

Mike	McGrath

Coding	for	Beginners

In	easy	steps	is	an	imprint	of	In	Easy	Steps	Limited

16	Hamilton	Terrace	·	Holly	Walk	·	Leamington	Spa
Warwickshire	·	CV32	4LY

www.ineasysteps.com

Copyright	©	2015	by	In	Easy	Steps	Limited.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or
transmitted	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by
any	information	storage	or	retrieval	system,	without	prior	written	permission	from	the	publisher.

Notice	of	Liability

Every	effort	has	been	made	to	ensure	that	this	book	contains	accurate	and	current	information.	However,	In
Easy	Steps	Limited	and	the	author	shall	not	be	liable	for	any	loss	or	damage	suffered	by	readers	as	a	result
of	any	information	contained	herein.

Trademarks

All	trademarks	are	acknowledged	as	belonging	to	their	respective	companies.

http://www.ineasysteps.com

Contents
1	Getting	started

Programming	code

Setting	up

Exploring	IDLE

Getting	help

Saving	programs

Storing	values

Adding	comments

Naming	rules

Summary

2	Saving	data
Storing	input

Controlling	output

Recognizing	types

Converting	data

Guessing	game

Correcting	errors

Summary

3	Performing	operations
Doing	arithmetic

Assigning	values

Comparing	values

Finding	truth

Testing	condition

Setting	order

Summary

4	Making	lists
Writing	lists

Changing	lists

Fixing	lists

Setting	lists

Naming	elements

Summary

5	Controlling	blocks
Branching	choices

Counting	loops

Looping	conditions

Skipping	loops

Catching	errors

Summary

6	Creating	functions
Defining	blocks

Adding	parameters

Returning	results

Storing	functions

Importing	functions

Summary

7	Sorting	algorithms
Copying	sorts

Selecting	sorts

Inserting	sorts

Bubbling	sorts

Merging	sorts

Partitioning	sorts

Summary

8	Importing	libraries
Inspecting	Python

Doing	mathematics

Calculating	decimals

Telling	time

Running	timers

Summary

9	Managing	text
Manipulating	strings

Formatting	strings

Modifying	strings

Accessing	files

Manipulating	content

Updating	content

Summary

10	Programming	objects
Defining	classes

Copying	instances

Addressing	properties

Deriving	classes

Overriding	methods

Applying	sense

Summary

11	Building	interfaces
Launching	interfaces

Responding	buttons

Displaying	messages

Gathering	entries

Listing	options

Polling	radios

Checking	boxes

Adding	images

Summary

12	Developing	apps
Generating	randoms

Planning	needs

Designing	layout

Assigning	statics

Loading	dynamics

Adding	functionality

Testing	programs

Deploying	applications

Summary

13	Transferring	skills
Understanding	compilers

Compiling	code

Coding	C

Coding	C++

Coding	C#

Coding	Java

Summary

Preface
The	creation	of	this	book	has	provided	me,	Mike	McGrath,	a	welcome	opportunity	to
produce	an	introduction	to	coding	computer	programs	for	readers	with	no	previous	coding
experience.	Although	this	is	a	book	for	beginners,	it	goes	beyond	the	mere	basics	so	some
topics	may	be	more	easily	understood	after	gaining	some	coding	experience	with	the
simpler	listed	programs.	All	the	examples	demonstrate	coding	features	using	the	popular
Python	programming	language	and	the	book’s	screenshots	illustrate	the	actual	results
produced	by	executing	the	listed	code.

Conventions	in	this	book

In	order	to	clarify	the	code	listed	in	the	steps	given	in	each	example,	I	have	adopted	the
same	default	colorization	convention	provided	by	Python’s	code	editor.	Keywords	of	the
Python	language	itself	are	colored	orange,	built-in	function	names	are	purple,	coder-
specified	function	names	are	blue,	text	strings	are	green,	comments	are	red,	and	all	other
code	is	black,	like	this:
#	A	function	to	display	a	greeting

def	greet(reader)	:
print(‘Welcome	to	Coding	for	Beginners’	,	reader)

Additionally,	in	order	to	identify	each	source	code	file	described	in	the	steps,	an	icon	and
file	name	appears	in	the	margin	alongside	the	steps,	like	this:

program.py

Grabbing	the	source	code

For	convenience	I	have	placed	source	code	files	from	the	examples	featured	in	this	book
into	a	single	ZIP	archive.	You	can	obtain	the	complete	archive	by	following	these	easy
steps:

Browse	to	www.ineasysteps.com	then	navigate	to	Free	Resources	and	choose	the
Downloads	section

Find	Coding	for	Beginners	in	easy	steps	in	the	list,	then	click	on	the	hyperlink
entitled	All	Code	Examples	to	download	the	archive

Now,	extract	the	archive	contents	to	any	convenient	location	on	your	computer

http://www.ineasysteps.com
http://ineasysteps.com/resource-centre/downloads/

1
Getting	started

Welcome	to	the	exciting,	fun	world	of	computer	coding!	This	chapter	describes	how	to	create	your	own	programming

environment	and	demonstrates	how	to	code	your	very	first	program.

Programming	code
Setting	up
Exploring	IDLE
Getting	help
Saving	programs
Storing	values
Adding	comments
Naming	rules
Summary

Programming	code
A	computer	is	merely	a	machine	that	can	process	a	set	of	simple	instructions	very	quickly.
The	set	of	instructions	it	processes	is	known	as	a	“program”,	and	the	instructions	are
known	as	“code”.

People	who	write	computer	programs	are	known	as	“programmers”	or	“coders”.	Their
programs	have	enabled	computers	to	become	useful	in	almost	every	area	of	modern	life:

• In	the	hand	–	computers	are	found	in	cellphone	devices	for	tasks	such	as
communication	via	voice,	text,	and	social	media

• In	the	home	–	computers	are	found	in	household	devices	such	as	TV	sets,	gaming
consoles,	and	washing	machines

• In	the	office	–	computers	are	found	in	desktop	devices	for	tasks	such	as	word
processing,	payroll,	and	graphic	design

• In	the	store	–	computers	are	found	in	retail	devices	such	as	automatic	teller	machines
(ATMs)	and	bar	code	scanners

• In	the	car	–	computers	are	found	in	control	devices	for	tasks	such	as	engine
management,	anti-lock	braking	and	security

• In	the	sky	–	computers	are	found	in	airplanes	for	piloting	and	in	air	traffic	control
centers	for	safe	navigation

These	are,	in	fact,	just	a	few	examples	of	how	computers	affect	our	lives	today.	Yet,
computers	are	really	dumb!	They	can	only	count	from	zero	to	one,	and	cannot	think	for
themselves.

A	computer	is	a	collection	of	electronic	components	–	collectively	known	as	“hardware”.
To	make	the	computer	function	it	must	be	given	a	set	of	program	instructions	–	known	as
“software”.

It	is	important	that	each	computer	program	provides	clear	step-by-step	instructions	that	the
computer	can	execute	without	errors.	The	coder	must	therefore	break	down	the	task
required	of	the	computer	into	simple	unambiguous	steps.	For	example,	a	program	to	move
a	mobile	robot	from	indoors	to	outdoors	must	include	instructions	to	have	the	robot	locate
a	doorway	and	navigate	around	any	obstacles.	So	the	coder	must	always	consider	what
possible	unexpected	difficulties	a	program	may	encounter.

Program	instructions	must	be	presented	to	the	computer	in	a	language	it	can	understand.
At	the	most	basic	level	the	computer	can	understand	“machine	code”,	which	moves	items
around	in	its	memory	to	perform	tasks.	This	type	of	obscure	low-level	code	is	incredibly

tedious	as	it	requires	many	lines	of	instruction	to	perform	even	a	simple	task.

Fortunately,	over	the	years,	many	“high-level”	programming	languages	have	been
developed	that	allow	the	coder	to	compose	instructions	in	more	human-readable	form.
These	modern	high-level	programs	are	automatically	translated	into	the	machine	code	that
the	computer	can	understand	by	a	“compiler”	or	by	an	“interpreter”.	In	order	to	become	a
coder	you	must	typically	learn	at	least	one	of	these	high-level	programming	languages:

• C	–	a	powerful	compiled	language	that	is	closely	mapped	to	machine	code	and	used	to
develop	operating	systems

• C++	–	an	enhanced	compiled	language	developing	on	C	to	provide	classes	for	Object
Oriented	Programming	(OOP)

• C#	–	a	modern	compiled	language	designed	by	Microsoft	for	the	.NET	framework	and
Common	Language	Infrastructure

• Java	–	a	portable	compiled	language	that	is	designed	to	run	on	any	platform	regardless
of	the	hardware	architecture

• Python	–	a	dynamic	interpreted	language	that	allows	both	functional	and	Object
Oriented	Programming	(OOP)

Programs	written	in	an	interpreted	language	can	be	run	immediately	but	those
written	in	compiled	languages	must	first	be	compiled	before	they	can	be	run.

Just	as	human	languages	have	similarities,	such	as	verbs	and	nouns,	these	programming
languages	have	certain	similarities	as	they	each	possess	“data	structures”,	in	which	to	store
information,	and	“control	structures”	that	determine	how	the	program	proceeds.

The	examples	in	this	book	use	the	Python	language	to	demonstrate	how	to	code	computer
programs	as	it	has	a	simple	language	syntax,	requires	no	compilation,	includes	a	large
library	of	standard	functions,	and	can	be	used	to	create	both	Console	programs	and
windowed	GUI	(Graphical	User	Interface)	apps.

Python	is	a	total	package	of	“batteries	included”.

Setting	up
Before	you	can	begin	coding	programs	in	the	Python	language	you	need	to	set	up	a
programming	environment	on	your	computer	by	installing	the	Python	interpreter	and	the
standard	library	of	tested	code	modules	that	comes	along	with	it.	This	is	available	online
as	a	free	download	from	the	Python	Software	Foundation.

Launch	a	web	browser	and	navigate	to	python.org/downloads	then	click	the
Downloads	button	to	grab	the	latest	version	for	your	system	–	in	this	case	it’s
“Python	3.4.2”

When	the	download	completes	run	the	installer	and	choose	whether	to	install	for
all	users	or	just	yourself,	then	click	the	Next	button	to	proceed

Now,	accept	the	suggested	default	installation	location,	which	will	be	a	directory
on	your	root	C:\	drive	named	“Python”	and	version	number	–	in	this	example	it’s	a
directory	at	C:\Python34	for	Python	version	3.4.2

Installers	for	Mac	OS	X	and	Other	Platforms	are	also	freely	available	at
python.org/downloads

Do	accept	the	suggested	destination	directory	–	such	as	C:\Python34	that	is
suggested	here.

Click	the	Next	button	to	proceed	then	be	sure	to	select	the	feature	to	“Add
python.exe	to	Path”

http://python.org/downloads
http://python.org/downloads

Click	on	Next	to	begin	copying	files	onto	your	computer	then	click	the	Finish
button	to	complete	the	installation

Upon	completion	the	Python	group	is	added	to	your	Start/Apps	menu.	Most	important	of
this	group	is	the	IDLE	item	that	launches	the	Python	integrated	development	environment.

Adding	Python	to	the	system	Path	makes	it	available	from	within	any	directory.
After	installation,	you	can	exactly	enter	the	command	python	-V	at	a	Command
Prompt	to	see	the	interpreter	respond	with	its	version	number.

You	will	use	the	IDLE	launcher	often	so	right-click	on	its	icon	and	choose	“Pin	to
taskbar”	to	make	it	readily	available	from	the	Windows	Desktop.

Exploring	IDLE
The	installed	Python	software	package	includes	the	Integrated	DeveLopment	Environment
(IDLE)	in	which	you	can	easily	code	and	run	programs,	or	snippets,	written	in	the	Python
language.	IDLE	provides	two	different	windows	for	program	development:

• Shell	Window

• Edit	Window

When	you	start	up	IDLE	it	opens	a	new	window	containing	a	menu	bar,	a	banner
describing	the	version,	and	a	>>>	prompt.	This	is	the	Shell	Window	in	which	you	can
interact	directly	with	the	Python	interpreter	by	entering	statements	at	the	prompt.

If	the	interpreter	understands	your	entry	it	will	respond	with	an	appropriate	reply,
otherwise	it	will	report	an	error.

You	can	make	the	interpreter	print	out	a	string	of	text	by	entering	a	Python	print()	function
statement	that	encloses	your	string	within	quote	marks	inside	the	parentheses	at	the
interactive	prompt.

Most	programming	languages	require	text	strings	to	be	enclosed	in	quote	marks
to	differentiate	them	from	program	code.	By	convention,	Python	coders	use	single
quotes.

You	can	also	make	the	interpreter	print	out	the	result	of	a	simple	arithmetic	sum	by
entering	a	valid	sum	statement	at	the	prompt.

If	your	statement	is	not	valid,	such	as	a	sum	that	attempts	to	divide	a	number	by	zero,	the
interpreter	will	print	out	an	error	message	helpfully	describing	the	nature	of	the	error.

Open	an	IDLE	Shell	Window	then	precisely	enter	this	statement	at	the	interactive
prompt
print(‘Hello	World!’)

Next,	hit	the	Return	key	to	see	the	interpreter’s	response

Now,	enter	this	sum	statement	at	the	interactive	prompt

8	+	4

Spaces	in	statements	are	ignored	–	so	8+4	can	be	entered	without	spaces.

Hit	Return	to	see	the	interpreter	print	the	result	total

Enter	this	invalid	statement	at	the	interactive	prompt

8	/	0

Hit	Return	to	see	the	interpreter	print	an	error	message

The	Shell	Window	is	mostly	used	to	test	snippets	of	code.

Getting	help
The	IDLE	Shell	Window	provides	a	great	Help	utility	where	you	can	find	help	on	any
Python	topic	when	coding	Python	programs.	Help	can	be	sought	by	entering	a	Python
help()	statement	at	the	interactive	>>>	prompt.	A	welcome	message	appears	and	the	prompt
changes	to	help>	to	denote	you	are	now	in	Help	mode.

Open	an	IDLE	Shell	Window	then	precisely	enter	this	statement	at	the	interactive
prompt
help()

Next,	hit	the	Return	key	to	enter	Help	mode

Now,	enter	this	topic	name	at	the	Help	utility	prompt	keywords

Hit	Return	to	list	all	keywords	of	the	Python	language

The	Help	utility	welcome	message	also	contains	handy	hints	–	but	are	omitted
here	for	brevity.

Keywords	are	the	vocabulary	of	a	programming	language.	Note	that	Python
keywords	are	case-sensitive	–	these	are	all	in	lowercase	except	False,	None,	and
True.

Then,	enter	this	command	at	the	Help	utility	prompt	quit

Hit	Return	to	exit	Help	and	return	to	an	interactive	Shell	Window	prompt

There	are	no	parentheses	required	after	the	quit	instruction	–	here	it	is	a	Help
utility	command,	not	a	Python	statement.

When	you	just	want	help	on	a	single	topic	you	can	simply	enter	the	topic	name	within
quote	marks	inside	the	parentheses	of	a	help()	statement	at	the	interactive	prompt:

Precisely	enter	this	statement	at	the	interactive	prompt

help(‘keywords’)

Hit	Return	to	list	all	keywords	of	the	Python	language	and	remain	at	an	interactive
Shell	Window	prompt

Keywords	have	special	meaning	in	a	programming	language	–	they	cannot	be
used	to	name	items	in	your	code.

Saving	programs
The	IDLE	Shell	Window,	described	on	the	previous	page,	is	a	great	place	to	try	out
snippets	of	code,	but	cannot	save	your	code.	Happily	IDLE	also	provides	an	Edit	Window
where	you	can	create	longer	pieces	of	programming	code	that	can	be	stored	in	a	(.py)	file
on	your	computer.	This	means	you	can	easily	re-run	the	code	without	re-typing	all	the
instructions	at	the	Shell	Window	>>>	prompt	and	this	lets	you	edit	your	code	to	try	new
ideas.	The	procedure	to	create,	save,	and	run	your	code	looks	like	this:

• Open	an	Edit	Window	from	the	Shell	Window	by	selecting	File,	New	File	from	the
Shell	Window	menu	items	–	or	by	pressing	the	Ctrl	+	N	shortcut	keys

• Type	code	into	the	Edit	Window	then	save	it	by	selecting	File,	Save	from	the	Edit
Window	menu	items	–	or	by	pressing	the	Ctrl	+	S	shortcut	keys

• Run	saved	code	from	the	Edit	Window	by	selecting	Run,	Run	Module	from	the	Edit
Window	menu	items	–	or	by	pressing	the	F5	shortcut	key

The	procedure	described	here	will	be	used	to	demonstrate	the	code	examples
given	throughout	this	book.

Output	from	your	program	code	will	appear	in	the	Shell	Window	as	the	program	runs,	or	a
helpful	error	message	will	appear	there	if	the	interpreter	discovers	an	error	in	your	code.

Open	an	IDLE	Shell	Window	then	select	the	File,	New	File	menu	item	to	open	an
IDLE	Edit	Window

Notice	the	File,	Open	and	File,	Recent	Files	menu	items	that	can	be	used	to	re-
run	program	code	previously	saved.

helloworld.py

Now,	in	the	IDLE	Edit	Window,	precisely	enter	this	code

print(‘Hello	World!’)

Next,	in	the	IDLE	Edit	Window,	select	the	File,	Save	menu	items,	to	open	the	Save
As	dialog,	then	save	your	program	code	as	a	file	named	helloworld.py

Finally,	in	the	IDLE	Edit	Window,	select	the	Run,	Run	Module	menu	items,	to	run
your	program	code	and	see	the	output	appear	in	the	Shell	Window

Your	program	code	can	be	saved	at	any	convenient	location	on	your	computer	–
here	it	is	saved	in	a	directory	created	at	C:\MyCode	that	will	be	used	for	all
examples	in	this	book.

Notice	that	the	Shell	Window	restarts	whenever	it	runs	your	program	code	afresh.

Storing	values
One	essential	feature	of	all	computer	programming	languages	is	the	ability	to	store	data
values	in	the	program	code.	This	ability	is	provided	by	a	simple	data	structure	called	a
“variable”.	A	variable	is	a	container	in	which	an	item	of	data	can	be	stored,	much	like	a
real-life	object	can	be	stored	in	a	box.

When	creating	a	variable	you	give	it	a	name	of	your	choice,	subject	to	the	naming
conventions	of	the	programming	language,	that	acts	like	a	label	on	a	box.	The	data	item
stored	within	the	variable	can	subsequently	be	retrieved	using	its	given	name	–	just	as	you
can	find	a	real-life	object	in	a	box	by	reading	its	label.

Data	to	be	stored	in	a	variable	is	assigned	in	a	Python	program	declaration	statement	with
the	=	assignment	operator.	For	example,	to	store	the	numeric	value	eight	in	a	variable
named	“a”:
a	=	8

The	stored	value	can	then	be	retrieved	using	the	variable’s	name,	so	that	the	statement
print(a)	will	output	the	stored	value	8.	That	variable	can	subsequently	be	assigned	a
different	value,	so	its	value	can	vary	as	the	program	proceeds	–	hence	the	term	“variable”.

In	Python	programming	a	variable	must	be	assigned	an	initial	value	(“initialized”)	in	the
statement	that	declares	it	in	a	program	–	otherwise	the	interpreter	will	report	a	“not
defined”	error.

Multiple	variables	can	be	initialized	with	a	common	value	in	a	single	statement	using	a
sequence	of	=	assignments.	For	example,	to	initialize	variables	named	“a”,	“b”	and	“c”
each	with	a	numeric	value	of	eight	like	this:
a	=	b	=	c	=	8

Some	programming	languages,	such	as	Java,	demand	you	specify	in	its	declaration	what
type	of	data	a	variable	may	contain.	This	reserves	a	specific	amount	of	memory	space	and
is	known	as	“static	typing”.	Python	variables,	on	the	other	hand,	have	no	such	limitation
and	adjust	the	memory	allocation	to	suit	the	various	data	values	assigned	to	their	variables
(“dynamic	typing”).	This	means	they	can	store	integer	whole	numbers,	floating-point
numbers,	text	strings,	or	Boolean	values	of	True	or	False	as	required.

Programming	languages	that	require	variable	types	to	be	specified	are

alternatively	known	as	“strongly	typed”,	whereas	those	that	do	not	are
alternatively	known	as	“loosely	typed”.

firstvar.py

Open	an	IDLE	Edit	Window	then	enter	code	to	create	a	variable	named	“var”	to
store	a	whole	number	integer
var	=	8

Next,	add	a	statement	to	display	the	stored	integer	value

print(var)

Assign	a	new	floating-point	number	to	the	variable	then	add	a	statement	to	display
the	stored	float	value
var	=	3.142

print(var)

Now,	assign	a	text	string	to	the	variable	then	add	a	statement	to	display	the	stored
string	value
var	=	‘Coding	for	Beginners	in	easy	steps’
print(var)

Finally,	assign	a	logical	truth	value	to	the	variable	then	add	a	statement	to	display
the	stored	Boolean	value
var	=	True

print(var)

Save	the	file	(File,	Save)	then	run	the	program	(Run,	Run	Module)	to	see	the	stored
values	displayed	in	output

Text	string	data	must	be	enclosed	within	quote	marks	to	denote	the	start	and	end
of	that	particular	string.

