.1/ref/rrefsqlj29026.html

You can now try some queries which use two tables to extract data from the music system (Appendix B).

Remember you must include a correct join or your output will be a Cartesian product.

Exercise 1

Using the SQL Workshop, SQL Commands tool enter select statements for the following:

a) Select the cd title and the name of its company for all the cds.

b) Select the cd titles and their track titles.

c) Select the track titles and their music category descriptions.

d) Select the track title for music category “Dance” tracks.

e) Select all cd titles which have track lengths > 3 and have a price > 10.

f) Select the company name and cd for each cd that was purchased after 1st September 2005.

Download free eBooks at bookboon.com

https://docs.oracle.com/javadb/10.6.2.1/ref/rrefsqlj29026.html

Database Design and Implementation:
A practical introduction using Oracle SQL

121

Selecting data from multiple tables

Exercise 1 feedback

a) Select the cd title and the name of its company for all the cds.
SELECT cd_title, company_name
FROM cd,company
WHERE cd_company_ID = company_ID;

b) Select the cd titles and their track titles.
SELECT cd_title, track_title
FROM cd,track
WHERE cd_IDno = track_cd;

c) Select the track titles and their music category descriptions.
SELECT track_title, cat_description
FROM track, category
WHERE track_cat_ID = cat_ID;

d) Select the track title for music category Dance tracks.
SELECT track_title
FROM track, category
WHERE track_cat_ID = cat_ID AND cat_description = ‘Dance’;

e) Select all cd titles which have track lengths > 3 and have a price greater than 10.
SELECT DISTINCT cd_title
FROM cd, track
WHERE cd_IDno = track_cd AND track_length > 3 AND cd_price > 10;

f) Select the company name and cd for each cd that was purchased after 1st September 2005.
SELECT company_name, cd_title, cd_date_purchased
FROM company, cd
WHERE company_ID = cd_company_ID

AND cd_date_purchased > TO_DATE(‘01-SEP-2005’);

The following queries will require joining three or four tables.

Exercise 2

Using the SQL Workshop, SQL Commands tool enter select statements for the following:

a) Select the company_name, cd title, track title and music category description.

b) Select the names of the companies which produced cds with “Dance” tracks.

c) Select all cd titles for cds which include “Pop” or “Dance” category tracks.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

122

Selecting data from multiple tables

Exercise 2 feedback

a) Select the company_name, cd title, track title and music category description.
SELECT company_name, cd_title, track_title, cat_description
FROM company, cd, track, category
WHERE company_ID = cd_company_ID AND cd_IDno = track_cd

AND track_cat_ID = cat_ID;

b) Select the names of the companies which produced cds with Dance tracks.
SELECT DISTINCT company_name
FROM company, cd, track, category
WHERE company_ID = cd_company_ID AND cd_IDno = track_cd

AND track_cat_ID = cat_ID AND cat_description = ‘Dance’;

c) Select all cd titles for cds which include Pop or Dance category tracks.
SELECT DISTINCT cd_title
FROM cd, track, category
WHERE cd_IDno = track_cd AND track_cat_ID = cat_ID

AND cat_description IN (‘Pop’,’Dance’);

Download free eBooks at bookboon.com

Click on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

Database Design and Implementation:
A practical introduction using Oracle SQL

123

Subqueries and group functions

10 Subqueries and group functions
On completion of this chapter you should be able to:

• use a sub query
• apply group functions.

When trying to extract data which involves using a number of tables it is sometimes appropriate to use
a subquery rather than a select command with lots of joins. Subqueries are also referred to as nested
queries. A subquery contains at least one nested query. The innermost query is executed first and the
value returned is then used at the next level up.

There are two types of sub query

 - Single Row – returns only one row of data
 - Multiple Row – returns more than one row of data.

Single-row subquery

The general format of a subquery is:

SELECT column_name,….
FROM table_name
WHERE column_name
relational operator (SELECT column_name,…

 FROM table_name
 WHERE condition);

The subquery must be enclosed within ()
The ORDER BY clause cannot be used.
The relational operators =, >, <, >=, <= ,<>,!= can be used.

An error will occur if more than one row is returned from a subquery, and if no rows are returned the
value will be a NULL.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

124

Subqueries and group functions

A subquery may be used on a single table. For example suppose you wanted to select the track name
and its music category where the track music category description was Pop. The following can be used:

SELECT track_title, track_cat_ID
FROM track
WHERE track_cat_ID =

(SELECT cat_ID
FROM category
WHERE cat_description = ‘Pop’);

Multiple-row subquery

A multiple row subquery returns more than one row therefore you need to use the following operators,
not the ones used for the single row queries:

Operator Use

IN Matches any value in a list

ALL Compares the given value with every returned subquery value

ANY or SOME Compares the given value with each returned subquery value

Using the Order System specification in Appendix C let us look at an example. Suppose you wanted to
select the product descriptions for items on order Z01. The item table product numbers for the chosen
order would be returned and then used to match with the product table product numbers in order to
select the product descriptions.