Adding	comments
When	you	begin	to	code	longer	programs	it	is	useful	to	add	comments	at	the	start	of	each
piece	of	code	describing	the	purpose	of	that	piece.	This	makes	the	code	more	easily
understood	by	others,	and	by	yourself	when	revisiting	the	code	at	a	later	date.	In	the
Python	programming	language	everything	on	a	single	line	after	a	#	hash	character	is
ignored	by	the	interpreter.	This	means	that	a	single-line	comment	can	be	inserted	after	a	#
character.

comment.py

Open	an	IDLE	Edit	Window	then	enter	commented	code	to	initialize	a	variable	and
display	its	status
#	Initialize	program	status

running	=	True
print(‘Run	state:	‘	,	running)

Save	the	file	then	run	the	program	to	see	the	comment	get	ignored	and	the	stored
value	displayed	in	output

To	readily	identify	aspects	of	your	code,	IDLE	automatically	colorizes	your	code,	both	in
the	Shell	Window	and	the	Edit	Window,	with	the	default	colors	listed	in	the	table	below:

Code	listed	in	the	steps	throughout	this	book	also	use	the	default	IDLE	colors	for

consistency.

Naming	rules

Keywords:

False None True

and as assert

break class continue

def del elif

else except finally

for from global

if import in

is lambda nonlocal

not or pass

raise return try

while with yield

It	is	good	programming	practice	to	choose	meaningful	names	that	reflect	the
nature	of	the	variable’s	content.

Variable	containers	that	you	create	in	your	code	to	store	data	within	a	program	can	be
given	any	name	of	your	choosing	–	providing	you	do	not	use	any	of	the	programming
language	keywords,	such	as	the	Python	keywords	in	the	table	above,	and	the	name	adheres
to	the	naming	rules	listed	in	the	table	below:

Naming	rule: Example:

CANNOT	contain	any	keywords True

CANNOT	contain	arithmetic	operators a+b*c

CANNOT	contain	symbols %$#@!

CANNOT	contain	any	spaces no	spaces

CANNOT	start	with	a	number 2bad

CAN	contain	numbers	elsewhere good1

CAN	contain	letters	of	mixed	case UPdown

CAN	contain	underscores is_ok

Variable	names	are	case-sensitive	in	Python	–	so	variables	named	“VAR”,	“Var”,
and	“var”	would	be	treated	as	three	separate	variables.

Summary
• A	computer	program	is	a	set	of	instructions,	written	by	a	coder,	that	enable	computers

to	become	useful

• The	electronic	components	of	a	computer	are	its	hardware,	whereas	program
instructions	are	its	software

• Computers	understand	low-level	machine	code

• High-level	programming	languages	in	human-readable	form	get	automatically
translated	into	low-level	machine	code

• Programming	languages	possess	data	structures	to	store	information	and	control
structures	to	determine	progress

• The	Python	programming	language	has	simple	syntax,	requires	no	compilation,	and
includes	a	library	of	functions

• Python’s	development	environment	is	called	IDLE

• IDLE	provides	a	Shell	Window	containing	an	interactive	prompt	for	testing	and	an	Edit
Window	for	coding	programs

• The	IDLE	Help	utility	is	accessed	by	entering	a	help()	statement	at	a	Shell	Window
prompt

• After	typing	program	code	into	an	IDLE	Edit	Window	it	must	first	be	saved	as	a	file
before	the	program	can	be	run

• Output	from	a	program	run	from	the	Edit	Window	appears	in	the	Shell	Window,	or	a
helpful	error	message	appears	there

• A	variable	data	structure	is	a	named	container	that	allows	a	single	item	of	data	to	be
stored	for	use	by	a	program

• Data	stored	in	a	variable	can	be	retrieved	using	that	variable’s	name	and	may	be
replaced	by	assigning	a	new	value

• Variables	in	Python	programming	can	store	any	type	of	data

• Comment	lines	can	usefully	be	added	to	program	code	after	beginning	the	line	with	a	#
hash	character

• Variable	names	must	not	use	any	of	the	programming	language	keywords	and	must
adhere	to	its	naming	rules

2
Saving	data

This	chapter	demonstrates	how	to	create	code	to	use	various	types	of	data	stored	inside	your	programs.

Storing	input
Controlling	output
Recognizing	types
Converting	data
Guessing	game
Correcting	errors
Summary

Storing	input
The	ability	to	store	and	replace	coded	program	data	in	a	variable	is	great,	but	this	ability
can	also	be	used	to	store	data	input	by	a	user	–	allowing	your	programs	to	become
interactive.

In	Python	programming	a	built-in	input()	function	can	be	used	to	accept	user	input	from	a
keyboard	and	assign	it	to	a	variable.	Optionally,	this	function	can	specify	a	string,	within
quote	marks	inside	its	parentheses,	that	will	be	displayed	to	request	the	input.	The
program	will	wait	until	the	user	hits	the	Return	key	before	assigning	their	input	to	the
variable	and	proceeding	onwards.

Stored	variable	values	can	be	output	by	the	built-in	print()	function	by	specifying	the
variable	name	within	the	function’s	parentheses.	Multiple	values	may	also	be	specified	for
output	as	a	comma-separated	list	within	the	parentheses.

input.py

Open	an	IDLE	Edit	Window	then	enter	this	code	to	request	user	input	with	which
to	initialize	a	variable
name	=	input(‘Please	enter	your	name:	‘)

Next,	add	a	statement	to	output	both	a	string	and	the	value	stored	within	the
variable
print(‘Hello’	,	name)

Now,	add	statements	to	output	a	string	then	both	a	string	and	the	value	stored
within	the	variable	once	more
print(‘Welcome	to	Coding	for	Beginners’)

print(‘Remember	to	have	fun’	,	name	,	‘!’)

Save	then	run	the	program,	enter	your	name	when	requested,	and	hit	Return	to	see
your	name	in	the	output

There	is	no	need	to	include	spaces	in	the	comma-separated	lists	–	they	are
ignored	by	the	interpreter	but	are	shown	here	for	clarity.

Controlling	output
As	the	example	on	the	facing	page	demonstrates,	a	value	stored	in	a	variable	remains
available	for	repeated	use	until	it	is	replaced	by	a	new	value	or	until	the	program	ends.

There	are	also	two	points	worth	noting	with	regard	to	this	example’s	output.	Firstly,	the
print()	function	automatically	adds	an	invisible	\n	newline	character	after	its	output	–	so	the
next	print()	function	output	will	by	default	appear	on	the	next	line	below.	Secondly,	the
print()	function	automatically	adds	a	space	between	each	item	when	a	comma-separated	list
is	specified	for	output.

You	can	override	the	automatic	newline	behavior	by	specifying	that	the	line	should	end
with	a	space,	rather	than	the	\n	default.	You	can	also	avoid	the	automatic	spacing	behavior
by	“concatenating”	items	with	a	+	symbol,	rather	than	a	comma.

concat.py

Open	an	IDLE	Edit	Window	then	enter	this	code	to	request	user	input	with	which
to	initialize	a	variable
name	=	input(‘Please	enter	your	name:	‘)

Next,	add	a	statement	to	output	a	string	and	the	value	stored	within	the	variable	–
but	without	a	final	newline
print(‘Hello	’	+	name	,	end	=	‘	‘)

Now,	add	statements	to	output	a	string	then	a	string	concatenated	to	the	value
stored	within	the	variable
print(‘Welcome	to	Coding	for	Beginners’)

print(‘Remember	to	have	fun	’	+	name	+	‘!’)

Save	then	run	the	program,	enter	your	name	when	requested,	and	hit	Return	to	see
controlled	output

Notice	that	the	strings	have	been	edited	to	nicely	format	the	output.

Recognizing	types
There	are	four	essential	types	of	data	you	can	represent	when	coding	a	computer	program
and	that	can	be	stored	in	variables.	Although	variables	in	the	Python	language	can	store
any	type	of	data	it	is	important	to	understand	the	different	types	as	you	will	sometimes
need	to	convert	from	one	type	to	another	in	your	code:

Data
type: Description: Example:

str A	string	of	characters,	which	can	include	letters,	numbers,	spaces,	and
symbols

‘Daytona
500’

int An	integer	whole	number,	which	DOES	NOT	have	a	decimal	point	part 1000

float A	floating-point	number,	which	DOES	have	a	decimal	point	part 98.6

bool A	Boolean	logical	truth	value,	which	is	either	True	or	False True

Integer	int	numbers	should	not	include	any	punctuation	–	so	code	one	thousand
as	1000	rather	than	1,000.

Strings	are	simply	any	collection	of	characters	you	can	enter	from	the	computer	keyboard,
grouped	together	within	quote	marks.	Variables	recognize	a	value	being	assigned	to	it	as
belonging	to	the	str	“class”	if	that	value	is	enclosed	within	quote	marks.

String	str	values	must	always	be	enclosed	with	quote	marks.
Numbers	are	any	numeric	value	you	can	enter	from	the	keyboard	but	are	defined	by	the
inclusion	or	omission	of	a	decimal	point.	Variables	recognize	a	numeric	value	being
assigned	to	it	as	belonging	to	the	int	“class”	if	that	value	has	no	decimal	point	or	as
belonging	to	the	float	class	if	it	does	indeed	have	a	decimal	point.

Booleans	are	a	logical	truth	value.	Variables	recognize	a	Boolean	value	being	assigned	to
it	as	belonging	to	the	bool	“class”	by	the	keywords	True	and	False,	or	if	that	value	evaluates
to	True	or	False.

In	Python	programming	you	can	easily	discover	the	type	of	data	stored	within	a	variable
by	specifying	that	variable’s	name	within	the	parentheses	of	the	built-in	type()	function.

types.py

Open	an	IDLE	Edit	Window	and	initialize	a	variable	by	assigning	it	a	string,	then
display	its	value	and	data	type
race	=	‘Daytona	500’

print(race	,	‘is‘	+	type(race))

Next,	initialize	a	variable	by	assigning	it	a	whole	number	then	display	its	value	and
data	type
kilo	=	1000
print(kilo	,	‘is‘	+	type(kilo))

Now,	initialize	a	variable	by	assigning	it	a	decimal	number,	then	display	its	value
and	data	type
temp	=	98.6

print(temp	,	‘is‘	+	type(temp))

Initialize	a	variable	by	assigning	it	a	truth	keyword	then	display	its	value	and	data
type
flag	=	True
print(flag	,	‘is‘	+	type(flag))

Finally,	replace	the	last	variable	value	with	a	truth	result	of	a	comparison,	then
again	display	its	value	and	data	type
flag	=	4	>	8

print(flag	,	‘is‘	+	type(flag))

Save	then	run	the	program	to	discover	the	types	of	data	stored	within	the	variables
you	have	created

The	comparison	here	examines	whether	4	is	greater	than	8,	which	is	of	course
untrue.	Comparisons	are	demonstrated	fully	in	the	next	chapter.

Converting	data
Often	you	will	need	to	convert	data	in	your	programs	to	perform	some	kind	of
manipulation	–	such	as	arithmetic	or	concatenation.	Arithmetic	can	only	be	performed	on
numeric	data	types,	such	as	int	and	float	data,	whereas	concatenation	can	only	be
performed	on	string	data	types,	such	as	str	data.

Python	provides	several	built-in	functions	that	allow	you	to	easily	convert	data	in	your
programs	to	a	different	data	type.	These	do	not	convert	the	original	specified	value	itself
but	merely	return	a	converted	representation	of	its	value.	In	programming	terms	this	is
known	as	a	“cast”	operation:

Function: Description:

int(x) Converts	x	to	an	integer	whole	number

float(x) Converts	x	to	a	decimal	floating-point	number

str(x) Converts	x	to	a	string	representation

Numeric	values	in	your	code	should	not	be	enclosed	within	quote	marks	–
numbers	within	quotes	will	be	seen	as	string	values!

Numeric	values	assigned	to	variables	manually	in	your	code	are	automatically	appointed
the	appropriate	data	type	of	int	or	float.	Values	assigned	to	variables	from	users	by	the
built-in	input()	function	are,	however,	always	automatically	appointed	the	str	string	data
type	–	even	when	they	are	simply	numeric	values!	This	means	they	must	be	converted
(cast)	to	an	appropriate	numeric	type	of	int	or	float	before	you	can	perform	arithmetic	with
them.

Conversely	numeric	values	assigned	to	variables	manually	in	your	code,	which	are
automatically	appointed	the	appropriate	data	type	of	int	or	float,	cannot	be	concatenated
into	a	string.	This	means	they	must	be	converted	to	a	str	data	type	for	inclusion	in	a	string.

In	Python,	as	in	many	other	programming	languages,	the	+	symbol	has	more	than	one
purpose	according	to	its	context.	Where	the	+	symbol	is	used	between	two	numeric	values
it	performs	an	addition	(seen	as	an	“addition	operator”)	but	where	the	+	symbol	is	used
between	two	string	values	it	performs	a	concatenation	(seen	as	a	“concatenation
operator”).	Variables	that	are	assigned	the	result	of	either	kind	of	operation	will
automatically	be	appointed	the	appropriate	data	type	of	the	result.

Arithmetic	performed	on	an	int	and	float	data	type	together	will	be	automatically
cast	into	a	float	result.	Cast	values	to	the	float	data	type	to	allow	for	decimal
number	input.

cast.py

Open	an	IDLE	Edit	Window	and	initialize	two	variables	by	assigning	them
numeric	user	input
num1=	input(‘Please	enter	a	whole	number:	’)

num2=	input(‘Now	enter	another	whole	number:	’)

Next,	display	the	data	type	of	each	variable	to	see	the	numeric	values	are,	in	fact,
stored	as	strings
print(‘Input	is:	‘	,	type(num1)	,	type(num2))

Now,	use	the	+	operator	to	attempt	addition,	but	see	the	result	gets	concatenated	as
a	str	data	type
total	=	num1	+	num2
print(‘Total:‘	,	total	,	type(total))

Again,	use	the	+	operator	to	attempt	addition,	but	cast	the	stored	values	to	see	the
result	as	an	int	data	type
total	=	int(num1)	+	int(num2)

print(‘Total:‘	,	total	,	type(total))

Finally,	cast	the	stored	values	as	a	float	data	type	and	concatenate	the	float	result
value	to	the	output	str	string
total	=	float(num1)	+	float(num2)
print(‘Total:	‘	+	str(total)	,	type(total))

Save	then	run	the	program	to	see	the	stored	data	types	converted	by	casting	them
with	the	built-in	functions

If	you	forget	to	convert	to	the	correct	data	type	the	interpreter	will	report	an	error	–
try	adding	an	int	to	a	str	data	type	to	see	the	error	message.

Guessing	game
The	previous	simple	examples	have	illustrated	how	variables	can	be	used	to	store	text
string	values,	numeric	integer	and	floating-point	decimal	values,	and	Boolean	truth	values
in	your	programs.	Now,	they	can	be	used	to	create	a	Guessing	Game	program	by	storing	a
random	generated	integer	whose	value	the	user	will	have	to	guess,	a	Boolean	truth	value
that	will	end	the	game	when	the	user	guesses	correctly,	and	a	string	containing	the	user’s
guess.

The	code	in	this	example	includes	some	features	that	are	only	demonstrated	later	in	this
book,	but	as	Python	is	an	easily	human-readable	programming	language	you	should	be
able	to	understand	in	principle	how	this	program	works.

guess.py

Open	an	IDLE	Edit	Window	and	begin	a	program	by	importing	a	“random”	library
class	that	provides	random	number	generator	functions
import	random

Now,	initialize	three	variables	–	a	generated	random	number	between	one	and	20,	a
Boolean	value	that	will	remain	True	as	long	as	the	game	is	in	progress,	and	a	zero
value	that	will	later	store	a	number	input	by	the	user
num	=	random.randint(1	,	20)

flag	=	True
guess	=	0

Next,	display	a	message	asking	the	user	to	make	a	guess

print(‘Guess	my	number	1-20	:	‘	,	end	=	‘	‘)

Then,	precisely	copy	this	code	that	will	compare	the	stored	user’s	guess	to	the
stored	random	number
while	flag	==	True	:

guess	=	input()
if	not	guess.isdigit()	:

print(‘Invalid!	Enter	only	digits	1-20‘)
break

elif	int(guess)	<	num	:
print(‘Too	low,	try	again	:	‘	,	end	=	‘	‘)

elif	int(guess)	>	num	:
print(‘Too	high,	try	again	:	‘	,	end	=	‘	‘)

else	:
print(‘Correct…	My	number	is	‘	+	guess)

flag	=	False

Many	program	languages	use	characters	such	as	{	}	to	group	statements	together
but	Python	uses	indentation	–	so	the	indentation	shown	here	must	be	correctly
preserved.

Save	then	run	the	program	and	enter	guesses	to	see	your	input	compared	to	a	stored
random	number

Notice	that	the	program	rejects	user	input	of	str	string	or	float	values.
Guessing	Game	in	Python	–	program	analysis

• The	random	library	class’s	randint()	function	specifies	an	upper	and	lower	random	range
within	its	parentheses

• The	flag	variable	specifies	an	initial	program	condition	that	will	allow	the	program	to
start	examining	the	user’s	input

• The	while	keyword	specifies	a	“loop”	control	structure	that	will	repeat	the	statements	it
contains	until	a	tested	condition	fails

• The	if	not	guess.isdigit()	test	specifies	an	action	to	break	the	loop	if	the	user	input	is	not
an	integer	whole	number

• The	elif	int(guess)	<	num	test	specifies	an	alternative	action	if	the	cast	user	input	is	lower
than	the	stored	random	number

• The	elif	int(guess)	>	num	test	specifies	an	alternative	action	if	the	cast	user	input	is
higher	than	the	stored	random	number

• The	else	keyword	specifies	a	final	alternative	action	to	change	the	program	condition,
thereby	ending	the	program

You	need	not	yet	understand	this	program	in	detail	–	each	aspect	is	explained	by
examples	later	in	this	book.

Correcting	errors
When	coding	programs	there	are	three	common	types	of	error	that	can	occur.	It	is	useful	to
recognize	these	different	error	types	in	Python	programming	so	they	can	be	corrected
more	easily:

• Syntax	Error	–	occurs	when	the	interpreter	encounters	code	that	does	not	conform	to
the	Python	language	rules.	For	example,	a	missing	quote	mark	around	a	string.	The
interpreter	halts	and	reports	the	error	without	executing	the	program.

• Runtime	Error	–	occurs	during	execution	of	the	program,	at	the	time	when	the
program	runs.	For	example,	when	a	variable	name	is	later	mis-typed	so	the	variable
cannot	be	recognized.	The	interpreter	runs	the	program	but	halts	at	the	error	and
reports	the	nature	of	the	error	as	an	“Exception”.

• Semantic	Error	–	occurs	when	the	program	performs	unexpectedly.	For	example,
when	order	precedence	has	not	been	specified	in	an	expression.	The	interpreter	runs
the	program	and	does	not	report	an	error.

Programming	errors	are	often	called	“bugs”	and	the	process	of	tracking	them
down	is	often	called	“debugging”.

Correcting	syntax	and	runtime	errors	is	fairly	straightforward,	as	the	interpreter	reports
where	the	error	occurred	or	the	nature	of	the	error	type,	but	semantic	errors	require	code
examination.

syntax.py

Open	an	IDLE	Edit	Window	then	add	a	statement	to	output	a	string	that	omits	a
closing	quote	mark
print(‘Coding	for	Beginners	in	easy	steps)

Save	then	run	the	program	to	see	the	interpreter	highlight	the	syntax	error	and
indicate	its	nature

The	red	syntax	error	indicator	points	to	the	line	where	the	End	Of	Line	(EOL)	error
occurs.

Insert	a	quote	mark	before	the	closing	parenthesis	to	terminate	the	string	and	save
then	run	the	program	again	–	to	see	the	error	has	been	corrected

runtime.py

Next,	begin	a	new	program	by	initializing	a	variable	then	try	to	output	its	value
with	an	incorrect	variable	name	–	to	see	the	interpreter	report	a	runtime	error
title	=	‘Coding	for	Beginners	in	easy	steps’

print(titel)

Amend	the	variable	name	to	match	that	in	the	variable	declaration	and	save	then
run	the	program	again	–	to	see	the	error	has	been	corrected

semantic.py

Now,	begin	a	new	program	by	initializing	a	variable	then	try	to	output	an
expression	using	its	value	without	explicit	precedence	–	to	see	a	possibly
unexpected	result	of	28

num	=	3

print(‘Result:	‘	,	num	*	8	+	4)

Add	parentheses	to	group	the	expression	as	3	*	(8	+	4)	then	save	the	file	and	run	the
program	again	–	to	see	the	expected	result	of	36,	correcting	the	semantic	error

Details	of	how	to	handle	runtime	Exception	errors	in	your	script	code	are	provided
here.