SELECT Prod_desc
FROM product
WHERE product.Prod_no

IN (SELECT item.Prod_no
FROM item
WHERE Order_no = ‘Z01’);

Exercise 1

1. Set up the Order System tables and insert the sample data as shown in Appendix C.
2. Answer the following using sub queries:

a) Name the products that “Asda” has ordered.
b) Name the customers who have placed an order in 2012.
c) Name the customers who have ordered “Chocolate”.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

125

Subqueries and group functions

Exercise 1 feedback
2. a)

SELECT Prod_desc
FROM product
WHERE Prod_no
 IN(SELECT item.Prod_no
 FROM item
 WHERE item.Order_no
 IN(SELECT Order_no
 FROM porder
 WHERE porder.Cust_no
 IN(SELECT Cust_no
 FROM customer
 WHERE Cust_name = ‘Asda’)));
b)
SELECT Cust_name
FROM customer
WHERE Cust_no
 IN(SELECT porder.Cust_no
 FROM porder
 WHERE Order_date > TO_DATE(‘31-DEC-2011’,’DD-MON-YYYY’)
 AND Order_date < TO_DATE(‘01-JAN-2013’,’DD-MON-YYYY’));
c)
SELECT Cust_name
FROM customer
WHERE customer.Cust_no
 IN(SELECT porder.Cust_no
 FROM porder
 WHERE porder.Order_no
 IN(SELECT item.Order_no
 FROM item
 WHERE item.Prod_no
 IN(SELECT Prod_no
 FROM product
 WHERE Prod_desc = ‘Chocolate’)));

Group functions

A group function operates on a group of rows and returns a single result. Suppose you wanted to find
out which cd cost the most, or what the total value of all your cds is, these queries can be answered
using the group functions.

Function Description

SUM(column_name) Calculates the total value of a column, null values are ignored.

AVG(column_name) Finds the average of all the values in a column, null values are ignored.

MAX(column_name | expression) Finds the maximum value in a column or expression, null values are ignored.

MIN(column_name | expression) Finds the minimum value in a column or expression, null values are ignored.

COUNT(* | column_name | expression) * Counts the number of rows, including nulls
If a column or expression is used counts non null values.

Note: The | separates the optional values

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

126

Subqueries and group functions

Here is an example showing the average, maximum, minimum and total for the cd prices:

SELECT AVG(cd_price), MAX(cd_price), MIN(cd_price), SUM(cd_price)
FROM cd;

Sometimes it is necessary to apply group functions to separate groups of rows rather than all the rows.
The GROUP BY clause can be used to group the rows. The format is as follows:

SELECT column_name, group function (column_name)
FROM table_name
[WHERE condition(s)]
[GROUP BY column_name | expression]
[ORDER BY column_name | expression [ASC | DESC]];

When using the GROUP BY clause the columns in SELECT must also appear in the GROUP BY. The
WHERE clause cannot be used to restrict groups, but it can be used to restrict the data before the
grouping. By default GROUP BY when used with a column will output results in ascending order.

Download free eBooks at bookboon.com

Click on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

Database Design and Implementation:
A practical introduction using Oracle SQL

127

Subqueries and group functions

Here is an example of a GROUP BY which will tell you how many tracks you have for each music category:

SELECT track_cat_ID, COUNT(*) “no of tracks”
FROM track
GROUP BY track_cat_ID;

In order to restrict groups, the HAVING clause can be used, so suppose you only wanted to see the
number of tracks for music categories that had more than 16 tracks, the following could be used:

SELECT track_cat_ID, COUNT(*) “no of tracks”
FROM track
GROUP BY track_cat_ID
HAVING COUNT(*) > 16;

Exercise 2

Write SELECT statements to answer the following:

a) Count the total number of tracks.

b) Show the maximum and minimum track lengths.

c) Display the average cd price by company for any companies with an average price < 10.