Summary
• Variables	can	be	used	to	store	data	values	specified	in	program	code	and	to	store	data

values	input	by	a	user

• A	value	stored	in	a	variable	remains	available	for	repeated	use	until	it	is	replaced	by	a
new	value	or	until	the	program	ends

• The	Python	built-in	input()	function	can	assign	input	to	a	variable	and	may	optionally
specify	a	string	to	be	displayed

• The	Python	built-in	print()	function	can	specify	multiple	values	for	output	as	a	comma-
separated	list	in	its	parentheses

• By	default,	the	print()	function	will	automatically	add	a	\n	newline	after	its	output	unless
an	end	alternative	is	specified

• The	+	concatenation	operator	can	join	two	strings	together

• Data	types	are	essentially	str	text	strings,	int	integer	numbers,	float	decimal	numbers,	or
bool	Boolean	truth	values

• Booleans	are	logical	truth	values	that	are	represented	in	Python	by	the	True	and	False
keywords

• The	Python	built-in	type()	function	can	identify	to	which	class	data	type	a	value	in	any
specified	variable	belongs

• Values	assigned	to	a	variable	by	the	Python	built-in	input()	function	are	always
appointed	the	str	string	data	type

• Data	types	can	be	converted	for	manipulation	using	the	Python	built-in	int(),	float(),	and
str()	casting	functions

• Arithmetic	performed	on	an	int	integer	number	and	a	float	decimal	number	will	produce
a	float	data	type	result

• Syntax	errors	due	to	incorrect	code	are	recognized	by	the	interpreter	before	execution
of	the	program

• Runtime	errors	due	to	exceptions	are	recognized	by	the	interpreter	during	execution	of
the	program

• Semantic	errors	due	to	unexpected	performance	are	not	recognized	by	the	interpreter

3
Performing	operations

This	chapter	demonstrates	how	to	use	operator	symbols	in	your	code	statements.

Doing	arithmetic
Assigning	values
Comparing	values
Finding	truth
Testing	condition
Setting	order
Summary

Doing	arithmetic
The	arithmetical	“operators”	commonly	used	in	coding	computer	programs	use	a	+	symbol
for	addition	and	a	-	symbol	for	subtraction,	as	you	would	expect.	Typically,	they	also	use
an	*	asterisk	for	multiplication,	rather	than	an	x	symbol,	and	a	/	forward	slash	for	division,
rather	than	a	÷	symbol.

The	arithmetical	operators	used	to	code	Python	programs	are	listed	in	the	table	below,
together	with	the	operation	they	perform:

Operator: Operation:

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

// Floor	division

** Exponent

The	+	operator	adds	two	numbers	together	and	the	-	operator	subtracts	the	second	number
from	the	first	number.

The	*	operator	multiplies	the	first	number	by	the	second	number	and	the	/	operator	divides
the	first	number	by	the	second	number.

The	%	remainder	operator	divides	the	first	number	by	the	second	number	and	returns	the
remainder	of	the	operation.	This	is	useful	to	determine	if	a	number	has	an	odd	or	even
value.

The	//	floor	division	operator	performs	just	like	the	/	division	operator	but	truncates	the
result	at	the	decimal	point	–	removing	any	floating	point	part	from	the	resulting	number.

The	**	exponent	operator	returns	the	result	of	the	first	number	raised	to	the	power	of	the
second	number.

Values	used	with	operators	to	form	expressions	are	called	“operands”	–	in	the
expression	2	+	3	the	numerical	values	2	and	3	are	the	operands.

arithmetic.py

Start	a	new	program	by	creating	two	variables	containing	whole	numbers	(integers)

a	=	8

b	=	2

Next,	display	the	result	of	adding	the	numbers

print(‘Addition:	\t’	,	a	,	‘+’	,	b	,	‘=’	,	a	+	b)

Now,	display	the	result	of	subtracting	the	numbers

print(‘Subtraction:\t’	,	a	,	‘-’	,	b	,	‘=’	,	a	-	b)

Then,	display	the	result	of	multiplying	the	numbers

print(‘Multiplication:\t’	,	a	,	‘x’	,	b	,	‘=’	,	a	*	b)

Display	the	result	of	dividing	the	numbers,	both	with	and	without	the	floating-point
part
print(‘Division:	\t’	,	a	,	‘÷’	,	b	,	‘=’	,	a	/	b)
print(‘Floor	Division:\t’	,	a	,	‘÷’	,	b	,	‘=’	,	a	//	b)

Next,	display	the	remainder	after	dividing	the	numbers

print(‘Remainder:\t’	,	a	,	‘%’	,	b	,	‘=’	,	a	%	b)

Finally,	display	the	result	of	raising	the	first	number	to	the	power	of	the	second
number
print(‘Exponent:\t	‘	,	a	,	‘²	=	’	,	a	**	b	,	sep	=	‘’)

Save	then	run	the	program	to	see	the	result	of	the	arithmetical	operations

Here,	the	special	\t	character	sequence	adds	an	invisible	tab	character	to	format
the	output.

You	can	use	the	sep	parameter	to	explicitly	specify	the	separation	between	output
–	here,	it	specifies	no	spaces	by	assigning	two	unspaced	single	quote	marks.

Assigning	values
The	assignment	operator	commonly	used	in	coding	computer	programs	simply	uses	a	=
symbol	to	assign	a	value	to	a	variable.	Optionally,	this	may	be	combined	with	an
arithmetical	operator	to	perform	arithmetic	and	assignment	in	one	single	operation.

The	assignment	operators	used	to	code	Python	programs	are	listed	in	the	table	below
together	with	the	operation	they	perform:

Operator: Example: Equivalent:

= a	=	b a	=	b

+= a	+=	b a	=	(a	+	b)

-= a	-=	b a	=	(a	-	b)

*= a	*=	b a	=	(a	*	b)

/= a	/=	b a	=	(a	/	b)

%= a	%=	b a	=	(a	%	b)

//= a	//=	b a	=	(a	//	b)

**= a	**=	b a	=	(a	**	b)

In	the	example	above,	variable	a	is	assigned	the	value	contained	in	variable	b	–	so	that
becomes	the	new	value	in	the	a	variable.

The	+=	operator	is	useful	to	add	a	value	onto	an	existing	value	stored	in	the	a	variable	–
making	it	a	combined	total	value.

In	the	example	above	the	+=	operator	first	adds	the	value	contained	in	variable	a	to	the
value	contained	in	variable	b.	It	then	assigns	the	result	to	become	the	new	value	stored	in
variable	a.

All	these	other	operators	work	in	the	same	way	by	making	the	arithmetical	operation
between	the	two	values	first,	then	assigning	the	result	of	that	operation	to	the	first	variable
–	to	become	its	new	stored	value.

With	the	%=	operator	the	first	operand	a	is	divided	by	the	second	operand	b	then	the
remainder	is	assigned	to	the	a	variable.

It	is	important	to	regard	the	=	operator	to	mean	“assign”	rather	than	“equals”	to
avoid	confusion	with	the	==	equality	operator.

assign.py

Start	a	new	program	by	creating	two	variables	containing	integer	numbers	and
displays	both	assigned	values
a	=	8

b	=	4
print(‘Assign	Values:\t’	,	’a	=’	,	a	,	‘\tb	=’	,	b)

Next,	add	and	assign	a	new	value	to	the	first	variable	and	display	its	stored	value

a	+=	b

print(‘Add	&	Assign:\t’	,’a	=’	,	a	,	‘\t(8	+=	4)’)

Now,	subtract	and	assign	a	new	value	to	the	first	variable	and	display	its	stored
value,	then	multiply	and	assign	a	value	to	the	first	variable	and	display	its	stored
value
a	-=	b
print(‘Subtract	&	Assign:\t’	,	’a	=’	,	a	,	‘\t(12	-	4)’)

a	*=	b
print(‘Multiply	&	Assign:\t’	,	’a	=’	,	a	,	‘\t(8	x	4)’)

Finally,	divide	and	assign	a	new	value	to	the	first	variable	and	display	its	stored
value,	then	remainder	and	assign	a	value	to	the	first	variable	and	display	its	stored
value
a	/=	b

print(‘Divide	&	Assign:\t’	,	’a	=’	,	a	,	‘\t(32	÷	4)’)
a	%=	b

print(‘Remainder	&	Assign:\t’	,	’a	=’	,	a	,	‘\t(8	%	4)’)

Save	then	run	the	program	to	see	the	result	of	the	assignment	operations

Unlike	the	=	assign	operator,	the	==	equality	operator	compares	operands	and	is
described	here.

Comparing	values
The	operators	that	are	commonly	used	in	Python	programming	to	compare	two	operand
values	are	listed	in	the	table	below:

Operator: Comparative	test:

== Equality

!= Inequality

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

The	==	equality	operator	compares	two	operands	and	will	return	True	if	both	are	equal	in
value,	otherwise	it	will	return	a	False	value.	If	both	are	the	same	number	they	are	equal,	or
if	both	are	characters	their	ASCII	code	values	are	compared	numerically	to	achieve	the
comparison	result.

Conversely,	the	!=	inequality	operator	returns	True	if	two	operands	are	not	equal,	using	the
same	rules	as	the	==	equality	operator,	otherwise	it	returns	False.	Equality	and	inequality
operators	are	useful	in	testing	the	state	of	two	variables	to	perform	conditional	branching
in	a	program	according	to	the	result.

The	>	“greater	than”	operator	compares	two	operands	and	will	return	True	if	the	first	is
greater	in	value	than	the	second,	or	it	will	return	False	if	it	is	equal	or	less	in	value.	The	<
“less	than”	operator	makes	the	same	comparison	but	returns	True	if	the	first	operand	is	less
in	value	than	the	second,	otherwise	it	returns	False.	A	>	“greater	than”	or	<	“less	than”
operator	is	often	used	to	test	the	value	of	an	iteration	counter	in	a	loop.

Adding	the	=	operator	after	a	>	“greater	than”	or	<	“less	than”	operator	makes	it	also	return
True	if	the	two	operands	are	exactly	equal	in	value.

A-Z	uppercase	characters	have	ASCII	code	values	65-90	and	a-z	lowercase
characters	have	ASCII	code	values	97-122.

comparison.py

Start	a	new	program	by	initializing	five	variables	with	values	for	comparison

nil	=	0

num	=	0
top	=	1

cap	=	‘A’
low	=	‘a’

Next,	add	statements	to	display	the	results	of	numeric	and	character	equality
comparisons
print(‘Equality	:	\t’	,	nil	,	‘==’	,	num	,	nil	==	num)

print(‘Equality	:	\t’	,	cap	,	‘==’	,	low	,	cap	==	low)

Now,	add	a	statement	to	display	the	result	of	an	inequality	comparison

print(‘Inequality	:\t’	,	nil	,	‘!=’	,	top	,	nil	!=	top)

Then,	add	statements	to	display	the	results	of	greater	and	lesser	comparisons

print(‘Greater	:	\t’	,	nil	,	‘>’	,	top	,	nil	>	top)
print(‘Lesser	:	\t’	,	nil	,	‘<’	,	top	,	nil	<	top)

Finally,	add	statements	to	display	the	results	of	greater	or	equal	and	lesser	or	equal
comparisons
print(‘More	Or	Equal	:\t’	,	nil	,	‘>=’	,	num	,	nil	>=	num)

print(‘Less	or	Equal	:\t’	,	top	,	‘<=’	,	num	,	top	<=	num)

Save	then	run	the	program	–	to	see	the	result	of	comparison	operations

The	\t	escape	sequence	shown	here	adds	an	invisible	tab	character	to	format	the
output.

The	ASCII	code	value	for	uppercase	“A”	is	65	but	for	lowercase	“a”	it’s	97	–	so
their	comparison	here	returns	False.

Finding	truth
The	logical	operators	most	commonly	used	in	Python	programming	are	listed	in	the	table
below:

Operator: Operation:

and Logical	AND

or Logical	OR

not Logical	NOT

The	logical	operators	are	used	with	operands	that	have	Boolean	values	of	True	or	False,	or
are	values	that	convert	to	True	or	False.

The	(logical	AND)	and	operator	will	evaluate	two	operands	and	return	True	only	if	both
operands	themselves	are	True.	Otherwise	the	and	operator	will	return	False.	This	is	useful
in	programming	to	perform	“conditional	branching”	where	the	direction	of	a	program	is
determined	by	testing	two	conditions	–	if	both	conditions	are	satisfied,	the	program	will	go
in	a	certain	direction,	otherwise	it	will	take	a	different	direction.

Unlike	the	and	operator	that	needs	both	operands	to	be	True,	the	(logical	OR)	or	operator
will	evaluate	its	two	operands	and	return	True	if	either	one	of	the	operands	itself	returns
True.	If	neither	operand	returns	True,	then	the	or	operator	will	return	False.	This	is	useful	in
programming	to	perform	a	certain	action	if	either	one	of	two	test	conditions	has	been	met.

The	(logical	NOT)	not	operator	is	a	unary	operator	that	is	used	before	a	single	operand.	It
returns	the	inverse	value	of	the	given	operand,	so	if	the	variable	a	had	a	value	of	True	then
not	a	would	have	a	value	of	False.	The	not	operator	is	useful	in	programming	to	toggle	the
value	of	a	variable	in	successive	loop	iterations	with	a	statement	like	a	=	not	a.	This	ensures
that	on	each	iteration	of	the	loop	the	Boolean	value	is	reversed,	like	flicking	a	light	switch
on	and	off.

The	term	“Boolean”	refers	to	a	system	of	logical	thought	developed	by	the	English
mathematician	George	Boole	(1815-1864).

logic.py

Start	a	new	program	by	initializing	two	variables	with	Boolean	values	for	logical
evaluation
a	=	True

b	=	False

Add	statements	to	display	the	results	of	AND	evaluations

print(‘AND	Logic:’)
print(‘a	and	a	=’	,	a	and	a)

print(‘a	and	b	=’	,	a	and	b)
print(‘b	and	b	=’	,	b	and	b)

Add	statements	to	display	the	results	of	OR	evaluations

print(‘\nOR	Logic:’)

print(‘a	or	a	=’	,	a	or	a)
print(‘a	or	b	=’	,	a	or	b)

print(‘b	or	b	=’	,	b	or	b)

Add	statements	to	display	the	results	of	NOT	evaluations

print(‘\nNOT	Logic:’)
print(‘a	=’	,	a	,	‘\tnot	a	=’	,	not	a)

print(‘b	=’	,	b	,	‘\tnot	b	=’	,	not	b)

Save	then	run	this	program	–	to	see	the	result	of	logic	operations

In	Python	programming,	Boolean	values	can	also	be	represented	numerically
where	True	is	1	and	False	is	0	(zero).

Note	that	the	expression	False	and	False	returns	False,	not	True	–	perhaps
demonstrating	the	maxim	“two	wrongs	don’t	make	a	right”.

Testing	condition
Many	programming	languages,	such	as	C++	or	Java,	have	a	?:	“ternary”	operator	that
evaluates	an	expression	for	a	True	or	False	condition	then	returns	one	of	two	specified
values	depending	on	the	result	of	the	evaluation.	A	?:	ternary	operator	has	this	syntax:
(test-expression)	?	if-true-return-this	:	if-false-return-this

Unlike	other	programming	languages,	Python	does	not	have	a	?:

ternary	operator	but	has	instead	a	“conditional	expression”	that	works	in	a	similar	way
using	if	and	else	keywords	with	this	syntax:
if-true-return-this	if	(test-expression)	else	if-false-return-this

Although	the	conditional	expression	syntax	can	initially	appear	confusing	it	is	well	worth
becoming	familiar	with	this	expression	as	it	can	execute	powerful	program	branching	with
minimal	code.	For	example,	to	branch	when	a	variable	is	not	a	value	of	one:
if-true-do-this	if	(var	!=	1)	else	if-false-do-this

The	conditional	expression	can	be	used	in	Python	programming	to	assign	the	maximum	or
minimum	value	of	two	variables	to	a	third	variable.	For	example,	to	assign	a	minimum
like	this:
c	=	a	if	(a	<	b)	else	b

The	expression	in	parentheses	returns	True	when	the	value	of	variable	a	is	less	than	that	of
variable	b	–	so	in	this	case	the	lesser	value	of	variable	a	gets	assigned	to	variable	c.

Similarly,	replacing	the	<	less	than	operator	in	the	test	expression	with	the	>	greater	than
operator	would	assign	the	greater	value	of	variable	b	to	variable	c.

Another	common	use	of	the	conditional	expression	incorporates	the	%	remainder	operator
in	the	test	expression	to	determine	if	the	value	of	a	variable	is	an	odd	number	or	an	even
number:
if-true(odd)-do-this	if	(var	%	2	!=	0)	else	if-false(even)-do-this

Where	the	result	of	dividing	the	variable	value	by	two	does	leave	a	remainder,	the	number
is	odd	–	where	there	is	no	remainder	the	number	is	even.	The	test	expression	(var	%	2	==	1)
would	have	the	same	effect	but	it	is	preferable	to	test	for	inequality	–	it’s	easier	to	spot
when	something	is	different	than	when	it’s	identical.

In	general	programming	terms	an	“expression”	always	returns	a	value,	whereas	a
“statement”	need	not	–	but	a	statement	may	include	one	or	more	expressions.

The	conditional	expression	has,	in	effect,	three	operands	–	the	test	expression
and	two	possible	return	values.

condition.py

Start	a	new	program	by	initializing	two	variables	with	integer	values	for
conditional	evaluation
a	=	1

b	=	2

Next,	add	statements	to	display	the	results	of	conditional	evaluation	–	describing
the	first	variable’s	value
print(‘\nVariable	a	Is	:’	,	‘One’	if	(a	==	1)	else	‘Not	One’)
print(‘Variable	a	Is	:’	,	‘Even’	if	(a	%	2	==	0)	else	‘Odd’)

Now,	add	statements	to	display	the	results	of	conditional	evaluation	–	describing
the	second	variable’s	value
print(‘\nVariable	b	Is	:’	,	‘One’	if	(b	==	1)	else	‘Not	One’)

print(‘Variable	b	Is	:’	,	‘Even’	if	(b	%	2	==	0)	else	‘Odd’)

Then,	add	a	statement	to	assign	the	result	of	a	conditional	evaluation	to	a	new
variable
top	=	a	if	(a	>	b)	else	b

Finally,	add	a	statement	to	display	the	assigned	result	–	identifying	the	greater	of
the	two	variable	values
print(‘\nGreater	Value	Is:’	,	top)

Save	then	run	this	program	–	to	see	the	result	of	conditional	expression	operations

You	may	find	that	some	Python	programmers	dislike	conditional	expressions	as
they	consider	its	syntax	contradicts	the	principle	of	easy	readability.

Setting	order
Operator	precedence	determines	the	order	in	which	expressions	get	evaluated.	For
example,	in	the	expression	3	*	8	+	4	the	default	order	of	precedence	determines	that
multiplication	with	the	*	multiply	operator	is	completed	first,	so	the	result	is	28	(24	+	4).

The	table	below	lists	Python’s	operator	precedence	in	descending	order	–	those	on	the	top
row	have	highest	precedence,	those	on	lower	rows	have	successively	lower	precedence.
The	precedence	of	operators	on	the	same	row	is	chained	Left-To-Right.

Operator: Description:

** Exponent

+ Positive

- Negative

~ Bitwise	NOT

* Multiplication

/ Division

// Floor	division

% Remainder

+ Addition

- Subtraction

| Bitwise	OR

^ Bitwise	XOR

& Bitwise	AND

>> Bitwise	right	shift

<< Bitwise	left	shift

>,	>=,	<,	<=,	==,	!= Comparison

=	,	%=	,	/=	,	//=	,	-=	,	+=	,	*=	,	**= Assignment

is	,	is	not Identity

in	,	not	in Membership

not Boolean	NOT

and Boolean	AND

or Boolean	OR

The	*	multiply	operator	is	on	a	higher	row	than	the	+	addition	operator	–	so	in	the
expression	3	*	8	+	4	multiplication	is	completed	first,	before	the	addition.

Bitwise	operators	are	used	for	low-level	manipulation	so	are	omitted	from	this
book.	Identity	and	membership	operators	are	introduced	later	but	are	included
here	for	completeness.

order.py

Start	a	new	program	by	initializing	three	variables	with	integer	values	for
precedence	comparison
a	=	2

b	=	4
c	=	8

Next,	add	statements	to	display	the	results	of	default	precedence	and	forcing
addition	before	multiplication
print(‘\nDefault	Order:\t’,	a,	‘*’,	c,’+’,	b,	‘=’,	a	*	c	+	b)

print(‘Forced	Order:\t’,	a,	‘*	(‘,	c,’+’,	b,	‘)	=’,	a	*	(c	+	b))

Now,	add	statements	to	display	the	results	of	default	precedence	and	forcing
subtraction	before	division
print(‘\nDefault	Order:\t’,	c,	‘//’,	b,	‘-’,	a,	‘=’,	c	//	b	-	a)

print(‘Forced	Order:\t’,	c,	‘//	(‘,	b,’-’,	a,	‘)	=’,	c	//	(b	-	a))

Finally,	add	statements	to	display	the	results	of	default	precedence	and	forcing
addition	before	remainder	operation	and	before	exponent	operation
print(‘\nDefault	Order:\t’,	c,	‘%’,	a,	‘+’,	b,	‘=’,	c	%	a	+	b)
print(‘Forced	Order:\t’,	c,	‘%	(‘,	a,	‘+’,	b,	‘)	=’,	c	%	(a	+	b))

print(‘\nDefault	Order:\t’,	c,	‘**’,	a,	‘+’,	b,	‘=’,	c	**	a	+	b)
print(‘Forced	Order:\t’,	c,	‘**	(‘,	a,	‘+’,	b,	‘)	=’,	c	**	(a	+	b))

Save	then	run	this	program	–	to	see	the	results	of	default	and	explicit	precedence

The	//	floor	division	operator	truncates	floating	point	values	at	the	decimal	point	–
but	the	/	division	operator	retains	them.

Do	not	rely	upon	default	precedence	–	always	use	parentheses	to	clarify	your
expressions.

Summary
• Arithmetical	operators	can	form	expressions	with	two	operands	for	addition	+,

subtraction	-,	multiplication	*,	division	/,	floor	division	//,	remainder	%,	or	exponent	**

• The	%	remainder	operator	is	useful	to	determine	whether	a	number	is	an	odd	or	even
value

• Floor	division	with	the	//	operator	removes	any	floating-point	part	from	the	result

• The	assignment	=	operator	can	be	combined	with	an	arithmetical	operator	to	perform
an	arithmetical	calculation	then	assign	its	result

• The	+=	operator	is	useful	to	add	a	value	onto	an	existing	value	stored	in	a	variable	to
make	a	combined	total	value

• Comparison	operators	can	form	expressions	comparing	two	operands	for	equality	==,
inequality	!=,	greater	>,	lesser	<,	greater	or	equal	>=,	and	lesser	or	equal	<=	values

• Logical	and	and	or	operators	form	expressions	evaluating	two	operands	to	return	a
Boolean	value	of	True	or	False

• The	logical	not	operator	returns	the	inverse	Boolean	value	of	a	single	operand	-	turning
True	to	False	,	and	vice	versa

• The	not	operator	is	useful	to	toggle	a	value	between	True	and	False	on	successive
iterations	of	a	loop

• A	conditional	if-else	expression	evaluates	a	given	expression	for	a	Boolean	True	or	False
value	then	returns	one	of	two	operands	depending	on	its	result

• Expressions	containing	multiple	operators	will	execute	their	operations	in	accordance
with	the	default	precedence	rules	unless	explicitly	determined	by	the	addition	of
parentheses	()

• Typically,	addition	+	and	subtraction	-	will	be	performed	before	multiplication	*	and
division	/	unless	explicitly	specified

4
Making	lists

This	chapter	demonstrates	how	to	create	code	to	store	data	in	lists	and	how	to	retrieve	data	from	lists.

Writing	lists
Changing	lists
Fixing	lists
Setting	lists
Naming	elements
Summary

Writing	lists
Some	programming	languages	allow	variables	to	be	declared	with	no	initial	value,	but	in
Python	programming	a	variable	must	be	assigned	an	initial	value	(initialized)	in	the
statement	that	declares	it	–	otherwise	the	interpreter	will	report	a	“not	defined”	error.

Multiple	variables	can	be	initialized	with	a	common	value	in	a	single	statement	using	a
sequence	of	=	assignments.	For	example,	to	simultaneously	assign	a	common	value	to
three	variables:
a	=	b	=	c	=	10

Alternatively,	multiple	variables	can	be	initialized	with	differing	values	in	a	single
statement	using	comma	separators.	For	example,	to	simultaneously	assign	different	values
to	three	variables:
a	,	b	,	c	=	1	,	2	,	3

Unlike	a	regular	variable,	which	can	only	store	a	single	item	of	data,	an	array	variable	can
store	multiple	items	of	data.	In	Python	these	are	known	as	“list”	variables.	The	data	is
stored	sequentially	in	list	“elements”	that	are	index	numbered	starting	at	zero.	So	the	first
value	is	stored	in	element	zero,	the	second	value	is	stored	in	element	one,	and	so	on.	An
array	list	is	created	much	like	any	other	variable	but	is	initialized	by	assigning	values	as	a
comma-separated	list	between	square	brackets.	For	example,	creating	a	list	named	“nums”
like	this:
nums	=	[0	,	1	,	2	,	3	,	4	,	5]

A	single	list	element	can	be	referenced	using	the	list	name	followed	by	square	brackets
containing	that	element’s	index	number.	This	means	that	nums[1]	references	the	second
element	in	the	example	above	–	not	the	first	element.	As	element	numbering	starts	at	zero
its	first	element	is	referenced	with	nums[0].

Lists	can	have	more	than	one	index	–	to	represent	multiple	dimensions,	rather	than	the
single	dimension	of	a	regular	list.	Multi-dimensional	lists	of	three	indices	and	more	are
uncommon	but	two-dimensional	lists	are	useful	to	store	grid-based	information	such	as
X,Y	coordinates.

A	list	of	string	values	can	even	be	considered	to	be	a	multi-dimensional	list	as	each	string
is	itself	a	list	of	characters.	So	each	character	can	be	referenced	by	its	index	number	within

its	particular	string.

list.py

Start	a	new	program	by	initializing	a	list	of	three	elements	containing	string	values

quarter	=	[‘January’	,	‘February’	,	‘March’]

Next,	add	statements	to	individually	display	the	value	contained	in	each	list
element
print(‘First	Month	:’	,	quarter[0])

print(‘Second	Month	:’	,	quarter[1])
print(‘Third	Month	:’	,	quarter[2])

Add	a	statement	to	create	a	multi-dimensional	list	of	two	elements,	which
themselves	are	lists	that	each	have	three	elements	containing	integer	values
coords	=	[[1	,	2	,	3]	,	[4	,	5	,	6]]

Now,	add	statements	to	display	the	values	contained	in	two	specific	inner	list
elements
print(‘\nTop	Left	0,0	:’	,	coords[0][0])

print(‘Bottom	Right	1,2	:’	,	coords[1][2])

Finally,	add	a	statement	to	display	just	one	character	of	a	string	value

print(‘\nSecond	Month	First	Letter	:’	,	quarter[1][0])

Save	then	run	the	program	–	to	see	the	list	element	values	get	displayed

String	indices	may	also	be	negative	numbers	–	to	start	counting	from	the	right
where	-1	references	the	last	letter.

Loop	structures,	which	are	introduced	later	in	this	chapter,	are	often	used	to
iterate	through	list	elements.

Changing	lists
List	variables,	which	can	contain	multiple	items	of	data,	are	widely	used	in	Python
programming	and	have	various	function	“methods”	that	can	be	“dot-suffixed”	to	the	list
name	for	manipulation:

List	Method: Description:

list.append(x) Adds	item	x	to	the	end	of	the	list

list.extend(L) Adds	all	items	in	list	L	to	the	end	of	the	list

list.insert(i,x) Inserts	item	x	at	index	position	i

list.remove(x) Removes	first	item	x	from	the	list

list.pop(i) Removes	item	at	index	position	i	and	returns	it

list.index(x) Returns	the	index	position	in	the	list	of	first	item	x

list.count(x) Returns	the	number	of	times	x	appears	in	the	list

list.sort() Sort	all	list	items,	in	place

list.reverse() Reverse	all	list	items,	in	place

For	lists	that	contain	both	numerical	and	string	values	the	sort()	method	returns
the	list	elements	sorted	first	numerically	then	alphabetically	–	for	example	as
1,2,3,A,B,C.

Python	also	has	a	useful	len(L)	function	that	returns	the	length	of	the	list	L	as	the	total
number	of	elements	it	contains.	Like	the	index()	and	count()	methods	the	returned	value	is
numeric	so	cannot	be	directly	concatenated	to	a	text	string	for	output.

String	representation	of	numeric	values	can,	however,	be	produced	by	Python’s	str(n)
function	for	concatenation	to	other	strings,	which	returns	a	string	version	of	the	numeric	n
value.	Similarly,	a	string	representation	of	an	entire	list	can	be	returned	by	the	str(L)
function	for	concatenation	to	other	strings.	In	both	cases	remember	that	the	original
version	remains	unchanged,	as	the	returned	versions	are	merely	copies	of	the	original

version.

Individual	list	elements	can	be	deleted	by	specifying	the	list	name	and	index	number	after
the	Python	del	keyword.	This	can	remove	one	element	at	a	specified	i	index	position,	or	a
“slice”	of	elements	using	slice	notation	i1:i2	to	specify	the	index	number	of	the	first	and
last	element.	In	this	case,	i1	is	the	index	number	of	the	first	element	to	be	removed	and	all
elements	up	to,	but	not	including,	the	element	at	the	i2	index	number	will	be	removed.

Python	also	has	an	int(s)	function	that	returns	a	numeric	version	of	the	string	s
value.

pop.py

Start	a	new	program	by	initializing	two	lists	of	three	elements	each	containing
string	values
basket	=	[‘Apple’	,	‘Bun’	,	‘Cola’]

crate	=	[‘Egg’	,	‘Fig’	,	‘Grape’]

Next,	add	statements	to	display	the	contents	of	the	first	list’s	elements	and	its
length
print(‘Basket	List:’	,	basket)
print(‘Basket	Elements:’	,	len(basket))

Now,	add	statements	to	add	an	element	and	display	all	list	elements,	then	remove
the	final	element	and	display	all	list	elements	once	more
basket.append(‘Damson’)

print(‘Appended:’	,	basket)
print(‘Last	Item	Removed:’	,	basket.pop())

print(‘Basket	List:’	,	basket)

Finally,	add	statements	to	add	all	elements	of	the	second	list	to	the	first	list	and
display	all	the	first	list	elements,	then	remove	elements	and	display	the	first	list
again
basket.extend(crate)
print(‘Extended:’	,	basket)

del	basket[1]
print(‘Item	Removed:‘	,	basket)

del	basket[1:3]

print(‘Slice	Removed:’	,	basket)

Save	then	run	this	program	–	to	see	lists	get	manipulated

The	last	index	number	in	the	slice	denotes	at	what	point	to	stop	removing
elements	–	but	the	element	at	that	position	does	not	get	removed.

Fixing	lists
The	values	in	a	regular	list	can	be	changed	as	the	program	proceeds.	Each	element	may	be
assigned	a	replacement	value	using	the	=	assignment	operator	to	specify	the	list	name,
element	index	number,	and	the	replacement	value.	In	programming	terms	the	values	stored
in	a	regular	list	are	“mutable”	–	they	can	be	changed.	Elements	can	also	be	dynamically
added	to	a	regular	list,	and	dynamically	removed	from	a	regular	list,	as	the	program
proceeds.	This	means	that	a	regular	list	is	ideal	if	your	program	will	make	changes	to
element	values.

Where	a	list	will	only	contain	constant	values,	that	will	never	change	when	the	program
runs,	a	fixed	list	can	better	be	created.	In	programming	terms,	the	values	stored	in	a	fixed
list	are	“immutable”	–	they	cannot	be	changed.	Elements	cannot	be	dynamically	added	to
a	fixed	list,	or	dynamically	removed	from	a	fixed	list,	as	the	program	proceeds.	This
means	that	a	fixed	list	is	ideal	if	your	program	will	never	make	changes	to	element	values.

Like	index	numbering,	with	lists	the	items	in	a	tuple	sequence	are	numbered	from
zero.

A	restrictive	immutable	Python	list	is	known	as	a	“tuple”	and	is	created	by	assigning
values	as	a	comma-separated	list	between	parentheses	in	a	process	known	as	“tuple
packing”:
colors_tuple	=	(‘Red’	,	‘Green’	,	‘Red’	,	‘Blue’,	‘Red’)

An	individual	tuple	element	can	be	referenced	using	the	tuple	name	followed	by	square
brackets	containing	that	element’s	index	number.	Usefully,	all	values	stored	inside	a	tuple
can	be	assigned	to	individual	variables	in	a	process	known	as	“sequence	unpacking”:
a	,	b	,	c	,	d	,	e	=	colors_tuple

Regular	list	methods,	such	as	sort()	and	reverse(),	cannot	be	used	on	tuples	but	the	built-in
Python	type()	function	can	be	used	to	reveal	the	data	class	type	and	the	built-in	len()
function	can	be	used	to	return	the	length	of	the	tuple.

There	must	be	the	same	number	of	variables	as	items	to	unpack	a	tuple.

Typically,	a	tuple	is	used	to	store	values	that	are	a	collection	of	constant	unchanging
values	such	as	day-of-the-week	names,	month-of-the-year	names,	or	personal	details	of
first	name,	last	name,	date-of-birth,	address,	phone	number,	etc.

tuple.py

Start	a	new	program	by	initializing	a	tuple	then	display	its	class	type

days	=	(‘Mon’	,	‘Tue’	,	‘Wed’	,	‘Thu’	,	‘Fri’	,	‘Sat’	,	‘Sun’)

print(‘days:’	,	type(days))

Next,	display	the	entire	contents	of	the	tuple,	its	length,	and	the	value	stored	in	its
first	element
print(‘Days	of	the	week:’	,	days)
print(‘No.	of	days	in	week:’	,	len(days))

print(‘Start	day	of	week:’	,	days[0])

Now,	initialize	another	tuple	containing	some	personal	details	of	a	user

user	=	(‘John’	,	‘Doe’	,	‘Paris’	,	‘555-1234’)

Then,	display	the	user’s	full	name

print(‘Name:’	,	user[0]	,	user[1])

Finally,	display	the	user’s	phone	number

print(‘Phone:’	,	user[3])

Save	then	run	this	program	–	to	see	the	tuple	values

A	tuple	may	contain	items	that	are	not	unique	to	its	other	elements.

Setting	lists
The	values	in	a	regular	list	or	a	fixed	list	tuple	can	be	repeated	in	its	elements,	but	a	list	of
unique	values	can	be	created	where	duplication	is	not	allowed.	A	restrictive	Python	list	of
unique	values	is	known	as	a	“set”	and	is	created	by	assigning	values	as	a	comma-separated
list	between	curly	brackets	(braces)	like	this:
phonetic_set	=	{	‘Alpha’	,	‘Bravo’	,	‘Charlie’	}

A	set	may	not	contain	items	that	are	not	unique	to	its	other	elements.

Unlike	regular	lists	or	tuples,	individual	elements	in	a	set	cannot	be	referenced	using	the
set	name	followed	by	square	brackets	containing	an	index	number.	Instead,	sets	have
powerful	methods	that	can	be	dot-suffixed	to	the	set	name	for	manipulation	and
comparison	of	values:

Set	Method: Description:

set.add(x) Adds	item	x	to	the	set

set.update(x,y,z) Adds	multiple	items	to	the	set

set.copy() Returns	a	copy	of	the	set

set.pop() Removes	one	random	item	from	the	set

set.discard(i) Removes	item	at	position	i	from	the	set

set1.intersection(set2) Returns	items	that	appear	in	both	sets

set1.difference(set2) Returns	items	in	set1	but	not	in	set2

The	built-in	Python	type()	function	can	be	used	to	reveal	the	data	class	type	and	the	built-in
len()	function	can	be	used	to	return	the	length	of	the	set.	Additionally,	the	Python	built-in
membership	operator	in	can	be	used	to	find	values	in	a	set.

More	set	methods	can	be	found	in	the	Python	documentation	online	at
docs.python.org
Typically,	a	set	is	used	to	store	unique	values	that	are	a	collection	of	changeable	values,
which	can	easily	be	searched	and	compared	using	the	powerful	set	methods.	Although	you
cannot	access	set	element	values	by	index,	a	set	can	be	converted	to	a	regular	list	using	the
Python	built-in	list()	function	to	allow	element	access.

set.py

Start	a	new	program	by	initializing	a	set	with	unique	name	values	then	display	its
class	type
party_goers	=	{	‘Andrew’	,	‘Barbara’	,	‘Carole’	,	‘David’	}

print(‘party_goers:’	,	type(party_goers))

Next,	add	statements	to	search	the	set	elements	for	two	specified	values

print(‘Did	David	go	to	the	party?’	,	‘David’	in	party_goers)
print(‘Did	Kelly	go	to	the	party?’	,	‘Kelly’	in	party_goers)

Now,	initialize	another	set	with	unique	name	values

students	=	{	‘Andrew’	,	‘Kelly’	,	‘Lynn’	,	‘David’	}

Then,	create	a	further	set	containing	only	common	values	that	appear	in	both
previous	sets
commons	=	party_goers.intersection(students)

Initialize	a	regular	list	of	the	common	values	–	so	the	elements	values	can	be
individually	accessed
party_students	=	list(commons)

Finally,	display	all	common	values	and	the	value	stored	in	the	first	regular	list
element
print(‘Students	at	the	party:’	,	party_students)

print(‘First	student	at	the	party:’	,	party_students[0])

Save	then	run	this	program	–	to	see	the	set	values

http://docs.python.org

Notice	that	the	list()	function	may	not	place	element	values	in	the	same	order	as
they	appear	in	the	set.

Naming	elements
In	Python	programming	a	“dictionary”	is	a	data	container	that	can	store	multiple	items	of
data	as	a	list	of	key:value	pairs.	Unlike	regular	list	container	values,	which	are	referenced
by	their	index	number,	values	stored	in	dictionaries	are	referenced	by	their	associated	key.
The	key	must	be	unique	within	that	dictionary	and	is	typically	a	string	name,	although
numbers	may	be	used.

Creating	a	dictionary	is	simply	a	matter	of	assigning	the	key:value	pairs	as	a	comma-
separated	list	between	curly	brackets	(braces)	to	a	name	of	your	choice.	Strings	must	be
enclosed	within	quotes,	as	usual,	and	a	:	colon	character	must	come	between	the	key	and
its	associated	value.

In	other	programming	languages	a	list	is	often	called	an	“array”	and	a	dictionary	is
often	called	an	“associative	array”.

A	key:value	pair	can	be	deleted	from	a	dictionary	by	specifying	the	dictionary	name	and
the	pair’s	key	to	the	del	keyword.	Conversely,	a	key:value	pair	can	be	added	to	a
dictionary	by	assigning	a	value	to	the	dictionary’s	name	and	a	new	key.

Python	dictionaries	have	a	keys()	method	that	can	be	dot-suffixed	to	the	dictionary	name	to
return	a	list,	in	random	order,	of	all	the	keys	in	that	dictionary.	If	you	prefer	the	keys	to	be
sorted	into	alphanumeric	order,	simply	enclose	the	statement	within	the	parentheses	of	the
Python	sorted()	function.

A	dictionary	can	be	searched	to	see	if	it	contains	a	particular	key	with	the	Python	in
operator,	using	the	syntax	key	in	dictionary.	The	search	will	return	a	Boolean	True	value
when	the	key	is	found	in	the	specified	dictionary,	otherwise	it	will	return	False.

Dictionaries	are	the	final	type	of	data	container	available	in	Python	programming.	In
summary,	the	various	types	are:

• Variable	–	stores	a	single	value

• List	–	stores	multiple	values	in	an	ordered	index	array

• Tuple	–	stores	multiple	fixed	values	in	a	sequence

• Set	–	stores	multiple	unique	values	in	an	unordered	collection

• Dictionary	–	stores	multiple	unordered	key:value	pairs

Data	is	frequently	associated	as	key:value	pairs	–	for	example,	when	you	submit	a
web	form	a	text	value	typed	into	an	input	field	is	typically	associated	with	that	text
field’s	name	as	its	key.

dict.py

Start	a	new	program	by	initializing	a	dictionary	then	display	its	data	class	type	and
its	key:value	contents
info	=	{	‘name’	:	‘Bob’	,	‘ref’	:	‘Python’	,	‘sys’	:	‘Win’	}

print(‘info:’	,	type(info))
print(‘Dictionary:’	,	info)

Next,	display	a	single	value	referenced	by	its	key

print(‘\nReference:’	,	info[‘ref’])

Now,	display	all	keys	within	the	dictionary

print(‘\nKeys:’	,	info.keys())

Delete	one	pair	from	the	dictionary	and	add	a	replacement	pair	then	display	the
new	key:value	contents
del	info[‘name’]

info[‘user’]	=	‘Tom’
print(‘\nDictionary:’	,	info)

Finally,	search	the	dictionary	for	a	specific	key	and	display	the	result	of	the	search

print(‘\nIs	There	A	name	Key?:’	,’name’	in	info)

Save	the	file	then	run	this	program	–	to	see	the	dictionary	keys	and	values

Notice	that	quotes	within	a	string	must	be	preceded	by	a	backslash	escape
character	–	to	prevent	the	string	being	prematurely	terminated.

Summary
• Multiple	variables	can	be	initialized	in	a	single	statement	using	a	sequence	of	=

assignments

• A	Python	list	is	an	array	variable	that	can	store	multiple	items	of	data	in	sequentially
numbered	elements	that	start	at	zero

• Data	stored	in	a	list	element	can	be	referenced	using	the	list	name	followed	by	an	index
number	in	[]	square	brackets

• A	list	element	can	have	more	than	one	index	to	represent	multiple	dimensions,	such	as
X	and	Y	coordinates

• List	variables	have	a	number	of	methods	that	can	be	dot-suffixed	to	the	list	name	for
manipulation

• The	len()	function	returns	the	length	of	a	specified	list

• An	individual	list	element	can	be	deleted	by	specifying	the	list	name	and	element	index
number	to	the	Python	del	keyword

• A	Python	tuple	is	an	immutable	list	whose	values	can	be	assigned	to	individual
variables	by	“sequence	unpacking”

• Data	stored	in	a	tuple	element	can	be	referenced	using	the	tuple	name	followed	by	an
index	number	in	[]	square	brackets

• A	Python	set	is	an	ordered	collection	of	unique	elements	whose	values	can	be
compared	and	manipulated	by	its	methods

• Data	stored	in	a	set	cannot	be	referenced	by	its	index	number

• Set	variables	have	methods	that	can	be	dot-suffixed	to	the	list	name	for	manipulation
and	comparison

• The	Python	built-in	membership	in	operator	can	be	used	to	seek	a	value	within	a	set

• A	set	can	be	converted	to	a	regular	list	using	the	list()	function	to	allow	reference	of
element	data	by	index	number

• A	Python	dictionary	is	a	list	of	key:value	pairs	of	data	in	which	each	key	must	be
unique

• Data	stored	in	a	dictionary	element	can	be	referenced	using	the	dictionary	name
followed	by	its	key	in	[]	square	brackets

5
Controlling	blocks

This	chapter	demonstrates	how	to	create	code	to	control	the	flow	of	your	programs.