Exercise 2 feedback

a) Count the total number of tracks.
SELECT COUNT(*)
FROM track;

b) Show the maximum and minimum track lengths.
SELECT MAX(track_length), MIN(track_length)
FROM track;

c) Display the average cd price by company for any companies with an average price < 10.
SELECT AVG(cd_price)
FROM cd
GROUP BY cd_company_ID
HAVING AVG(cd_price) < 10;

You have now been introduced to the main ORACLE SQL commands and some of the built-in functions,
so you should now be able to search for and try some of the other SQL commands and functions.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

128

Subqueries and group functions

There are many SQL resources available on the web which can assist you to develop your skills including:-

An Oracle database SQL language reference can be found here:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/toc.htm

For more help with Oracle APEX try here:
https://community.oracle.com/community/database/developer-tools/application_express

Download free eBooks at bookboon.com

Click on the ad to read more

https://docs.oracle.com/cd/E11882_01/server.112/e41084/toc.htm
https://community.oracle.com/community/database/developer-tools/application_express
http://s.bookboon.com/BI

Database Design and Implementation:
A practical introduction using Oracle SQL

129

Creating pages & reports

11 Creating pages & reports
On completion of this chapter you should be able to:

• create a simple master detail form page
• create a simple report.

Introduction

Many users of databases do not directly access them using SQL but instead use applications consisting
of easy to use web Pages (sometimes called Forms) and reports, which allow controlled access to the
data. The following is a basic introduction to using APEX for building a simple page and report. You will
be using the company and cd tables to build a master (company) detail (cd) page which will represent
the 1:M relationship. This can also be referred to as a parent (one) child (many) relationship between
company and cd. The page will show all the cds produced for a selected company.

A Master Detail Page

Follow the following steps carefully or you may not be able to build the pages correctly.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

130

Creating pages & reports

Before you can build the master detail page you need to ensure that you have set up sequences for
the tables being used. Database sequences are database objects that act like counters and are used to
automatically generate integer values. The sequence value is used to automatically populate the primary
key column when a row is added to the table.

In order to create the company and cd tables with sequences for their primary keys you are going to
drop the existing company and cd tables and create new versions, this time using the SQL Workshop
object browser.

1. In the SQL Commands tool drop the company and cd tables using cascade constraints:
DROP TABLE company CASCADE CONSTRAINTS;
DROP TABLE cd CASCADE CONSTRAINTS;

You will need to set up the company table before the cd table as there is a foreign key cd_company_ID
in the cd table that references the company table company_ID.

2. In the SQL Workshop click on the Object Browser icon.

SQL Workshop

3. Choose the Tables objects.

Table Objects

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

131

Creating pages & reports

4. Click on the + to add a Table.

Add table

Download free eBooks at bookboon.com

Click on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

Database Design and Implementation:
A practical introduction using Oracle SQL

132

Creating pages & reports

5. Enter the table name company and the column names, data types and sizes (use scale) as per
the specification in Appendix B. To select Not Null for a column just tick the Not Null check
box. Then click the Next > button.

Table Columns Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

133

Creating pages & reports

6. Click on the Populated from a new sequence button then click inside the Primary Key box
and select the COMPANY_ID(NUMBER) column from the list of columns. The sequence will
automatically be given a constraint name and a sequence name. Click Next >.

Primary Key

7. When the Foreign Key page appears click Next > as there are no foreign keys in this table.

8. When the Constraints page appears click Next> as you are not adding any further constraints
to the table.

9. When the Create table page appears click on the Create Table button.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

134

Creating pages & reports

10. The confirmation page will appear in the Object Browser when the table has been created.

Company Table

Download free eBooks at bookboon.com

Click on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

Database Design and Implementation:
A practical introduction using Oracle SQL

135

Creating pages & reports

You are now going to create the cd table and its sequence.

11. Repeat steps 1 to 3 above then enter the cd table name and columns as below. Remember to set
the Not Null where appropriate. Take care when entering the cd_price column details, enter 4
in the Precision box and 2 in the Scale box. Click Next >.

Create cd table

12. On the Primary Key page select Populated from a new sequence then select
CD_IDNO(NUMBER) for the Primary Key, click Next >.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

136

Creating pages & reports

13. On the Foreign Key page select the foreign key column CD_COMPANY_ID and click >, then
choose the table being referenced by clicking the ^ in the references table box, then select the
COMPANY table from the list. The company table columns will appear as referenced columns;
select the primary key column COMPANY_ID and click >. Click the Add button to save the
key. On the next page, as you are not adding any further foreign keys to this table, click the
Next > button at the foot of the page.