Branching	choices
Counting	loops
Looping	conditions
Skipping	loops
Catching	errors
Summary

Branching	choices
As	in	many	programming	languages	the	Python	if	keyword	performs	a	basic	conditional
test	that	evaluates	a	given	expression	for	a	Boolean	value	of	True	or	False.	This	allows	a
program	to	proceed	in	different	directions	according	to	the	result	of	the	test	and	is	known
as	“conditional	branching”.

In	Python,	the	tested	expression	must	be	followed	by	a	:	colon,	then	statements	to	execute
when	the	test	succeeds	should	follow	below	on	separate	lines	and	each	line	must	be
indented	from	the	if	test	line.	The	size	of	the	indentation	is	not	important	but	it	must	be	the
same	for	each	line.	So	the	syntax	looks	like	this:
if	test-expression	:

statements-to-execute-when-test-expression-is-True
statements-to-execute-when-test-expression-is-True

The	if:	elif:	else:	sequence	is	the	Python	equivalent	of	the	switch	or	case
statements	found	in	other	languages.

Optionally,	an	if	test	can	offer	alternative	statements	to	execute	when	the	test	fails	by
appending	an	else	keyword	after	the	statements	to	be	executed	when	the	test	succeeds.	The
else	keyword	must	be	followed	by	a	:	colon	and	aligned	with	the	if	keyword	but	its
statements	must	be	indented	in	a	likewise	manner,	so	its	syntax	looks	like	this:
if	test-expression	:

statements-to-execute-when-test-expression-is-True
statements-to-execute-when-test-expression-is-True

else	:
statements-to-execute-when-test-expression-is-False
statements-to-execute-when-test-expression-is-False

An	if	test	block	can	be	followed	by	an	alternative	test	using	the	elif	keyword	(“else	if	”)
that	offers	statements	to	be	executed	when	the	alternative	test	succeeds.	This,	too,	must	be
aligned	with	the	if	keyword,	followed	by	a	:	colon,	and	its	statements	indented.	A	final	else
keyword	can	then	be	added	to	offer	alternative	statements	to	execute	when	the	test	fails.
The	syntax	for	the	complete	if-elif-else	structure	looks	like	this:
if	test-expression-1	:

statements-to-execute-when-test-expression-1-is-True
statements-to-execute-when-test-expression-1-is-True

elif	test-expression-2	:

statements-to-execute-when-test-expression-2-is-True
statements-to-execute-when-test-expression-2-is-True

else	:

statements-to-execute-when-test-expressions-are-False
statements-to-execute-when-test-expressions-are-False

Indentation	of	code	is	very	important	in	Python	as	it	identifies	code	blocks	to	the
interpreter	–	other	programming	languages	use	bracketing	such	as	{	}	braces.

if.py

Start	a	new	program	by	initializing	a	variable	with	user	input	of	an	integer	value

num	=	int(input(‘Please	Enter	A	Number:	‘))

Next,	test	the	variable	and	display	an	appropriate	response

if	num	>	5	:
print(‘Number	Exceeds	5’)

elif	num	<	5	:
print(‘Number	is	Less	Than	5’)

else	:
print(‘Number	Is	5’)

Now,	test	the	variable	again	using	two	expressions	and	display	a	response	only
upon	success
if	num	>	7	and	num	<	9	:

print(‘Number	is	8’)
if	num	==	1	or	num	==	3	:

print(‘Number	Is	1	or	3’)

Save	then	run	the	program	–	to	see	conditional	branching	in	action

The	user	input	is	read	as	a	string	value	by	default	so	must	be	cast	as	an	int	data
type	with	int()	for	arithmetical	comparison.

The	and	keyword	ensures	the	evaluation	is	True	only	when	both	tests	succeed,
whereas	the	or	keyword	ensures	the	evaluation	is	True	when	either	test
succeeds.

Counting	loops
As	in	other	programming	languages,	the	Python	for	keyword	loops	over	all	items	in	any
list	specified	to	the	in	keyword.	In	Python,	this	statement	must	end	with	a	:	colon	character
and	statements	to	be	executed	on	each	iteration	of	the	loop	must	be	indented:
for	each-item	in	list-name	:

statements-to-execute-on-each-iteration
statements-to-execute-on-each-iteration

Because	a	string	is	simply	a	list	of	characters,	the	for	in	statement	can	loop	over	each
character.	Similarly,	a	for	in	statement	can	loop	over	each	element	in	a	list,	each	item	in	a
tuple,	each	member	of	a	set,	or	each	key	in	a	dictionary.

The	for	loop	in	Python	is	unlike	that	in	other	languages	such	as	C	as	it	does	not
allow	step	size	and	end	to	be	specified.

A	for	in	loop	iterates	over	the	items	of	any	list	or	string	in	the	order	that	they	appear	in	the
sequence	but	you	cannot	directly	specify	the	number	of	iterations	to	make,	a	halting
condition,	or	the	size	of	iteration	step.	You	can,	however,	use	the	Python	range()	function
to	iterate	over	a	sequence	of	numbers	by	specifying	a	numeric	end	value	within	its
parentheses.	This	will	generate	a	sequence	that	starts	at	zero	and	continues	up	to,	but	not
including,	the	specified	end	value.	For	example,	range(5)	generates	0,1,2,3,4.

Optionally,	you	can	specify	both	a	start	and	end	value	within	the	parentheses	of	the	range()
function,	separated	by	a	comma.	For	example,	range(1,5)	generates	1,2,3,4.	Also,	you	can
specify	a	start	value,	end	value,	and	a	step	value	to	the	range()	function	as	a	comma-
separated	list	within	its	parentheses.	For	example,	range(1,14,4)	generates	1,5,9,13.

You	can	specify	the	list’s	name	within	the	parentheses	of	Python’s	enumerate()	function	to
display	each	element’s	index	number	and	its	associated	value.

The	range()	function	can	generate	a	sequence	that	decreases,	counting	down,	as
well	as	those	that	count	upward.

When	looping	through	multiple	lists	simultaneously,	the	element	values	of	the	same	index
number	in	each	list	can	be	displayed	together	by	specifying	the	list	names	as	a	comma-
separated	list	within	the	parentheses	of	Python’s	zip()	function.

When	looping	through	a	dictionary,	you	can	display	each	key	and	its	associated	value
using	the	dictionary	items()	method	and	specifying	two	comma-separated	variable	names	to
the	for	keyword	–	one	for	the	key	name	and	the	other	for	its	value.

for.py

Start	a	new	program	by	initializing	a	regular	list,	a	fixed	tuple	list,	and	an
associative	dictionary	list
chars	=	[‘A’	,	‘B’,	‘C’]

fruit	=	(‘Apple’	,	‘Banana’	,	‘Cherry’)
info	=	{	‘name’	:	’Mike’	,	‘ref’	:	’Python’	,	‘sys’	:	’Win’	}

Next,	add	statements	to	display	all	list	element	values

print(‘Elements:	\t’	,	end	=	‘	‘)

for	item	in	chars	:
print(item	,	end	=	‘	‘)

Now,	add	statements	to	display	all	list	element	values	and	their	relative	index
number
print(‘\nEnumerated:\t’	,	end	=	‘	‘)

for	item	in	enumerate(chars)	:
print(item	,	end	=	‘	‘)

Then,	add	statements	to	display	all	list	and	tuple	elements

print(‘\nZipped:	\t’	,	end	=	‘	‘)

for	item	in	zip(chars	,	fruit)	:
print(item	,	end	=	‘	‘)

Finally,	add	statements	to	display	all	dictionary	key	names	and	associated	element
values
print(‘\nPaired:’)

for	key	,	value	in	info.items()	:
print(key	,	‘=’	,	value)

Save	then	run	the	program	–	to	see	the	items	displayed	by	the	loop	iterations

In	programming	terms,	anything	that	contains	multiple	items	that	can	be	looped
over	is	described	as	“iterable”.

Looping	conditions
A	loop	is	a	piece	of	code	in	a	program	that	automatically	repeats.	One	complete	execution
of	all	statements	within	a	loop	is	called	an	“iteration”	or	a	“pass”.	The	length	of	the	loop	is
controlled	by	a	conditional	test	made	within	the	loop.	While	the	tested	expression	is	found
to	be	True,	the	loop	will	continue	–	until	the	tested	expression	is	found	to	be	False,	at	which
point	the	loop	ends.

In	Python	programming,	the	while	keyword	creates	a	loop.	It	is	followed	by	the	test
expression	then	a	:	colon	character.	Statements	to	execute	when	the	test	succeeds	follow
below	on	separate	lines,	each	line	indented	from	the	while	test	line.	Importantly,	the	loop
statement	block	must	include	a	statement	that	will	change	the	result	of	the	test	expression
evaluation	–	otherwise	an	infinite	loop	is	created.

Unlike	other	Python	keywords,	the	keywords	True	and	False	begin	with
uppercase	letters.

Indentation	of	code	blocks	must	also	be	observed	in	Python’s	interactive	mode	–	like	this
example	that	produces	a	Fibonacci	sequence	of	numbers	from	a	while	loop:

Loops	can	be	nested,	one	within	another,	to	allow	complete	execution	of	all	iterations	of
an	inner	nested	loop	on	each	iteration	of	the	outer	loop.	A	“counter”	variable	can	be
initialized	with	a	starting	value	immediately	before	each	loop	definition,	included	in	the
test	expression,	and	incremented	on	each	iteration	until	the	test	fails	–	at	which	point	the
loop	ends.

The	interactive	Python	interpreter	automatically	indents	and	waits	when	it	expects
further	code	statements	from	you.

while.py

Start	a	new	program	by	initializing	a	“counter”	variable	and	define	an	outer	loop
using	the	counter	variable	in	its	test	expression
i	=	1

while	i	<	4	:

Next,	add	indented	statements	to	display	the	counter’s	value	and	increment	its
value	on	each	iteration	of	the	loop

print(‘Outer	Loop	Iteration:’	,	i)
i	+=	1

Now,	(still	indented)	initialize	a	second	“counter”	variable	and	define	an	inner	loop
using	this	variable	in	its	test	expression

j	=	1

while	j	<	4	:

Finally,	add	further-indented	statements	to	display	this	counter’s	value	and
increment	its	value	on	each	iteration

print(‘\tInner	Loop	Iteration:‘	,	j)
j	+=	1

Save	then	run	this	program	–	to	see	the	output	displayed	on	each	loop	iteration

The	output	printed	from	the	inner	loop	is	indented	from	that	of	the	outer	loop	by
the	\t	tab	character.

The	+=	assignment	statement	i	+=	1	is	simply	a	shorthand	way	to	say	i	=	i+1	–
you	can	also	use	*=	/=	-=	shorthand	to	assign	values	to	variables.

Skipping	loops
The	Python	break	keyword	can	be	used	to	prematurely	terminate	a	loop	when	a	specified
condition	is	met.	The	break	statement	is	situated	inside	the	loop	statement	block	and	is
preceded	by	a	test	expression.	When	the	test	returns	True,	the	loop	ends	immediately	and
the	program	proceeds	on	to	the	next	task.	For	example,	in	a	nested	inner	loop	it	proceeds
to	the	next	iteration	of	the	outer	loop.

nest.py

Start	a	new	program	with	a	statement	creating	a	loop	that	iterates	three	times

for	i	in	range(1,	4)	:

Next,	add	an	indented	statement	creating	a	“nested”	inner	loop	that	also	iterates
three	times

for	j	in	range(1,	4)	:

Now,	add	a	further-indented	statement	in	the	inner	loop	to	display	the	counter
numbers	(of	both	the	outer	loop	and	the	inner	loop)	on	each	iteration	of	the	inner
loop

print(‘Running	i=’	+	i	+	‘	j=’	+	j)

Save	then	run	this	program	–	to	see	the	counter	values	on	each	loop	iteration

Compare	these	nested	for	loops	with	the	nested	while	loops	example	here.

break.py

Insert	a	break	statement	at	the	start	of	the	inner	loop	to	break	from	that	loop	–	then
run	the	program	again

if	i	==	2	and	j	==	1	:

print(‘Breaks	inner	loop	at	i=2	j=1’)
break

The	Python	continue	keyword	can	be	used	to	skip	a	single	iteration	of	a	loop	when	a
specified	condition	is	met.	The	continue	statement	is	situated	inside	the	loop	statement
block	and	is	preceded	by	a	test	expression.	When	the	test	returns	True,	that	one	iteration
ends	and	the	program	proceeds	to	the	next	iteration.

Now,	insert	a	continue	statement	at	the	start	of	the	inner	loop	block	to	skip	the	first
iteration	of	that	loop	–	then	run	the	program	once	more

if	i	==	1	and	j	==	1	:

print(‘Continues	inner	loop	at	i=1	j=1’)
continue

The	break	statement	halts	all	three	iterations	of	the	inner	loop	when	the	outer
loop	runs	it	for	the	second	time.

continue.py

The	continue	statement	skips	the	first	iteration	of	the	inner	loop	when	the	outer
loop	first	runs	it.

Catching	errors
Sections	of	a	program	in	which	it	is	possible	to	anticipate	errors,	such	as	those	handling
user	input,	can	typically	be	enclosed	in	a	try	except	block	to	handle	“exception	errors”.	The
statements	to	be	executed	are	grouped	in	a	try	:	block	and	exceptions	are	passed	to	the
ensuing	except	:	block	for	handling.	Optionally,	this	may	be	followed	by	a	finally	:	block
containing	statements	to	be	executed	after	exceptions	have	been	handled.

Python	recognizes	many	built-in	exceptions	such	as	the	NameError	which	occurs	when	a
variable	name	is	not	found,	the	IndexError	which	occurs	when	trying	to	address	a	non-
existent	list	index,	and	the	ValueError	which	occurs	when	a	built-in	operation	or	function
receives	an	inappropriate	value.

Each	exception	returns	a	descriptive	message	that	can	usefully	be	assigned	to	a	variable
with	the	as	keyword.	This	can	then	be	used	to	display	the	nature	of	the	exception	when	it
occurs.

try.py

Start	a	new	program	by	initializing	a	variable	with	a	string	value

title	=	‘Coding	for	Beginners	In	Easy	Steps’

Next,	add	a	try	statement	block	that	attempts	to	display	the	variable	value	–	but
specifies	the	name	incorrectly
try	:

print(titel)

Now,	add	an	except	statement	block	to	display	an	error	message	when	a	NameError

occurs
except	NameError	as	msg	:

print(msg)

Save	then	run	the	program	–	to	see	how	the	error	gets	handled

In	some	programming	languages	this	structure	is	known	as	try-catch	exception
handling.

Multiple	exceptions	can	be	handled	by	specifiying	their	type	as	a	comma-separated	list	in
parentheses	within	the	except	block:
except	(NameError	,	IndexError)	as	msg	:

print(msg)

You	can	also	compel	the	interpreter	to	report	an	exception	by	using	the	raise	keyword	to
specify	the	type	of	exception	to	be	recognized	and	a	custom	descriptive	message	in
parentheses.

raise.py

Start	a	new	Python	script	by	initializing	a	variable	with	an	integer	value

day	=	32

Next,	add	a	try	statement	block	that	tests	the	variable	value	then	specifies	an
exception	and	custom	message
try	:

if	day	>	31	:

raise	ValueError(‘Invalid	Day	Number’)
#	More	statements	to	execute	get	added	here.

Now,	add	an	except	statement	block	to	display	an	error	message	when	a	ValueError
occurs
except	ValueError	as	msg	:

print(‘The	Program	found	An’	,	msg)

Then,	add	a	finally	statement	block	to	display	a	message	after	the	exception	has
been	handled	succesfully
finally	:

print(‘But	Today	Is	Beautiful	Anyway.’)

Save	then	run	the	program	–	to	see	the	raised	error	get	handled

Statements	in	the	try	block	are	all	executed	unless	or	until	an	exception	occurs.

Summary
• The	if	keyword	performs	a	conditional	test	on	an	expression	for	a	Boolean	value	of	True

or	False

• Conditional	branching	provides	alternatives	to	an	if	test	with	the	else	and	elif	keywords

• Python	tested	expressions	must	be	followed	by	a	:	colon	character	and	statement	blocks
be	indented	from	the	test	line

• A	for	in	loop	iterates	over	each	item	in	a	specified	list	or	string

• Python	for	in	loop	statements	must	be	followed	by	a	:	colon	character	and	statement
blocks	be	indented	from	the	statement

• The	range()	function	generates	a	numerical	sequence	that	can	be	used	to	specify	the
length	of	a	for	in	loop

• The	enumerate()	function	can	specify	the	name	of	a	list	to	display	each	element	index
number	and	its	stored	value

• The	zip()	function	can	display	the	stored	values	of	the	same	index	number	in	multiple
lists

• A	while	loop	repeats	while	an	initial	test	expression	remains	True	and	ends	when	that
test	expression	becomes	False

• Python	while	loop	statements	must	be	followed	by	a	:	colon	character	and	statement
blocks	be	indented	from	the	statement

• The	value	of	a	counter	variable	can	be	tested	in	a	test	expression	to	control	the	number
of	loop	iterations

• The	break	keyword	can	be	used	to	test	an	expression	for	a	True	value	and	immediately
exit	a	loop	when	the	test	returns	False

• The	continue	keyword	can	be	used	to	test	an	expression	for	a	True	value	and	exit	a
single	iteration	when	the	test	returns	False

• Anticipated	runtime	exception	errors	can	be	handled	by	enclosing	statements	in	a	try
except	block

• Optionally,	a	finally	statement	can	be	used	to	specify	statements	to	be	executed	after
exceptions	have	been	handled

• Python	try,	except,	and	finally	statements	must	be	followed	by	a	:	colon	and	statement
blocks	be	indented	from	the	statement

6
Creating	functions

This	chapter	demonstrates	how	to	code	re-usable	blocks	of	code	in	your	programs.

Defining	blocks
Adding	parameters
Returning	results
Storing	functions
Importing	functions
Summary

Defining	blocks
Previous	examples	in	this	book	have	used	built-in	functions	of	the	Python	programming
language,	such	as	the	print()	function.	However,	most	programs	have	a	number	of	coder-
defined	custom	functions	that	can	be	called	as	required	when	the	program	runs.

A	custom	Python	function	is	created	using	the	def	(definition)	keyword	followed	by	a
name	of	your	choice	and	()	parentheses.	The	coder	can	choose	any	name	for	a	function
except	the	keywords	of	the	programming	language	and	the	name	of	an	existing	built-in
function.	This	line	must	end	with	a	:	colon	character,	then	the	statements	to	be	executed
whenever	the	function	gets	called	must	appear	on	lines	below	and	indented.	Syntax	of	a
function	definition,	therefore,	looks	like	this:
def	function-name	()	:

statements-to-be-executed
statements-to-be-executed

Function	statements	must	be	indented	from	the	definition	line	by	the	same	amount
so	the	Python	interpreter	can	recognize	the	block.

Once	the	function	statements	have	been	executed,	program	flow	resumes	at	the	point
directly	following	the	function	call.	This	modularity	is	very	useful	in	programming	to
isolate	set	routines	so	they	can	be	called	upon	repeatedly.

To	create	custom	functions	it	is	necessary	to	understand	the	accessibility	(“scope”)	of
variables	in	a	program:

• Variables	created	outside	functions	can	be	referenced	by	statements	inside	functions	–
they	have	“global”	scope

• Variables	created	inside	functions	cannot	be	referenced	from	outside	the	function	in
which	they	have	been	created	–	these	have	“local”	scope

The	limited	accessibility	of	local	variables	means	that	variables	of	the	same	name	can
appear	in	different	functions	without	conflict.

Avoid	using	global	variables	in	order	to	prevent	accidental	conflict	–	use	only	local
variables	where	possible.

If	you	want	to	coerce	a	local	variable	to	make	it	accessible	elsewhere	it	must	first	be

declared	with	the	Python	global	keyword	followed	by	its	name	only.	It	may	subsequently
be	assigned	a	value	that	can	be	referenced	from	anywhere	in	the	program.	Where	a	global
variable	and	a	local	variable	have	the	same	name,	the	function	will	use	the	local	version.

def.py

Start	a	new	program	by	initalizing	a	global	variable

global_var	=	1

Next,	create	a	function	named	“my_vars”	to	display	the	value	contained	within	the
global	variable
def	my_vars()	:

print(‘Global	variable:’	,	global_var)

Now,	add	indented	statements	to	the	function	block	to	initialize	a	local	variable	and
display	the	value	it	contains

local_var	=	2
print(‘Local	variable:’	,	local_var)

Then,	add	indented	statements	to	the	function	block	to	create	a	coerced	global
variable	and	assign	an	initial	value

global	inner_var

inner_var	=	3

Add	a	statement	after	the	function	to	call	upon	that	function	to	execute	the
statements	it	contains
my_vars()

Finally,	add	a	statement	to	display	the	value	contained	in	the	coerced	global
variable
print(‘Coerced	Global:’	,	inner_var)

Save	then	run	the	program	–	to	see	the	custom	function	display	the	variable	values

Variables	that	are	not	global	but	appear	in	some	outer	scope	can	be	addressed
using	the	nonlocal	keyword.

Adding	parameters
When	defining	a	custom	function	in	a	program	you	may	optionally	specify	a	“parameter”
name	between	the	function’s	parentheses.	An	“argument”	value	can	then	be	passed	to	that
parameter	by	specifying	the	value	in	the	parentheses	of	the	call	to	the	function.	The
function	can	now	use	that	passed	in	value	during	its	execution	by	referencing	it	via	the
parameter	name.	For	example,	defining	a	function	to	accept	a	parameter	to	print	out:
def	echo(user)	:

print(‘User:’	,	user)

Parameters	are	special	variables	for	internal	use	only	within	a	function	–	they
must	adhere	to	the	same	naming	rules	as	regular	variables.

A	call	to	this	function	must	specify	an	argument	value	to	be	passed	to	the	parameter	in	its
parentheses	so	it	can	be	printed	out:
echo(‘Mike’)

Multiple	parameters	can	be	specified	in	the	function	definition	by	including	a	comma-
separated	list	of	parameter	names	within	the	function	parentheses:
def	echo(user	,	lang	,	sys)	:

print(User:’	,	user	,	‘Language:’	,	lang	,	‘Platform:’	,	sys)

When	calling	a	function	whose	definition	specifies	parameters,	the	call	must	include	the
same	number	of	arguments	as	parameters.	For	example,	to	call	this	example	with	multiple
parameters:
echo(‘Mike’	,	‘Python’	,	‘Windows’)

The	passed	values	must	appear	in	the	same	order	as	the	parameter	list	unless	the	caller
also	specifies	the	parameter	names	like	this:
echo(lang	=	‘Python’	,	user	=	‘Mike’	,	sys	=	‘Windows’)

Optionally,	a	default	value	may	be	specified	in	the	parameter	list	when	defining	a
function.	This	will	be	overridden	when	the	caller	specifies	a	value	for	that	parameter	but
will	be	used	by	the	function	when	no	argument	value	gets	passed	by	the	caller:
def	echo(user	,	lang	,	sys	=	‘Linux’)	:

print(User:’	,	user	,	‘Language:’	,	lang	,	‘Platform:’	,	sys)

This	means	you	may	call	the	function	passing	fewer	values	than	the	number	of	parameters
specified	in	the	function	definition,	to	use	the	default	parameter	value,	or	pass	the	same
number	of	values	as	specified	parameters	to	override	the	default	value.

Name	parameters	the	same	as	variables	passed	to	them	to	make	the	data
movement	obvious.

param.py

Start	a	new	program	by	defining	a	function	with	three	parameters	that	will	print
out	passed-in	argument	values
def	echo(user	,	lang	,	sys)	:

print(‘User:’,	user,	‘Language:’,	lang,	‘Platform:’,	sys)

Next,	call	the	function	passing	string	argument	values	to	the	function	parameters	in
the	order	they	appear
echo(‘Mike’	,	‘Python’	,	‘Windows’)

Now,	call	the	function	passing	string	arguments	to	the	function	parameters	by
specifying	the	parameter	names
echo(lang	=	‘Python’	,	sys	=	‘Mac	OS’	,	user	=	‘Anne’)

Then,	define	another	function	with	two	parameters	having	default	values	that	will
print	out	parameter	values
def	mirror(user	=	‘Carole’	,	lang	=	‘Python’)	:

print(‘\nUser:’	,	user	,	‘Language:’	,	lang)

Finally,	add	statements	to	call	the	second	function	both	using	and	overriding
default	values
mirror()

mirror(lang	=	‘Java’)
mirror(user	=	‘Tony’)

mirror(‘Susan’	,	‘C++’)

Save	then	run	the	program	–	to	see	the	function	display	the	argument	values	or
default	parameter	values

Arguments	are	the	actual	data	values	passed	to	function	parameters	by	the
function	call.

Returning	results
Like	Python’s	built-in	str()	function,	which	returns	a	string	representation	of	the	value
specified	as	its	argument	by	the	caller,	your	custom	functions	can	also	return	a	value	to
their	caller	by	using	the	return	keyword	to	specify	a	value	to	be	returned.	For	example,	to
return	to	the	caller	the	total	of	adding	two	specified	parameter	values	like	this:
def	sum(a	,	b)	:

return	a	+	b

The	returned	result	may	be	assigned	to	a	variable	by	the	caller	for	subsequent	use	by	the
program	like	this:
total	=	sum(8	,	4)
print(‘Eight	Plus	Four	Is:’	,	total)

Or	the	returned	result	may	be	used	directly	“in-line”	like	this:
print(‘Eight	Plus	Four	Is:’	,	sum(8	,	4))

Typically,	a	return	statement	will	appear	at	the	very	end	of	a	function	block	to	return	the
final	result	of	executing	all	statements	contained	in	that	function.

A	return	statement	may,	however,	appear	earlier	in	the	function	block	to	halt	execution	of
all	subsequent	statements	in	that	block.	This	immediately	resumes	execution	of	the
program	at	the	caller.	Optionally,	the	return	statement	may	specify	a	value	to	be	returned	to
the	caller	or	the	value	may	be	omitted.	Where	no	value	is	specified,	a	default	value	of	None
is	assumed.	Typically,	this	is	used	to	halt	execution	of	the	function	statements	after	a
conditional	test	is	found	to	be	False.	For	example,	where	a	passed	argument	value	is	below
a	specified	number:
def	sum(a	,	b)	:

if	a	<	5	:
return

return	a	+	b

You	can	specify	a	default	value	for	a	parameter	in	the	function	definition.

In	this	case,	the	function	will	return	the	default	value	None	when	the	first	passed	argument
value	is	below	five	and	the	final	statement	will	not	be	executed.

Where	the	function	is	to	perform	arithmetic,	user	input	can	be	validated	for	integer	values
with	the	built-in	isdigit()	function.

return.py

Start	a	new	program	by	initializing	a	variable	with	user	input	of	an	integer	value
for	manipulation
num	=	input(‘Enter	An	Integer:’)

Next,	add	a	function	definition	that	accepts	a	single	argument	value	to	be	passed
from	the	caller
def	square(num)	:

Now,	insert	into	the	function	block	an	indented	statement	to	validate	the	passed
argument	value	as	an	integer	or	halt	further	execution	of	the	function’s	statements

if	not	num.isdigit()	:

return	‘Invalid	Entry’

Then,	add	indented	statements	to	cast	the	passed	argument	value	as	an	int	data	type
then	return	the	sum	of	squaring	that	value	to	the	caller

num	=	int(num)
return	num	*	num

Finally,	add	a	statement	to	output	a	string	and	the	returned	value	from	the	function
call
print(num	,	‘Squared	Is:’	,	square(num))

Save	then	run	the	program	–	to	see	the	function	display	the	returned	values

Remember	that	user	input	is	read	as	a	str	data	type	–	so	must	be	cast	into	an	int

or	float	data	type	for	arithmetic.

Storing	functions
Function	definitions	can	usefully	be	stored	in	one	or	more	separate	files	for	easier
maintenance	and	to	allow	them	to	be	used	in	several	programs	without	copying	the
definitions	into	each	one.	Each	Python	file	storing	function	definitions	is	called	a
“module”	and	the	module	name	is	the	file	name	without	the	“.py”	extension.

Functions	stored	in	the	module	are	made	available	to	a	program	using	the	Python	import
keyword	followed	by	the	module	name.	Although	not	essential,	it	is	customary	to	put	any
import	statements	at	the	beginning	of	the	program.

Imported	functions	can	be	called	using	their	name	dot	suffixed	after	the	module	name.	For
example,	a	“steps”	function	from	an	imported	module	named	“ineasy”	can	be	called	with
ineasy.steps().

Where	functions	stored	in	a	module	include	parameters,	it	is	often	useful	to	assign	a
default	value	to	the	parameter	in	the	definition.	This	makes	the	function	more	versatile	as
it	becomes	optional	for	the	call	to	specify	a	parameter	value.

cat.py

Start	a	new	module	by	defining	a	function	that	supplies	a	default	string	value	to	its
parameter	for	display
def	purr(pet	=	‘A	Cat’)	:

print(pet	,	‘Says	MEOW!’)

Next,	add	two	more	function	definitions	that	also	supply	default	string	values	to
their	parameters	for	display
def	lick(pet	=	‘A	Cat’)	:

print(pet	,	‘Drinks	Milk’)

def	nap(pet	=	‘A	Cat’)	:
print(pet	,	‘Sleeps	By	The	Fire’)

Now,	save	the	file	as	“cat.py”	so	the	module	is	named	“cat”

Start	a	new	program	with	a	statement	to	make	the	“cat”	module	functions	available

import	cat

kitty.py

Next,	call	each	function	without	supplying	an	argument

cat.purr()

cat.lick()
cat.nap()

Now,	call	each	function	again	and	pass	an	argument	to	each	then	save	the	file

cat.purr(‘Kitty’)

cat.lick(‘Kitty’)
cat.nap(‘Kitty’)

Start	another	program	by	making	the	“cat”	module	functions	available	once	more

import	cat

Then	request	the	user	enters	a	name	to	overwrite	the	default	parameter	value

pet	=	input(‘Enter	A	Pet	Name:	‘)

Finally,	call	each	function	passing	the	user-defined	value	as	the	argument

cat.purr(pet)

cat.lick(pet)
cat.nap(pet)

Save	then	run	these	programs	–	to	see	output	from	the	imported	module	in	each
program

tiger.py

You	can	create	an	alias	when	importing	a	module	using	import	as	keywords.	For
example,	import	cat	as	tom	allows	you	to	use	tom	as	the	function	prefix	in	calls.

Importing	functions
Internally,	each	Python	module	and	program	has	its	own	“symbol	table”	which	is	used	by
all	functions	defined	in	that	context	only.	This	avoids	possible	conflicts	with	functions	of
the	same	name	in	another	module	if	both	modules	were	imported	into	one	program.

When	you	import	a	module	with	an	import	statement,	that	module’s	symbol	table	does	not
get	added	to	the	program’s	symbol	table	–	only	the	module’s	name	gets	added.	That	is	why
you	need	to	call	the	module’s	functions	using	their	module	name	prefix.	Importing	a
“steps”	function	from	a	module	named	“ineasy”	and	another	“steps”	function	from	a
module	named	“dance”	means	they	can	be	called	without	conflict	as	ineasy.steps()	and
dance.steps().

Where	you	import	individual	function	names,	the	module	name	does	not	get
imported	–	so	it	cannot	be	used	as	a	prefix.

Generally,	it	is	preferable	to	avoid	conflicts	by	importing	the	module	name	and	calling	its
functions	with	the	module	name	prefix,	but	you	can	import	individual	function	names
instead	with	a	from	import	statement.	The	module	name	is	specified	after	the	from	keyword,
and	functions	to	import	are	specified	as	a	comma-separated	list	after	the	import	keyword.
Alternatively,	the	*	wildcard	character	can	be	specified	after	import	to	import	all	function
names	into	the	program’s	own	symbol	table.	This	means	the	functions	can	be	called
without	a	module	name	prefix.

dog.py

Start	a	new	module	by	defining	a	function	that	supplies	a	default	string	value	to	its
parameter
def	bark(pet	=	‘A	Dog’)	:

print(pet	,	‘Says	WOOF!’)

Next,	add	two	more	function	definitions	that	also	supply	default	string	values	to
their	parameters
def	lick(pet	=	‘A	Dog’)	:

print(pet	,	‘Drinks	water’)

def	nap(pet	=	‘A	Dog’)	:
print(pet	,	‘	Sleeps	In	The	Sun’)

Save	the	file	as	“dog.py”	so	the	module	is	named	“dog”

pooch.py

Start	a	new	program	with	a	statement	to	make	individual	“dog”	module	functions
available
from	dog	import	bark	,	lick	,	nap

Next,	call	each	function	without	supplying	an	argument

bark()

lick()
nap()

Now,	call	each	function	again	and	pass	an	argument	value	to	each	then	save	the	file

bark(‘Pooch’)

lick(‘Pooch’)
nap(‘Pooch’)

Start	another	program	by	making	all	“dog”	module	functions	available

from	dog	import	*

Request	a	user	entry	to	overwrite	the	default	parameter

pet	=	input(‘Enter	A	Pet	Name:	‘)

Finally,	call	each	function	passing	the	user-defined	value	as	the	argument

bark(pet)

lick(pet)
nap(pet)

Save	then	run	these	programs	–	to	see	output	from	the	imported	functions

fido.py

For	larger	programs	you	can	import	modules	into	other	modules	to	build	a	module
hierarchy.

Summary
• Functions	are	defined	using	the	def	keyword	followed	by	a	name	of	your	choice	and	()

parentheses

• A	function	definition	line	must	end	with	a	:	colon	character	and	its	block	of	statements
to	execute	when	the	function	gets	called	must	be	indented	below	that	line

• Variables	with	global	scope	can	be	referenced	from	anywhere	within	that	program

• Variables	with	local	scope	can	only	be	referenced	from	within	the	function	in	which
they	are	declared

• A	local	variable	can	be	coerced	to	make	it	globally	accessible	by	first	declaring	it	using
the	global	keyword

• Function	parameters	are	special	variables	for	use	only	within	a	function,	and	arguments
are	data	values	passed	to	parameters

• Parameters	are	declared	as	a	comma-separated	list	within	the	parentheses	of	a	function
definition

• Function	calls	must	supply	argument	data	for	each	function	parameter	unless	a	default
value	is	specified	in	their	declaration

• Data	passed	to	parameters	in	a	function	call	must	appear	in	the	same	order	as	the
parameters	unless	their	names	are	specified

• Optionally,	the	return	keyword	can	be	used	within	a	function	to	return	a	value	to	the
caller

• Functions	can	be	stored	in	modules	that	are	named	as	the	file	name	without	the	“.py”
file	extension

• An	import	statement	makes	module	functions	available	in	a	program	by	dot-suffixing
their	name	after	the	module	name

• Internally,	each	Python	module	has	its	own	symbol	table	so	like-named	functions	in
different	modules	do	not	conflict

• A	from	import	statement	makes	module	functions	available	in	a	program	without	the
need	to	dot-suffix	their	name

• An	import	*	statement	can	be	used	to	import	a	module’s	functions	into	the	program’s
own	symbol	table

7
Sorting	algorithms

This	chapter	demonstrates	how	to	code	a	variety	of	sorting	algorithm	instruction
sequences.

Copying	sorts
Selecting	sorts
Inserting	sorts
Bubbling	sorts
Merging	sorts
Partitioning	sorts
Summary

Copying	sorts
An	“algorithm”	is	a	well-defined	sequence	of	instructions	to	perform	a	specific	task.	Each
algorithm	takes	one	or	more	values	as	input	and	produces	one	or	more	resulting	values	as
output.

An	algorithm	may	be	created	in	code	as	a	function	whose	statements	define	a	sequence	of
instructions	to	perform	the	task.	Input	values	can	be	passed	as	arguments	in	the	function
call	and	resulting	values	can	be	returned	as	output	from	the	function.	Algorithms	can	be
coded,	using	data	structures	and	control	structures	in	a	variety	of	ways,	to	perform	tasks
such	as	sorting	lists	into	order.

Python	provides	the	sort()	method	for	lists	(described	here)	but	examples	in	this
chapter	demonstrate	how	to	code	various	sorting	algorithms	that	are	found	in
many	programming	languages.

Sorting	efficiency	may	depend	upon	the	nature	of	the	list	to	be	sorted	so	different
algorithms	may	be	best-suited	to	particular	tasks.	Where	the	task	requires	a	list	to	be
sorted,	while	the	original	unsorted	list	remains	intact,	an	algorithm	function	can	be	passed
a	reference	to	the	list	in	an	argument	as	input.	The	function	can	then	make	a	copy	of	the
original	list,	sort	elements	of	that	copy	into	order,	then	return	the	sorted	copy	list	as
output.	This	algorithm	simply	copies	element	values	from	the	original	list	into	a	new	list
array	then	arranges	them	in	ascending	value	order.

Array	list	elements	are	numbered	from	zero.	So	here,	element	[0]	contains	5,
element	[1]	contains	3,	and	so	on.

copy.py

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	as	input	and
return	a	sorted	copy	as	output
def	copy_sort(array)	:

copy	=	array[:]
sorted_copy	=	[]

#	Algorithm	sequence	to	be	added	here.
return	sorted_copy

Next,	add	the	indented	algorithm	sequence	to	insert	the	copied	element	values	into
the	empty	list	in	order

while	len(copy)	>	0	:

minimum	=	0
for	element	in	range(0	,	len(copy))	:

if	copy[element]	<	copy[minimum]	:
minimum	=	element

print(‘\tRemoving	value’	,	copy[minimum]	,	\
‘from’	,	copy)

sorted_copy.append(copy.pop(minimum))

Now,	add	statements	to	create	and	display	an	unsorted	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]
print(‘Copy	Sort…\nArray	:’	,	array)

Finally,	add	statements	to	display	the	unsorted	list	and	its	sorted	copy	then	save
and	run	the	program	–	to	see	the	original	list	remains	intact	in	unsorted	order
print(‘Copy	:’	,	copy_sort(array))

print(‘Array	:’	,	array)

Each	value	is	popped	off	the	list	copy	in	sequence	–	to	build	the	sorted	version	by
appending	each	to	the	empty	array.

Selecting	sorts
Often	you	will	want	to	sort	the	elements	of	an	unsorted	list	array	“in	place”	rather	than
sort	a	copy	of	the	original	list,	as	demonstrated	in	the	previous	example.	There	are	several
popular	algorithms	you	can	employ	to	sort	arrays	in	place,	each	using	a	different	technique
with	their	own	strengths	and	weaknesses.

A	“selection	sort”	algorithm	examines	each	element	in	the	unsorted	part	of	an	array	list
and	selects	the	element	containing	the	lowest	value.	It	then	swaps	the	selected	element
value	with	that	contained	in	the	element	at	the	beginning	of	the	unsorted	part	of	the	array
list	–	thereby	increasing	the	size	of	the	sorted	part	of	the	array	and	decreasing	its	unsorted
part.	This	process	is	repeated	until	all	element	values	are	sorted	into	ascending	order.

Selection	sort	is	a	simple	swap-based	algorithm	that	is	relatively	easy	to	understand	and
code	as	a	function	algorithm.	It	is	one	of	the	two	most	efficient	algorithms	for	sorting
small	arrays	of	20	or	so	elements.

In	this	example,	the	final	element	will	already	contain	the	highest	value	when	the
penultimate	element	has	been	sorted.

selection.py

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	as	input	and
begin	a	loop	to	store	each	element’s	value	and	current	index	number
def	selection_sort(array)	:

for	index	in	range(0	,	len(array)	-1)	:

value	=	array[index]
current	=	index

#	Algorithm	sequence	to	be	added	here.

Next,	add	the	algorithm	sequence	to	repeatedly	swap	the	smallest	unsorted	value
with	the	first	unsorted	value

for	element	in	range(index+1	,	len(array))	:
if	array[element]	<	array[current]	:

current	=	element
array[index]	=	array[current]

array[current]=	value
print(‘\tResolving	element[‘	,	index	,	‘]	to	‘	,	array)

Now,	add	statements	to	create	and	display	an	unsorted	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]

print(‘Selection	Sort…\nArray	:’	,	array)

Finally,	add	statements	to	call	the	algorithm	function	and	display	the	list	once	more
–	to	see	the	list	sorted	in	place
selection_sort(array)
print(‘Array	:’	,	array)

Sorting	in	place	swaps	the	element	values	contained	in	the	original	referenced
array	list.

Inserting	sorts
The	technique	of	swapping	elements	with	a	selection	sort	algorithm,	demonstrated	in	the
previous	example,	works	well	but	an	alternative	technique	can	be	employed	to	simply
insert	elements	into	an	array	list	at	the	correct	ascending	order	position.

An	“insertion	sort”	algorithm	examines	the	next	element	in	the	unsorted	part	of	an	array
list	and,	if	required,	inserts	the	element	at	the	correct	ascending	order	position	in	the	array
list.	To	accommodate	the	inserted	element,	all	other	elements	in	the	unsorted	part	of	the
list	shift	to	the	right	–	increasing	the	size	of	the	sorted	part	of	the	array	and	decreasing	its
unsorted	part.	This	process	is	repeated	for	each	element	in	turn	until	all	element	values	are
sorted	into	ascending	order.

Insertion	sort	is	a	simple	algorithm	that	is	relatively	easy	to	understand	and	code	as	a
function	algorithm.	Along	with	the	selection	sort	algorithm	it	is	one	of	the	two	most
efficient	algorithms	for	sorting	small	arrays	of	20	or	so	elements.	Typically,	insertion	sort
will	require	fewer	comparisons	than	a	selection	sort	so	is	often	seen	as	the	best	method	for
sorting	small	arrays.

In	this	example,	two	steps	are	needed	to	get	the	lowest	value	into	the	very	first
element	–	as	3	is	less	than	5,	then	1	is	less	than	3.

insertion.py

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	as	input	and
begin	a	loop	to	store	the	current	element’s	value
def	insertion_sort(array)	:

for	index	in	range(1	,	len(array))	:

value	=	array[index]
#	Algorithm	sequence	to	be	added	here.

print(‘\tResolving	element[‘	,	index	,	‘]	to	‘	,	array)

Next,	add	the	algorithm	sequence	to	repeatedly	insert	the	current	value	if	smaller
than	that	in	the	current	element

while	array[index-1]	>	value	and	index	>=	1	:
array[index]	=	array[index-1]

index	-=1
array[index]	=	value

Now,	add	statements	to	create	and	display	an	unsorted	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]

print(‘Insertion	Sort…\nArray	:’	,	array)

Finally,	add	statements	to	call	the	algorithm	function	and	display	the	list	once	more
–	to	see	the	list	sorted	in	place
insertion_sort(array)
print(‘Array	:’	,	array)

On	some	iterations	this	algorithm	recognizes	that	elements	in	the	“unsorted”	part
are	already	sorted	following	earlier	insertions.