Adding a Foreign Key

14. On the Constraints page click Next >.

15. On the Create Table page click the Create Table button. The CD confirmation page should
then appear.

If you DROP either of these tables the sequences will not be automatically dropped. To remove the sequences you can
use the SQL DROP SEQUENCE command e.g. DROP SEQUENCE CD_SQ; or alternatively use the Object Browser and
select Sequences then choose the sequence and click on the Drop button.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

137

Creating pages & reports

Oracle APEX applications consist of a number of pages of varying types including forms, reports and
charts. Now that you have re-created the company and cd tables with sequences you can create a desktop
application which will include a Master Detail page that will use them.

16. Click on the Application Builder tab on the APEX Home page.

 Application Builder

17. Click on the Create icon.

Create Application

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

138

Creating pages & reports

18. On the Create an Application page click on the Desktop icon.

Desktop application

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

139

Creating pages & reports

19. The application will be given a Name and number along with a style theme that will be used
for the pages, these are alterable but for now just click on Next >.

Application details

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/Subscrybe

Database Design and Implementation:
A practical introduction using Oracle SQL

140

Creating pages & reports

20. A home page will automatically be created for your application. Click on the Add Page button.

Home Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

141

Creating pages & reports

21. On the Page type selection page click on the Master Detail icon then click in the Master Table
Name box and select COMPANY. Then click in the Detail Table Name box and select CD, then
click on the Add Page button.

Add Master Detail form

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

142

Creating pages & reports

22. The create application page will now show that three separate pages have been created – Home
page, Company page and a Master Detail page. Click Next >.

Application Pages List

23. On the Shared components page click Next >.

24. On the Attributes page just click Next >.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

143

Creating pages & reports

25. On the Confirm page click Create Application. After a short while the created application
confirmation screen should appear, showing all four of the generated application pages.

Application confirmation

26. You are now ready to run the application. Click on the Run Application Icon. When the Log
In page appears enter your username and Password if it is not already displayed and click on
the Log In button.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

144

Creating pages & reports

27. When the Home page appears click on the Company page link.

Home Page

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/EOT

Database Design and Implementation:
A practical introduction using Oracle SQL

145

Creating pages & reports

28. As there are no rows of data in the Company table you can now add some through the company
page form. Click on the Create button.

Company Page

29. The Edit Company page should appear at this point. Enter a company name, country and phone
number. Note that you have not been asked to enter a company Id as this will be populated
automatically by the table sequence when the row is created. Click on the Create button.

Company Page data entry

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

146

Creating pages & reports

30. You are now going to create a cd row for this company. Click on the Pencil icon to the left of
the company name.

Company Record

The CD detail block will now be visible and you can add a row of data to the CD table by clicking on
the Add Row button. Enter a CD’s details then click the Save button.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

147

Creating pages & reports

Detail Row

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/volvo

Database Design and Implementation:
A practical introduction using Oracle SQL

148

Creating pages & reports

31. To return to the APEX home page or the Application home page, click on the appropriate icon
in the developer tool bar which is displayed at the bottom of the Apex page.

Developer Toolbar

APEX reports

Most applications require reports which display table data in an easy to understand format.
APEX Application Builder lets you produce various types of reports. The following instructions will
show you how to produce a simple interactive report.

32. Return to your application home page and click on the Create Page > button.

Application Home Page

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

149

Creating pages & reports

33. Click on the Report icon on the Create a page screen. Then click on Interactive Report on
the Page and Region Attributes screen, click Next >. On the Navigation Menu screen click
Next >. When the Report source screen appears click in the Table / View Name box and select
COMPANY (table) all the table columns will be selected automatically, click the Next > button.

Create Interactive Report

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

150

Creating pages & reports

34. On the Confirm page click the Create button. The new report will open in the Page Designer.
As you are not going to make any changes click on the Run button.

Page Designer

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

151

Creating pages & reports

The Company Page will appear. Click on the pencil icon to access the report page.

Company Page

Click on the < Report View button.

Report View

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

152

Creating pages & reports

On the Report View page you can click on the Actions drop down list to alter the data displayed by
choosing columns and setting the filter.

Report Actions

Exercise 1

1. Experiment by applying the different actions from the report drop down list.

Exiting the application

To exit your application just click on Log out in the top tool bar or choose Home from the developer
toolbar.

Exercise 2

1. Learn more about APEX by visiting
http://www.oracle.com/technetwork/developer-tools/apex/learnmore/index.html

2. Create some more pages and reports for the Music System.

Download free eBooks at bookboon.com

http://www.oracle.com/technetwork/developer-tools/apex/learnmore/index.html

Database Design and Implementation:
A practical introduction using Oracle SQL

153

Appendices

12 Appendices
12.1 Appendix A. UML Modelling Notation

This appendix shows you how the UML Class Diagram notation can be used to produce a conceptual
model showing entities as classes and relationships as associations. The following have been drawn using
the QSEE CASE tool; other books and tools may show the symbols with slight differences.