Bubbling	sorts
A	“bubble	sort”	algorithm	is	a	further	simple	alternative	to	the	selection	and	insertion	sort
techniques.	This	algorithm	repeatedly	examines	each	adjacent	pair	of	elements	in	an	array
list	and,	if	required,	swaps	them	around	to	place	a	lower	value	before	a	higher	value	–
until	all	elements	are	sorted	into	ascending	order.

Bubble	sort	is	a	simple	algorithm	that	is	very	easy	to	understand	and	code	as	a	function
algorithm.	Although	the	bubble	sort	technique	is	generally	less	efficient	than	insertion	sort
or	selection	sort,	it	is	one	of	the	quickest	algorithms	for	nearly-sorted	arrays.

In	this	example,	no	swap	is	needed	on	the	first	pass	for	element	[3]	and	[4]	as
their	values	5	and	6	are	in	correct	order.

bubble.py

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	as	input	and
begin	an	outer	loop	to	repeatedly	iterate	through	the	array	list
def	bubble_sort(array)	:

for	index	in	range(len(array))	:
#	Algorithm	sequence	to	be	added	here.

Next,	add	the	algorithm	sequence	to	iterate	through	the	array	list	elements,	up	to

the	penultimate	element,	and	swap	values	if	the	next	is	greater	than	the	current
value

for	element	in	range(len(array	-1)	-	index)	:

if	array[element]	>	array[element+1]	:
array[element]	,	array[element+1]	=	\

array[element+1]	,	array[element]
print(‘\tResolving	element[‘	,	element	,	\

‘]	to	‘	,	array)

Now,	add	statements	to	create	and	display	an	unsorted	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]
print(‘Bubble	Sort…\nArray	:’	,	array)

Finally,	add	statements	to	call	the	algorithm	function	and	display	the	list	once	more
–	to	see	the	list	sorted	in	place
bubble_sort(array)

print(‘Array	:’	,	array)

In	average	simple	cases,	insertion	sort	outperforms	selection	sort,	and	selection
sort	outperforms	bubble	sort.

Merging	sorts
While	the	simple	selection	sort,	insertion	sort,	and	bubble	sort	techniques	work	well	on
small	array	lists,	more	efficient	complex	sorting	algorithms	generally	work	better	on	larger
array	lists.	Typically,	these	complex	sorting	algorithms	employ	a	“divide	and	conquer”
strategy	to	first	repeatedly	divide	the	list	into	sub-sections,	then	re-assemble	those	sub-
sections	in	sorted	order.

A	“merge	sort”	algorithm	is	a	complex	sorting	algorithm	that	first	repeatedly	divides	an
array	into	left	and	right	sub-sections	from	the	array’s	mid-point	until	it	is	empty	or	has	just
one	element.	Once	the	division	is	complete,	all	sub-sections	are	individual	elements.	The
algorithm	then	merges	all	the	individual	elements	into	a	single	sorted	list.

Merge	sort	is	a	complex	algorithm	that	can	be	coded	as	a	function	algorithm,	which	makes
“recursive”	calls	to	repeatedly	divide	an	array.	Merge	sort	is	a	fast	algorithm	that	only
compares	element	values	when	merging	the	elements	back	into	a	sorted	array	list.

In	this	example,	the	array	is	only	small	but	the	merge	sort	algorithm	efficiently
divides	then	re-assembles	large	arrays	in	exactly	the	same	way.

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	and
repeatedly	iterate	through	an	array	list
def	merge_sort(array)	:

if	len(array)	>	1	:
middle	=	int(len(array)	/	2)

left	=	array[0	:	middle]	;	right	=	array[middle	:]
print(‘\tSplit	to’	,	left	,	right)

merge_sort(left)	;	merge_sort(right)

#	Algorithm	sequence	to	be	added	here.

merge.py

Next,	add	the	algorithm	sequence	to	divide	the	array	list	elements	into	sub-sections
then	merge	them	together

i	=	j	=	0
for	element	in	range(len(array))	:

L	=	left[i]	if	i	<	len(left)	else	None
R	=	right[j]	if	j	<	len(right)	else	None

if((L	and	R)	and	(L	<	R))	or	R	is	None	:
array[element]	=	L	;	i	+=	1

elif((L	and	R)	and	(L	>=	R))	or	L	is	None	:
array[element]	=	R	;	j	+=	1

print(‘\t\tMerging’	,	left	,	right)

Now,	add	statements	to	create	and	display	the	array	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]
print(‘Merge	Sort…\nArray	:’	,	array)

merge_sort(array)
print(‘Array	:’	,	array)

The	code	listed	here	uses	a	semi-colon	;	separator	to	write	two	statements	on
some	lines	–	due	only	to	page	limitations.

Partitioning	sorts
The	technique	of	dividing	an	array	list	into	sub-sections	around	the	array’s	mid-point	with
a	merge	sort	algorithm,	demonstrated	in	the	previous	example,	works	well	but	an
alternative	technique	can	be	employed	to	partition	an	array	list	around	a	“pivot”	point.

A	“quick	sort”	algorithm	is	a	complex	sorting	algorithm	that	also	employs	the	“divide	and
conquer”	strategy.	This	first	specifies	a	particular	array	element	whose	value	will	act	as
the	pivot.	The	algorithm	then	repeatedly	divides	the	array	into	two	“partitions”	–	one
partition	containing	values	less	than	the	pivot	and	the	other	partition	containing	values
more	than	the	pivot.	Once	the	partition	operation	is	complete,	the	final	pivot	is	in	its
correct	position	so	the	algorithm	then	merges	the	lesser	partition	with	the	pivot	and	the
greater	partition	into	a	single	sorted	list.

Quick	sort	is	a	complex	algorithm	that	can	be	coded	as	a	function	algorithm,	which	makes
“recursive”	calls	to	repeatedly	divide	an	array.	Quick	sort	is	a	fast	algorithm	that	compares
element	values	when	dividing	the	elements	into	partitions.

In	this	example	the	array	is	only	small	but	the	quick	sort	algorithm	efficiently
partitions	then	re-assembles	large	arrays	in	exactly	the	same	way.

Opinions	vary	as	to	which	element	is	best	to	choose	as	the	pivot	in	the	quick	sort
algorithm.	Some	coders	like	to	choose	a	middle	element,	as	in	the	merge	sort	algorithm	in
the	previous	example.	Others	prefer	to	choose	the	first	or	last	element,	or	an	element	at
some	arbitrary	position	in	between	–	like	the	example	opposite.

Start	a	new	program	by	declaring	a	function	to	receive	a	list	reference	and
repeatedly	iterate	through	an	array	list
def	quick_sort(array)	:

if	len(array)	>	1	:
pivot	=	int(len(array)	-1)

less	=	[]	;	more	=	[]
#	Algorithm	sequence	to	be	added	here.

quick_sort(less)	;	quick_sort(more)

print(‘\tLess:’	,	less	,	‘\tPivot:’	,	array[pivot]	,	\

‘\tMore:’	,	more)
array[:]	=	less	+	[array[pivot]]	+	more
print(‘\t\t…Merged:’	,	array)

quick.py

Next,	add	the	algorithm	sequence	to	divide	the	array	list	elements	into	partitions
then	merge	them	together

for	element	in	range(len(array))	:

value	=	array[element]
if	element	!=	pivot	:

if	value	<	array[pivot]	:
less.append(value)

else	:
more.append(value)

Now,	add	statements	to	create	and	display	the	array	list

array	=	[5	,	3	,	1	,	2	,	6	,	4]

print(‘Quick	Sort…\nArray	:’	,	array)
quick_sort(array)

print(‘Array	:’	,	array)

The	quick	sort	algorithm	uses	less	memory	than	merge	sort	and	is	often
considered	to	be	the	best	sorting	algorithm.

Summary
• An	algorithm	is	a	well-defined	sequence	of	instructions	to	perform	a	specific	task

• Each	algorithm	takes	one	or	more	values	as	input	and	produces	one	or	more	resulting
values	as	output

• An	algorithm	may	be	created	in	code	as	a	function	whose	statements	define	a	sequence
of	instructions	to	perform	a	task

• The	efficiency	of	sorting	algorithms	may	depend	upon	the	nature	of	the	list	to	be	sorted

• A	sorting	algorithm	function	can	make	a	copy	of	a	list	passed	as	input	and	return	a
sorted	copy	of	that	list	as	output

• There	are	several	popular	algorithms	to	sort	array	lists	in	place	but	each	have	their	own
strengths	and	weaknesses

• Selection	Sort	algorithms	repeatedly	select	the	lowest	element	in	the	unsorted	section
of	an	array	list	and	move	it	to	the	end	of	the	sorted	section	of	that	array

• Insertion	Sort	algorithms	repeatedly	take	the	next	element	in	the	unsorted	section	of	an
array	list	and	insert	it	into	the	sorted	section	of	that	array	at	the	correct	position

• Bubble	Sort	algorithms	repeatedly	compare	adjacent	elements	in	an	unsorted	array	list
and	swap	them	into	the	correct	order

• Selection	Sort,	Insertion	Sort,	and	Bubble	Sort	are	simple	comparison	algorithms	but
are	relatively	slow

• Merge	Sort	algorithms	repeatedly	divide	an	unsorted	array	list	into	left	and	right	sub-
sections	from	the	array’s	mid-point	then	merge	the	sub-sections	into	a	single	sorted	list

• Quick	Sort	algorithms	repeatedly	divide	an	unsorted	array	list	into	partitions	containing
values	greater	or	less	than	a	pivot	value	then	merge	the	partitions	into	a	single	sorted
list

• Merge	Sort	and	Quick	Sort	algorithms	are	fast	complex	algorithms	that	each	employ	a
divide-and-conquer	strategy

8
Importing	libraries

This	chapter	demonstrates	how	to	code	pre-defined	library	functionality	into	your
programs.

Inspecting	Python
Doing	mathematics
Calculating	decimals
Telling	time
Running	timers
Summary

Inspecting	Python
Python	includes	“sys”	and	“keyword”	modules	that	are	useful	for	interrogating	the	Python
system	itself.	The	keyword	module	contains	a	list	of	all	Python	keywords	in	its	kwlist
attribute	and	provides	an	iskeyword()	function	if	you	want	to	test	any	word.

You	can	explore	the	many	features	of	the	“sys”	module	and	indeed	any	feature	of	Python
using	the	Interactive	Mode	help	system.	Just	type	help()	at	the	>>>	prompt	to	start	the	Help
system,	then	type	sys	at	the	help>	prompt	that	appears.

Perhaps,	most	usefully,	the	“sys”	module	has	attributes	that	contain	the	Python	version
number,	interpreter	location	on	your	system,	and	a	list	of	all	directories	where	the
interpreter	seeks	module	files

–	so	if	you	save	module	files	in	any	of	these	directories	you	can	be	sure	the	interpreter	will
find	them.

system.py

Start	a	new	program	by	importing	the	“sys”	and	“keyword”	modules	to	make	their
features	available
import	sys	,	keyword	system.py

Next,	add	a	statement	to	display	the	Python	version

print(‘Python	Version:‘	,	sys.version)

Now,	add	a	statement	to	display	the	actual	location	on	your	system	of	the	Python
interpreter
print(‘Python	Interpreter	Location:‘	,	sys.executable)

Then,	add	statements	to	display	a	list	of	all	directories	where	the	Python	interpreter
looks	for	module	files
print(‘Python	Module	Search	Path:	‘)

for	folder	in	sys.path	:
print(folder)

Finally,	add	statements	to	display	a	list	all	the	Python	keywords

print(‘Python	Keywords:	‘)

for	word	in	keyword.kwlist	:
print(word)

Save	and	then	run	the	program	–	to	see	details	of	the	Python	version	on	your	own
system

The	first	item	on	the	Python	search	path	is	your	current	directory	–	so	any	file
within	there	or	within	any	subdirectories	you	make	there	will	be	found	by	the
Python	interpreter.

Spend	a	little	time	with	the	Interactive	Mode	help	utility	to	discover	lots	more	about
Python.

Doing	mathematics
Python	includes	a	“math”	module	that	provides	lots	of	functions	you	can	use	to	perform
mathematical	procedures	once	imported.

The	math.ceil()	and	math.floor()	functions	enable	a	program	to	perform	rounding	of	a	floating
point	value	specified	between	their	parentheses	to	the	closest	integer	–	math.ceil()	rounds
up	and	math.floor()	rounds	down	but	the	value	returned,	although	an	integer,	is	a	float	data
type	rather	than	an	int	data	type.

The	math.pow()	function	requires	two	arguments	to	raise	a	specified	value	by	a	specified
power.	The	math.sqrt()	function,	on	the	other	hand,	simply	requires	a	single	argument	and
returns	the	square	root	of	that	specified	value.	Both	function	results	are	returned	as	a
numeric	value	of	the	float	data	type.

Integers	can	be	cast	from	the	int	data	type	to	the	float	data	type	using	the	float()
function	and	to	the	string	data	type	using	the	str()	function.
Typical	trigonometry	can	be	performed	using	functions	from	the	math	module	too,	such	as
math.sin(),	math.cosin()	and	math.tan().

Additionally,	Python	includes	a	“random”	module	that	can	be	used	to	produce	pseudo
random	numbers	once	imported	into	a	program.

The	random.random()	function	produces	a	single	floating-point	number	between	zero	and
1.0.	Perhaps,	more	interestingly,	the	random.sample()	function	produces	a	list	of	elements
selected	at	random	from	a	sequence.	This	method	requires	two	arguments	to	specify	the
sequence	to	select	from,	and	the	length	of	the	list	to	be	produced.	As	the	range()	function
returns	a	sequence	of	numbers,	this	can	be	used	to	specify	a	sequence	as	the	first	argument
to	the	random.sample()	function	–	so	it	will	randomly	select	numbers	from	that	sequence	to
produce	a	list	in	which	no	numbers	repeat.

maths.py

Start	a	new	program	by	importing	the	“math”	and	“random”	modules	to	make	their
features	available
import	math	,	random

Next,	add	statements	to	display	two	rounded	values

print(‘Rounded	Up	9.5:‘	,	math.ceil(9.5))

print(‘Rounded	Down	9.5:‘	,	math.floor(9.5))

Now,	add	a	statement	to	initialize	a	variable	with	an	integer	value

num	=	4

Add	statements	to	display	the	square	and	square	root	of	the	variable	value

print(num	,	‘Squared:‘	,	math.pow(num	,	2))

print(num	,	‘Square	Root:‘	,	math.sqrt(num))

Then,	add	a	statement	to	produce	a	random	list	of	six	unique	numbers	between	one
and	49
nums	=	random.sample(range(1,	49)	,	6)

Finally,	add	a	statement	to	display	the	random	list

print(‘Your	Lucky	Lotto	Numbers	Are:‘	,	nums)

Save	then	run	the	program	–	to	see	math	results	and	random	samples

All	the	math	functions	here	return	floating-point	numbers	of	the	float	data	type.

The	list	produced	by	random.sample()	does	not	actually	replace	elements	of	the
sequence	but	merely	copies	a	sample,	as	its	name	says.

Calculating	decimals
Python	programs	that	attempt	floating-point	arithmetic	can	produce	unexpected	and
inaccurate	results	because	the	floating-point	numbers	cannot	accurately	represent	all
decimal	numbers.

inaccurate.py

Start	a	new	program	by	initializing	two	variables	with	floating-point	values

item	=	0.70

rate	=	1.05

Next,	initialize	two	more	variables	by	attempting	floating-point	arithmetic	with	the
first	two	variables
tax	=	item	*	rate	total	=	item	+	tax

Now,	add	statements	to	display	variable	values	formatted	to	have	two	decimal
places	so	trailing	zeros	are	shown
print(‘Item:\t’	,	‘%.2f’	%	item)
print(‘Tax:\t’	,	‘%.2f’	%	tax)

print(‘Total:\t’	,	‘%.2f’	%	total)

Save	then	run	the	program	–	to	see	the	output	display	an	inaccurate	addition	total

expanded.py

To	help	understand	this	problem	edit	all	three	print	statements	to	display	the
variable	values	expanded	to	20	decimal	places,	then	run	the	modified	program
print(‘Item:\t’	,	‘%.20f’	%	item)
print(‘Tax:\t’	,	‘%.20f’	%	tax)

print(‘Total:\t’	,	‘%.20f’	%	total)

Here,	the	variable	values	are	formatted	using	a	string	substitution	technique	to
show	two	decimal	places	–	described	in	more	detail	here.

This	problem	is	not	unique	to	Python	–	Java	has	a	BigDecimal	class	that
overcomes	this	problem	in	much	the	same	way	as	the	decimal	module	in	Python.

It	is	now	clear	that	the	tax	value	is	represented	numerically	slightly	below	0.735	so	gets
rounded	down	to	0.73.	Conversely,	the	total	value	is	represented	numerically	slightly
above	1.435	so	gets	rounded	up	to	1.44,	creating	the	apparent	addition	error.

Errors	in	floating-point	arithmetic	can	be	avoided	using	Python’s	“decimal”	module.	This
provides	a	Decimal()	object	with	which	floating-point	numbers	can	be	more	accurately
represented.

decimals.py

Add	a	statement	at	the	beginning	of	the	program	to	import	the	“decimal”	module	to
make	all	features	available
from	decimal	import	*

Next,	edit	the	first	two	variable	assignment	to	objects

item	=	Decimal(0.70)

rate	=	Decimal(1.05)

Save	the	changes	then	run	the	modified	program	to	see	both	tax	and	total
representations	will	now	get	rounded	down	–	so	the	output	will	show	accurate
addition	when	string	formatting	is	changed	back	to	two	decimal	places

Always	use	the	Decimal()	object	to	calculate	monetary	values	or	anywhere	that
accuracy	is	essential.

Telling	time
The	Python	“datetime”	module	can	be	imported	into	a	program	to	make	use	of	times	and
dates.	It	provides	a	datetime	object	with	attributes	of	year,	month,	day,	hour,	minute,	second,
microsecond.

A	datetime	object	has	a	today()	function	that	assigns	the	current	date	and	time	values	to	its
attributes	and	returns	them	in	a	tuple.	It	also	has	a	getattr()	function	that	requires	two
arguments	specifying	the	datetime	object	name	and	attribute	to	retrieve.	Alternatively,	the
attributes	can	be	referenced	using	dot	notation	such	as	datetime.year.

As	the	datetime	object	is	in	a	module	of	the	same	name,	simply	importing	the
module	means	it	would	be	referenced	as	datetime.datetime.	Use	from	datetime
import	*	so	it	can	be	referenced	just	as	datetime	alone.
All	values	in	a	datetime	object	are	stored	as	numeric	values	but	can	be	usefully	transformed
into	text	equivalents	using	its	strftime()	function.	This	requires	a	single	string	argument	that
is	a	“directive”	specifying	which	part	of	the	tuple	to	return	and	in	what	format.	The
possible	directives	are	listed	in	the	table	below:

Directive: Returns:

%A Full	weekday	name	(%a	for	abbreviated	day	name)

%B Full	month	name	(%b	for	abbreviated	month	name)

%c Date	and	time	appropriate	for	locale

%d Day	of	the	month	number	1-31

%f Microsecond	number	0-999999

%H Hour	number	0-23	(24-hour	clock)

%I Hour	number	1-12	(12-hour	clock)

%j Day	of	the	year	number	0-366

%m Month	number	1-12

%M Minute	number	0-59

%p AM	or	PM	equivalent	for	locale

%S Second	number	0-59

%w Week	day	number	0(Sunday)-6

%W Week	of	the	year	number	0-53

%X Time	appropriate	for	locale	(%x	for	appropriate	date)

%Y Year	0001-9999	(%y	for	year	00-99)

%z Timezone	offset	from	UTC	as	+HHMM	or	-HHMM

%Z Timezone	name

As	the	strftime()	function	requires	a	string	argument,	the	directive	must	be
enclosed	between	quote	marks.

time.py

Start	a	new	program	by	importing	the	“datetime”	module	to	make	its	features
available
from	datetime	import	*

Next,	create	a	datetime	object	with	attributes	assigned	current	date	and	time	values
then	display	its	contents
today	=	datetime.today()

print(‘Today	Is:‘	,	today)

Add	a	loop	to	display	each	attribute	value	individually

for	attr	in	\
[‘year’,‘month’,‘day’,‘hour’,‘minute’,’second’,’microsecond’]	:

print(attr	,	‘:\t’	,	getattr(today	,	attr))

Now,	add	a	statement	to	display	time	using	dot	notation

print(‘	Time:‘	,	today.hour	,	‘:’	,	today.minute	,	sep	=	‘‘)

Then,	assign	formatted	day	and	month	names	to	variables

day	=	today.strftime(‘%A’)

month	=	today.strftime(‘%B’)

Finally,	add	a	statement	to	display	the	formatted	date

print(‘Date:‘	,	day	,	month	,	today.day)

Save	then	run	the	program	–	to	see	the	date	and	time	values	get	displayed

Notice	how	the	\	backslash	character	is	used	in	this	loop	to	allow	a	statement	to
continue	on	the	next	line	without	causing	an	error.

You	can	assign	new	values	to	attributes	of	a	datetime	object	using	its	replace()
function,	such	as	today	=	today.replace(year=2015)

Running	timers
Getting	the	current	time	both	before	and	after	an	event	means	that	the	duration	of	the
event	can	be	calculated	by	their	difference.	The	Python	“time”	module	can	be	imported
into	a	program	to	provide	various	time-related	functions.