A Class symbol representing an entity

A Class symbol representing an entity with an attribute

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

Database Design and Implementation:
A practical introduction using Oracle SQL

154

Appendices

A class association (Binary relationship)

A class association is used to represent the relationship between two entity classes. It has a label and the
multiplicity is shown to represent the cardinality and optionality of the relationship. The multiplicity
has a minimum and a maximum value shown as follows:

0..1 is read as zero or 1

1..1 is read as one and only 1

0..* is read as zero 1 or many

1..* is read as one or many

The above diagram would be read as “A faculty has one or many tutors and a tutor is employed by one
and only one faculty”.

To represent a many to many relationship the following is used:

A many to many relationship

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

155

Appendices

This would be read as a module is taught by zero, 1 or many tutors and a tutor teaches zero, 1 or many
modules. As a many-to-many relationship holds information this information needs to be held in a new
association class (think of it as a link entity) and is shown as follows:

In this case the module id and tutor id would be held in the “is taught by” class.

To represent subtypes the UML generalisation and specialisation notation is used as follows:

The vehicle class would be the generalisation (super class) and the car and truck classes would be
specialisations (sub types).

Exercise 1

1. Redraw the ERD for the music system shown in Appendix B using the UML notation.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

156

Appendices

Exercise 1 feedback

12.2 Appendix B. Music System Specification (ERD and Tables)

Table Name: company

Column Name Data Type Constraints

company_ID NUMBER(3) Primary Key

company_name VARCHAR2(20) NOT NULL

company_country VARCHAR2(15) NOT NULL

company_phone Varchar2(15) NOT NULL

Table Name: cd

Column Name Data Type Constraints

cd_IDno NUMBER(3) Primary Key

cd_title VARCHAR2(50) NOT NULL

cd_artist VARCHAR2(30) NOT NULL

cd_date_purchased DATE NOT NULL

cd_payment_type VARCHAR2(6)

cd_price NUMBER(4,2)

cd_company_ID NUMBER(3) Foreign key to company(company_ID)

Table Name: category

Column Name Data Type Constraints

cat_ID NUMBER(3) Primary Key

cat_description VARCHAR2 (20) Not Null

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

157

Appendices

Table Name: track

Column Name Data Type Constraints

track_cd NUMBER(3) Primary Key part 1, Foreign key to cd(cd_IDno)

track_no NUMBER(3) Primary Key part 2

track_title VARCHAR2(50) Not Null

track_length NUMBER(4,2)

track_cat_ID NUMBER(3) Foreign key to category(cat_ID)

music.sql

DROP TABLE company CASCADE CONSTRAINTS;
CREATE TABLE company(

company_ID number(3) PRIMARY KEY,

company_name varchar2(20) NOT NULL,

company_country varchar2 (15) NOT NULL,

company_phone varchar2 (15) NOT NULL);

DROP TABLE cd CASCADE CONSTRAINTS;
CREATE TABLE cd(

cd_IDno number(3) PRIMARY KEY,

cd_title varchar2(50) NOT NULL,

cd_artist varchar2(30) NOT NULL,

cd_date_purchased date NOT NULL,

cd_payment_type varchar2(6),

cd_price number(4,2),

cd_company_ID number(3) references company(company_ID));

DROP TABLE category CASCADE CONSTRAINTS;
CREATE TABLE category(

cat_ID number(3) primary key,

cat_description varchar2(20) NOT NULL);

DROP TABLE track;
CREATE TABLE track(

track_cd number(3) references cd(cd_IDno),

track_no number(3) NOT NULL,

track_title varchar2(50) NOT NULL,

track_length number(4,2),

track_cat_ID number(3) references category(cat_ID),
Primary key(track_cd,track_no));

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

158

Appendices

music_data.sql

INSERT INTO company VALUES (001,’UNIVERSAL’,’UK’,’0171 0989099’);
INSERT INTO company VALUES (002,’EMI’,’UK’,’0171 0989088’);
INSERT INTO company VALUES (003,’U.M.T.V.’,’UK’,’01817777666’);
INSERT INTO company VALUES (004,’Ministry of Sound’,’UK’,’0181 888888’);
INSERT INTO company VALUES (005,’TELSTAR’,’UK’,’0181 666666’);
INSERT INTO company VALUES (006,’SONY’,’USA’,’0181 555555’);

INSERT INTO cd VALUES (1,’LIVE AT LEEDS’,’THE WHO’,’01-jan-2001’,’Cash’,10.99,001);
INSERT INTO cd VALUES (2,’CLUBLAND 4 THE NIGHT OF YOUR LIFE’,’VARIOUS’,’10-nov-2003’,’Cash’,13.99,003);
INSERT INTO cd VALUES (3,’CLUBBERS GUIDE 2004’,’VARIOUS’,’05-jan-2005’,’Credit’,13.99,004);
INSERT INTO cd VALUES (4,’THE RISING’,’BRUCE SPRINGSTEEN’,’30-jul-2002’,’Cash’,10.99,006);
INSERT INTO cd VALUES (5,’ROLLING STONES FORTY LICKS’,’The ROLLING STONES’,’05-sep-2005’,’Credit’,10.99,001);
INSERT INTO cd VALUES (6,’BEST OF BOWIE’,’DAVID BOWIE’,’08-sep-2008’,’Cash’,10.99,002);
INSERT INTO cd VALUES (7,’PINK MISSUNDAZTOOD’,’PINK’,’28-jan-2002’,’Credit’,5.99,006);

INSERT INTO category VALUES(1,’Rock’);
INSERT INTO category VALUES(2,’Pop’);
INSERT INTO category VALUES(3,’Dance’);
INSERT INTO category VALUES(4,’Classical’);

INSERT INTO track VALUES (1,1,’HEAVEN AND HELL’,4.30,1);
INSERT INTO track VALUES (1,2,’I CAN’’T EXPLAIN’,2.16,1);
INSERT INTO track VALUES (1,3,’FORTUNE TELLER’,2.34,1);
INSERT INTO track VALUES (1,4,’TATTOO’,2.51,1);
INSERT INTO track VALUES (1,5,’YOUNG MAN BLUES’,4.56,1);
INSERT INTO track VALUES (1,6,’SUBSTITUTE’,2.07,1);

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

Database Design and Implementation:
A practical introduction using Oracle SQL

159

Appendices

INSERT INTO track VALUES (1,7,’HAPPY JACK’,2.13,1);
INSERT INTO track VALUES (1,8,’IM A BOY’,2.40,1);
INSERT INTO track VALUES (1,9,’A QUICK ONE,WHILE HE’’S AWAY’,8.25,1);

NSERT INTO track VALUES (1,10,’AMAZING JOURNEY/SPARKS’,7.34,1);
INSERT INTO track VALUES (1,11,’SUMMERTIME BLUES’,3.20,1);
INSERT INTO track VALUES (1,12,’SHAKIN ALL OVER’,4.15,1);
INSERT INTO track VALUES (1,13,’MY GENERATION’,14.45,1);
INSERT INTO track VALUES (1,14,’MAGIC BUS’,7.72,1);

INSERT INTO track VALUES (2,1,’IRISH BLUE’,4.30,3);
INSERT INTO track VALUES (2,2,’I CANT LET YOU GO’,4.30,3);
INSERT INTO track VALUES (2,3,’MARIA (I LIKE IT LOUD)’,4.30,3);
INSERT INTO track VALUES (2,4,’ITS OVER NOW’,4.30,3);
INSERT INTO track VALUES (2,5,’DONT LOOK BACK(ENERGY MIX)’,4.30,3);
INSERT INTO track VALUES (2,6,’SHOW ME A SIGN’,4.30,3);
INSERT INTO track VALUES (2,7,’I WOULD STAY(FLIP AND FILL MIX’,4.30,3);
INSERT INTO track VALUES (2,8,’BEST DAYS OF OUR LIVES’,4.30,3);
INSERT INTO track VALUES (2,9,’ELEMENTS’,4.30,3);
INSERT INTO track VALUES (2,10,’MIXED UP WORLD’,4.30,3);
IINSERT INTO track VALUES (2,11,’CONNECTED’,4.30,3);
INSERT INTO track VALUES (2,12,’WILDERNESS’,4.30,3);
INSERT INTO track VALUES (2,13,’CLOSE TO THE EDGE’,4.30,3);
INSERT INTO track VALUES (2,14,’WHATS UP CLUB MIX’,4.30,3);
INSERT INTO track VALUES (2,15,’HARDEN UP’,4.30,3);
INSERT INTO track VALUES (2,16,’FAST DRIVING’,4.30,3);
INSERT INTO track VALUES (2,17,’MUSIC IS LIFE’,4.30,3);
INSERT INTO track VALUES (2,18,’SWEETHEART’,4.30,3);

INSERT INTO track VALUES (3,1,’The Cry Little Sister (I Need U Now)’,1.01,3);
INSERT INTO track VALUES (3,2,’The No Matter What You Do’,1.02,3);
INSERT INTO track VALUES (3,3,’Angel City Love Me Right (Oh Sheila)’,1.03,3);
INSERT INTO track VALUES (3,4,’Close To The Edge’,1.04,3);
INSERT INTO track VALUES (3,5,’Remix – Dogzilla ‘,1.05,3);
INSERT INTO track VALUES (3,6,’Nocturnal Delight ‘,1.06,3);
INSERT INTO track VALUES (3,7,’Remix – Push’,1.07,3);
INSERT INTO track VALUES (3,8,’Remix – Signum’,1.08,3);
INSERT INTO track VALUES (3,9,’York I Need You’,1.09,3);
INSERT INTO track VALUES (3,10,’Afterburn Winter Sun’,1.01,3);

INSERT INTO track VALUES (3,11,’The Somebody To Love’,1.01,3);
INSERT INTO track VALUES (3,12,’Step Right Up’,1.01,3);

INSERT INTO track VALUES (4,1,’The Rising’,2.01,1);
INSERT INTO track VALUES (4,2,’Land Of Hope And Dreams’, 1.01,1);

INSERT INTO track VALUES (5,1,’Brown Sugar ‘,2.01,2);
INSERT INTO track VALUES (5,2,’Street Fighting Man ‘,4.01,2);
INSERT INTO track VALUES (5,3,’Paint It Black’,4.01,2);
INSERT INTO track VALUES (5,4,’Fields Of Gold’,3.01,2);
INSERT INTO track VALUES (5,5,’You Cant Always Get What You Want’,3.01,2);
INSERT INTO track VALUES (5,6,’Angie’,3.01,2);
INSERT INTO track VALUES (5,7,’Honky Tonk Women’,3.01,2);
INSERT INTO track VALUES (5,8,’Start Me Up’,3.00,2);

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

160

Appendices

INSERT INTO track VALUES (6,1,’Space Oddity’,2.01,2);
INSERT INTO track VALUES (6,2,’Life On Mars? ‘,4.01,2);
INSERT INTO track VALUES (6,3,’Changes’,4.01,2);
INSERT INTO track VALUES (6,4,’Starman’,3.01,2);
INSERT INTO track VALUES (6,5,’Ziggy Stardust’,3.01,2);
INSERT INTO track VALUES (6,6,’Rebel Rebel’,3.01,2);
INSERT INTO track VALUES (6,7,’Fame’,3.01,2);
INSERT INTO track VALUES (6,8,’Golden Years’,5.01,2);
INSERT INTO track VALUES (6,9,’Blue Jean’,3.01,2);
INSERT INTO track VALUES (6,10,’China Girl’,3.01,2);
INSERT INTO track VALUES (6,11,’Young Americans’,5.01,2);

INSERT INTO track VALUES (7,1,’Get the party started’,2.01,2);
INSERT INTO track VALUES (7,2,’Just like a pill’,4.01,2);
INSERT INTO track VALUES (7,3,’Get the party started’,4.01,2);
INSERT INTO track VALUES (7,4,’18 Wheeler’,3.01,2);
INSERT INTO track VALUES (7,5,’Missundaztood’,3.01,2);
INSERT INTO track VALUES (7,6,’Dear Diary’,3.01,2);
INSERT INTO track VALUES (7,7,’Eventually’,3.01,2);
INSERT INTO track VALUES (7,8,’Numb’,5.01,2);
INSERT INTO track VALUES (7,9,’Family Portrait’,3.01,2);
INSERT INTO track VALUES (7,10,’Misery’,3.01,2);

12.3 Appendix C. Order System Specification (ERD and Tables)

CUSTOMER ORDER ITEM PRODUCTplaces has

f ulf ills

CREATE TABLE customer(
Cust_no char(3) PRIMARY KEY,
Cust_name varchar2(10),
Cust_address varchar2(15));

As ORDER is a reserved word in Oracle porder is used as an alternative table name

CREATE TABLE porder(
Order_no char(3) PRIMARY KEY,
Cust_no char(3) REFERENCES customer(Cust_no),
Order_date date);

CREATE TABLE product(
Prod_no char(4) PRIMARY KEY,
Prod_desc varchar2(30),
Prod_price number(6,2));

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

161

Appendices

CREATE TABLE item(
Order_no char(3) REFERENCES porder(Order_no),
Prod_no char(4) REFERENCES product(Prod_no),
Qty number(5),
PRIMARY KEY(Order_no,Prod_no));

Sample data:

customer

Cust_no. Name Address

001 Sainsburys Leeds 17

003 Morrisons Leeds 1

007 Asda Morley

015 Netto Bradford

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

Database Design and Implementation:
A practical introduction using Oracle SQL

162

Appendices

porder

Order No. Cust_ No. Date

X01 003 01-JAN-2012

 Y01 007 23-DEC-2012

Z01 001 17-JAN-2013

Z02 015 04-FEB-2013

product

Prod no Prod_Desc Price

A301 Bread 0.50

A302 Milk 2.50

B001 Butter 1.50

C002 Chocolate 2.00

item

Order No. Prod no Qty

X01 A302 400

Z01 A301 750

X01 B001 900

Y01 C002 210

Z02 A302 340

Z01 C002 720

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

163

Appendices

12.4 Appendix D. Normalisation Template

UNF 1NF 2NF 3NF Relation / Table

Name

1. List all the

attributes below

from a single

document / table.

2. Identify the

unique identifier /

primary key.

Show in bold or

colour. May need

an artificial key.

3. Identify any

repeating attribute

group(s). Show in

(….) or colour.

1. Place repeated

attribute group(s)

if any in a new

relation.

2. Include the

UNF unique

identifier as a

foreign key in the

new relation.

3. Identify the

additional

attribute(s) in the

new relation to

form a compound

key with the

foreign key.

1. Remove any

part key

dependent

attributes to a

new relation.

2. Identify

identifier for each

new relation.

3. Include foreign

key in the original

relation.

1. Remove any

non-key

dependent

attributes to a new

relation(s).

2. Identify the

unique identifier

for the new

relation(s).

3. Include a

foreign key in the

original relation.

Download free eBooks at bookboon.com

Database Design and Implementation:
A practical introduction using Oracle SQL

164

Bibliography

13 Bibliography
Barker, R. 1990, “CASE Method: Entity Relationship Modelling”. Addison-Wesley Professional.

Chen, Peter (March 1976). “The Entity-Relationship Model – Toward a Unified View of Data”. ACM
Transactions on Database Systems 1 (1): pp 9–36.

Codd, E.F. 1970, “A Relational Model of Data for Large Shared Data Banks”. Communications of the
ACM 13 No. 6: pp. 377–387.

Connolly, T. & Begg, C., 2015. “Database Systems A Practical Approach to Design, Implementation, and
Management” 6th ed. Pearson Education.

Hay, D. & Lynott, M., 2008. TDAN Newsletter. [Online]
Available at: http://www.tdan.com/view-special-features/8457
[Accessed 23 February 2015].

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://www.tdan.com/view-special-features/8457
http://s.bookboon.com/osram

	Acknowledgements
	Foreword
	1	�Introduction to database development
	1.1	Conceptual data modelling
	1.2	The Entity Relationship Diagram (ERD)
	1.3	Entity types
	1.4	Producing the ERD
	1.5	Entity attributes
	1.6	Entity selection and validation
	1.7	Entity definitions
	1.8	Validating the model

	2	Entity Relationships
	2.1	Introduction
	2.2	Relationships
	2.3	Relationship cardinality
	2.4	Relationship optionality

	3	Complex relationships
	3.1	Introduction
	3.2	Associative relationships
	3.3	Link entity identifier
	3.4	Recursive relationships
	3.5	Sub types
	3.6	Exclusive relationships
	3.7	Summary

	4	Logical Database Design
	4.1	Introduction
	4.2	Relations
	4.3	Keys
	4.4	Identifying relations
	4.5	Resolving many-to-many relationships
	4.6	Resolving one-to-many relationships with optionality
	4.7	 Resolving one-to-one relationships
	4.8	Recursive relationships
	4.9	Exclusive relationships
	4.10	Identification Dependency
	4.11	Modelling problems
	4.12	Summary

	5	Normalisation
	5.1	Introduction
	5.2	Un-normalised form (UNF)
	5.3	First Normal Form (1NF)
	5.4	Second Normal Form (2NF)
	5.5	Third Normal Form (3NF)
	5.6	Denormalisation
	5.7	Checking the model
	5.8	Summary

	6	Introduction to Oracle SQL
	7	Using Foreign Keys
	8	Selecting data from a table
	9	�Selecting data from multiple tables
	10	Subqueries and group functions
	11	Creating pages & reports
	12	Appendices
	12.1	Appendix A. UML Modelling Notation
	12.2	Appendix B. Music System Specification (ERD and Tables)
	12.3	Appendix C. Order System Specification (ERD and Tables)
	12.4	Appendix D. Normalisation Template

	13	Bibliography