Current	system	time	is	usually	counted	as	the	number	of	seconds	elapsed	since	the	Epoch
at	00:00:00	GMT	on	January	1,	1970.	The	time	module’s	time()	function	returns	the	current
time	in	seconds	since	the	Epoch	as	a	floating	point	number	when	called.

The	gmtime()	function	converts	elapsed	time	from	the	Epoch	to	a	struct_time
object	at	UTC	with	the	Daylight	Saving	Time	always	set	to	zero,	whereas
localtime()	converts	to	a	struct_time	object	at	your	local	system	time.
The	figure	returned	by	the	time()	function	can	be	converted	into	a	“struct_time”	object
using	gmtime()	or	localtime()	functions.	This	object	has	attributes	of	tm_year,	tm_mon,
tm_mday,	tm_hour,	tm_	min,	tm_sec,	tm_wday,	tm_yday,	tm_yday	and	tm_isdst	that	can	be
referenced	using	dot	notation.	For	example,	struct.tm_wday.

All	values	in	a	struct_time	object	are	stored	as	numeric	values	but	can	be	transformed	into
text	equivalents	using	the	strftime()	function.	This	requires	an	argument	that	is	a	format
“directive”	followed	by	the	name	of	the	struct_time	object.	The	possible	directives	include
those	listed	in	the	table	here	for	the	datetime	object.	For	example,	strftime(‘%A’	,	struct)	for
weekday.

Usefully,	the	time	module	also	provides	a	sleep()	function	that	can	be	used	to	pause
execution	of	a	program.	Its	argument	specifies	the	amount	of	time	in	seconds	by	which	to
delay	execution.

timer.py

Start	a	new	program	by	importing	the	“time”	module	to	make	its	features	available

from	time	import	*

Next,	initialize	a	variable	with	a	floating	point	number	that	is	the	current	elapsed
time	since	the	epoch
start_timer	=	time()

Now,	add	a	statement	to	create	a	struct_time	object	from	the	elapsed	time	value

struct	=	localtime(start_timer)

Then,	announce	that	a	countdown	timer	is	about	to	begin	from	the	current	time
starting	point
print(‘Starting	Countdown	At:’	,	strftime(‘%X’	,	struct))

Add	a	loop	to	initialize	and	print	a	counter	variable	value	then	decrement	the
counter	by	one	and	pause	for	one	second	on	each	iteration
i	=	10

while	i	>	-1	:
print(i)

i	-=	1
sleep(1)

Next,	initialize	a	variable	with	a	floating	point	number	that	is	the	current	elapsed
time	now	since	the	Epoch
end_timer	=	time()

Now,	initialize	a	variable	with	the	rounded	seconds	value	of	the	time	difference
between	the	two	timed	points
difference	=	round(end_timer	-	start_timer)

Finally,	add	a	statement	to	display	the	time	taken	to	execute	the	countdown	loop

print(‘\nRuntime:’	,	difference	,	‘Seconds’)

Save	then	run	the	program	–	to	see	the	loop	pause	on	each	iteration	and	elapsed
time

The	argument	to	the	sleep()	function	may	be	a	floating	point	number	to	indicate	a
more	precise	sleep	pause	time.

Do	not	confuse	the	time.strftime()	function	used	in	this	example	with	the
datetime.strftime()	function	used	in	the	previous	example.

Summary
• The	sys	module	has	attributes	that	contain	the	Python	version	number,	interpreter

location,	and	path	to	search	for	modules

• The	keyword	module	has	a	kwlist	attribute	that	contains	a	list	of	all	current	Python
keywords

• The	math	module	provides	functions	to	perform	mathematical	procedures	such	as
math.ceil()	and	math.floor()

• The	math.pow()	and	math.sqrt()	functions	both	return	their	results	as	a	decimal	value	of
the	float	data	type

• Trigonometry	can	be	performed	using	math	module	functions	such	as	math.sin(),
math.cosin()	and	math.tan()

• The	random	module	provides	a	random()	function	that	produces	pseudo	random	numbers
and	a	sample()	function	that	produces	a	list	of	elements	selected	at	random	from	a
sequence

• Floating-point	float	numbers	cannot	accurately	represent	all	decimal	numbers

• The	decimal	module	provides	a	Decimal()	object	with	which	floating-point	numbers	can
be	accurately	represented	to	calculate	monetary	values

• The	datetime	module	provides	a	datetime	object	with	year,	month,	day,	hour,	minute,
second,	microsecond	attributes	that	can	be	referenced	by	dot-suffixing	or	with	the
getattr()	function

• A	datetime	object	has	a	strftime()	function	that	can	specify	a	directive	to	return	a
formatted	part	of	the	object

• The	time	module	provides	a	time()	function	that	returns	the	current	elapsed	time	in
seconds	since	the	Epoch

• The	gmtime()	and	localtime()	functions	return	a	struct_time	object	with	attributes
containing	date	and	time	components

9
Managing	text

This	chapter	demonstrates	how	to	manipulate	text	strings	in	your	programs	and	how	to	store	text	in	files.

Manipulating	strings
Formatting	strings
Modifying	strings
Accessing	files
Manipulating	content
Updating	content
Summary

Manipulating	strings
String	values	can	be	manipulated	in	a	Python	program	using	the	various	operators	listed	in
the	table	below:

Operator: Description: Example:

+ Concatenate	–	join	strings	together ‘Hello’	+	‘Mike’

* Repeat	–	multiply	the	string ‘Hello’	*	2

[] Slice	–	select	a	character	at	a	specified	index	position ‘Hello’	[0]

[:] Range	Slice	–	select	characters	in	a	specified	index	range ‘Hello’	[0	:	4]

in Membership	Inclusive	–	return	True	if	character	exists	in
the	string ‘H’	in	‘Hello’

not	in Membership	Exclusive	–	return	True	if	character	doesn’t
exist	in	string ‘h’	not	in	‘Hello’

r/R Raw	String	–	suppress	meaning	of	escape	characters print(r’\n’)

‘‘‘	‘‘‘ Docstring	–	describe	a	module,	function,	class,	or	method def	sum(a,b)	:	‘‘‘	Add
Args	‘‘‘

The	membership	operators	perform	a	case-sensitive	match,	so	‘A’	in	‘abc’	will
fail.

The	[]	slice	operator	and	[:]	range	slice	operator	recognize	that	a	string	is	simply	a	list
containing	an	individual	character	within	each	list	element,	which	can	be	referenced	by
their	index	number.

Similarly,	the	in	and	not	in	membership	operators	iterate	through	each	element	seeking	to
match	the	specified	character.

The	raw	string	operator	r	(or	uppercase	R)	must	be	placed	immediately	before	the
opening	quote	mark	to	suppress	escape	characters	in	the	string	and	is	useful	when	the
string	contains	the	backslash	character.

The	Range	Slice	returns	the	string	up	to,	but	not	including,	the	final	specified
index	position.

A	“docstring”	is	a	descriptive	string	literal	that	occurs	as	the	first	statement	in	a	module,	a
function,	a	class,	or	a	method	definition.	This	should	be	enclosed	within	triple	single	quote
marks.	Uniquely,	the	docstring	becomes	the	__doc__	special	attribute	of	that	object,	so	can
be	referenced	using	its	name	and	dot-suffixing.	All	modules	should	normally	have
docstrings,	and	all	functions	and	classes	exported	by	a	module	should	also	have
docstrings.

manipulate.py

Start	a	new	program	by	defining	a	simple	function	that	includes	a	docstring
description
def	display(s)	:

‘‘’Display	an	argument	value.’’’
print(s)

Next,	add	a	statement	to	display	the	function	description

display(display.doc)

Now,	add	a	statement	to	display	a	raw	string	value	that	contains	the	backslash
character
display(r’C:\Program	Files’)

Then,	add	a	statement	to	display	a	concatenation	of	two	string	values	that	include
an	escape	character	and	a	space
display(‘\nHello’	+	‘	Python’)

Next,	add	a	statement	to	display	a	slice	of	a	specified	string	within	a	range	of
element	index	numbers
display(‘Python	In	Easy	Steps\n’	[7	:])

Finally,	display	the	results	of	seeking	characters	within	a	specified	string

display(‘P’	in	‘Python’)

display(‘p’	in	‘Python’)

Save	then	run	the	program	–	to	see	manipulated	strings	get	displayed

Remember	that	strings	must	be	enclosed	within	either	single	quote	marks	or
double	quote	marks.

With	range	slice,	if	the	start	index	number	is	omitted	zero	is	assumed	and	if	the
end	index	number	is	omitted	the	string	length	is	assumed.

Formatting	strings
The	Python	built-in	dir()	function	can	be	useful	to	examine	the	names	of	functions	and
variables	defined	in	a	module	by	specifying	the	module	name	within	its	parentheses.
Interactive	mode	can	easily	be	used	for	this	purpose	by	importing	the	module	name	then
calling	the	dir()	function.	The	example	below	examines	the	“dog”	module	created	here	in
Chapter	Six:

Notice	that	the	__doc__	attribute	introduced	in	the	previous	example	appears
listed	here	by	the	dir()	function.
Those	defined	names	that	begin	and	end	with	a	double	underscore	are	Python	objects,
whereas	the	others	are	programmer-defined.	The	__builtins__	module	can	also	be	examined
using	the	dir()	function,	to	reveal	the	names	of	functions	and	variables	defined	by	default,
such	as	the	print()	function	and	a	str	object.

The	str	object	defines	several	useful	functions	for	string	formatting,	including	an	actual
format()	function	that	performs	replacements.	A	string	to	be	formatted	by	the	format()
function	can	contain	both	text	and	“replacement	fields”	marking	places	where	text	is	to	be
inserted	from	an	ordered	comma-separated	list	of	values.	Each	replacement	field	is
denoted	by	{	}	braces,	which	may	optionally	contain	the	index	number	position	of	the
replacement	in	the	list.

Do	not	confuse	the	str	object	described	here	with	the	str()	function	that	converts
values	to	the	string	data	type.

Strings	may	also	be	formatted	using	the	C-style	%s	substitution	operator	to	mark	places	in
a	string	where	text	is	to	be	inserted	from	a	comma-separated	ordered	list	of	values.

format.py

Start	a	new	program	by	initializing	a	variable	with	a	formatted	string

snack	=	‘{}	and	{}’.format(‘Burger’	,	‘Fries’)

Next,	display	the	variable	value	to	see	the	text	replaced	in	their	listed	order

print(‘\nReplaced:’	,	snack)

Now,	assign	a	differently	formatted	string	to	the	variable

snack	=	‘{1}	and	{0}’.format(‘Burger’	,	‘Fries’)

Then,	display	the	variable	value	again	to	see	the	text	now	replaced	by	their
specified	index	element	value
print(‘Replaced:’	,	snack)

Assign	another	formatted	string	to	the	variable

snack	=	‘%s	and	%s’	%	(‘Milk’	,	‘Cookies’)

Finally,	display	the	variable	value	once	more	to	see	the	text	substituted	in	their
listed	order
print(‘\nSubstituted:’	,	snack)

Save	then	run	the	program	–	to	see	formatted	strings	get	displayed

You	cannot	leave	spaces	around	the	index	number	in	the	replacement	field.

Other	data	types	can	be	substituted	using	%d	for	a	decimal	integer,	%c	for	a
character,	and	%f	for	a	floating-point	number.

Modifying	strings
The	Python	str	object	has	many	useful	functions	that	can	be	dot-suffixed	to	its	name	for
modification	of	the	string	and	to	examine	its	contents.	Most	commonly	used	string
modification	functions	are	listed	in	the	table	below	together	with	a	brief	description:

Method: Description:

capitalize() Change	string’s	first	letter	to	uppercase

title() Change	all	first	letters	to	uppercase

upper()
lower()
swapcase()

Change	the	case	of	all	letters	to	uppercase,	to	lowercase,	or	to	the	inverse	of
the	current	case	respectively

join(seq) Merge	string	into	separator	sequence	seq

lstrip()
rstrip	()
strip()

Remove	leading	whitespace,	trailing	whitespace,	or	both	leading	and	trailing
whitespace	respectively

replace(old,	new) Replace	all	occurrences	of	old	with	new

ljust(w,	c)
rjust(w,	c) Pad	string	to	right	or	left	respectively	to	total	column	width	w	with	character	c

center(w,	c) Pad	string	each	side	to	total	column	width	w	with	character	c	(default	is	space
)

count(sub) Return	the	number	of	occurrences	of	sub

find(sub) Return	the	index	number	of	the	first	occurrence	of	sub	or	return	-1	if	not	found

startswith(sub)
endswith(sub) Return	True	if	sub	is	found	at	start	or	end	respectively	–	otherwise	return	False

isalpha()
isnumeric()
isalnum()

Return	True	if	all	characters	are	letters	only,	are	numbers	only,	are	letters	or
numbers	only	–	otherwise	return	False

islower()
isupper()
istitle()

Return	True	if	string	characters	are	lowercase,	uppercase,	or	all	first	letters	are
uppercase	only	–	otherwise	return	False

isspace() Return	True	if	string	contains	only	whitespace	–	otherwise	return	False

isdigit()
isdecimal() Return	True	if	string	contains	only	digits	or	decimals	–	otherwise	return	False

A	space	character	is	not	alphanumeric	so	isalnum()	returns	False	when
examining	strings	that	contain	spaces.

modify.py

Start	a	new	program	by	initializing	a	variable	with	a	string	of	lowercase	characters
and	spaces
string	=	‘coding	for	beginners	in	easy	steps’

Next,	display	the	string	capitalized,	titled,	and	centered

print(‘\nCapitalized:\t’	,	string.capitalize())

print(‘\nTitled:\t\t’	,	string.title())
print(‘\nCentered:\t’	,	string.center(30	,	‘*’))

Now,	display	the	string	in	all	uppercase	and	merged	with	a	sequence	of	two
asterisks
print(‘\nUppercase:\t’	,	string.upper())

print(‘\nJoined:\t\t’	,	string.join(‘**’))

Then,	display	the	string	padded	with	asterisks	on	the	left

print(‘\nJustified:\t\t’	,string.rjust(30	,	‘*’))

Finally,	display	the	string	with	all	occurrences	of	the	‘s’

character	replaced	by	asterisks
print(‘\nReplaced:\t’	,	string.replace(‘s’	,	‘*’))

Save	then	run	the	program	–	to	see	modified	strings	get	displayed

With	the	rjust()	function	a	RIGHT-justified	string	gets	padding	added	to	its	LEFT,
and	with	the	ljust()	function	a	LEFT-justified	string	gets	padding	added	to	its
RIGHT.

Accessing	files
The	__builtins__	module	can	be	examined	using	the	dir()	function	to	reveal	that	it	contains	a
file	object	that	defines	several	methods	for	working	with	files,	including	open(),	read(),
write(),	and	close().

Before	a	file	can	be	read	or	written	it	firstly	must	always	be	opened	using	the	open()
function.	This	requires	two	string	arguments	to	specify	the	name	and	location	of	the	file,
and	one	of	the	following	“mode”	specifiers	in	which	to	open	the	file:

File	mode: Operation:

r Open	an	existing	file	to	read

w Open	an	existing	file	to	write.	Creates	a	new	file	if	none	exists	or	opens	an
existing	file	and	discards	all	its	previous	contents

a Append	text.	Opens	or	creates	a	text	file	for	writing	at	the	end	of	the	file

r+ Open	a	text	file	to	read	from	or	write	to

w+ Open	a	text	file	to	write	to	or	read	from

a+ Open	or	creates	a	text	file	to	read	from	or	write	to	at	the	end	of	the	file

Where	the	mode	includes	a	b	after	any	of	the	file	modes	listed	above,	the	operation	relates	to	a	binary	file
rather	than	a	text	file.	For	example,	rb	or	w+b

File	mode	parameters	are	string	values	so	must	be	surrounded	by	quotes.

Once	a	file	is	opened	and	you	have	a	file	object	and	can	get	various	information	related	to
that	file	from	its	properties:

Property: Description:

name Name	of	the	opened	file

mode Mode	in	which	the	file	was	opened

closed Status	Boolean	value	of	True	or	False

readable() Read	permission	Boolean	value	of	True	or	False

writable() Write	permission	Boolean	value	of	True	or	False

You	can	also	use	a	readlines()	function	that	returns	a	list	of	all	lines.

access.py

Start	a	new	program	by	creating	a	file	object	for	a	new	text	file	named
“example.txt”	in	which	to	write	content
file	=	open(‘example.txt’	,	‘w’)

Next,	add	statements	to	display	the	file	name	and	mode

print(‘File	Name:’	,	file.name)

print(‘File	Open	Mode:’	,	file.mode)

Now,	add	statements	to	display	the	file	access	permissions

print(‘Readable:’	,	file.readable())
print(‘Writable:’	,	file.writable())

Then,	define	a	function	to	determine	the	file’s	status

def	get_status(f)	:

if	(f.closed	!=	False)	:
return	‘Closed’

else	:
return	‘Open’

Finally,	add	statements	to	display	the	current	file	status	then	close	the	file	and
display	the	file	status	once	more
print(‘File	Status:’	,	get_status(file))

file.close()
print(‘\nFile	Status:’	,	get_status(file))

Save	then	run	the	program	–	to	see	a	file	get	opened	for	writing,	then	see	the	file
get	closed

If	your	program	tries	to	open	a	non-existent	file	in	r	mode	the	interpreter	will	report
an	error.

Manipulating	content
Once	a	file	has	been	successfully	opened	it	can	be	read,	or	added	to,	or	new	text	can	be
written	in	the	file,	depending	on	the	mode	specified	in	the	call	to	the	open()	function.
Following	this,	the	open	file	must	always	be	closed	by	calling	the	close()	function.

As	you	might	expect,	the	read()	function	returns	the	entire	content	of	the	file	and	the	write()
function	adds	content	to	the	file.

You	can	quickly	and	efficiently	read	the	entire	contents	in	a	loop,	iterating	line	by	line.

readwrite.py

Start	a	new	program	by	initializing	a	variable	with	a	concatenated	string	containing
newline	characters
poem	=	‘I	never	saw	a	man	who	looked\n’

poem	+=	‘With	such	a	wistful	eye\n’
poem	+=	‘Upon	that	little	tent	of	blue\n’

poem	+=	‘Which	prisoners	call	the	sky\n’

Next,	add	a	statement	to	create	a	file	object	for	a	new	text	file	named	“poem.txt”	to
write	content	into
file	=	open(‘poem.txt’	,	‘w’)

Now,	add	statements	to	write	the	string	contained	in	the	variable	into	the	text	file,
then	close	that	file
file.write(poem)
file.close()

Then,	add	a	statement	to	create	a	file	object	for	the	existing	text	file	“poem.txt”	to
read	from
file	=	open(‘poem.txt’	,	‘r’)

Now,	add	statements	to	display	the	contents	of	the	text	file,	then	close	that	file

for	line	in	file	:

print(line	,	end	=	‘’)
file.close()

Save	then	run	the	program	–	to	see	the	file	created	and	read	out	to	display

Launch	the	Notepad	text	editor	to	confirm	the	new	text	file	exists	and	reveal	its
contents	written	by	the	program

Now,	add	statements	at	the	end	of	the	program	to	append	a	citation	to	the	text	file
then	save	the	script	file	again
file	=	open(‘poem.txt’	,	‘a’)

file.write(‘(Oscar	Wilde)’)
file.close()

Save	then	run	the	program	again	to	re-write	the	text	file	then	view	its	contents	in
Notepad	–	to	see	the	citation	now	appended	after	the	original	text	content

Writing	to	an	existing	file	will	automatically	overwrite	its	contents!

Suppress	the	default	newline	provided	by	the	print()	function	where	the	strings
themselves	contain	newlines.

You	can	also	use	the	file	object’s	readlines()	function	that	returns	a	list	of	all	lines
in	a	file	–	one	line	per	element.

Updating	content
A	file	object’s	read()	function	will,	by	default,	read	the	entire	contents	of	the	file	from	the
very	beginning,	at	index	position	zero,	to	the	very	end	–	at	the	index	position	of	the	final
character.	Optionally,	the	read()	function	can	accept	an	integer	argument	to	specify	how
many	characters	it	should	read.

The	position	within	the	file,	from	which	to	read	or	at	which	to	write,	can	be	finely
controlled	by	the	file	object’s	seek()	function.	This	accepts	an	integer	argument	specifying
how	many	characters	to	move	position	as	an	offset	from	the	start	of	the	file.

The	current	position	within	a	file	can	be	discovered	at	any	time	by	calling	the	file	object’s
tell()	function	to	return	an	integer	location.

When	working	with	file	objects	it	is	good	practice	to	use	the	Python	with	keyword	to	group
the	file	operational	statements	within	a	block.	This	technique	ensures	that	the	file	is
properly	closed	after	operations	end,	even	if	an	exception	is	raised	on	the	way,	and	much
shorter	than	writing	equivalent	try	except	blocks.

update.py

Start	a	new	program	by	assigning	a	string	value	to	a	variable	containing	text	to	be
written	in	a	file
text	=	‘The	political	slogan	“Workers	Of	The	World	Unite!”	\nis	from	The	Communist
Manifesto.’

Next,	add	statements	to	write	the	text	string	into	a	file	and	display	the	file’s	current
status	in	the	“with”	block
with	open(‘update.txt’	,	‘w’)	as	file	:

file.write(text)
print(‘\nFile	Now	Closed?:’	,	file.closed)

Now,	add	a	non-indented	statement	after	the	“with”	code	block	to	display	the	file’s
new	status
print(‘File	Now	Closed?:’	,	file.closed)

Then,	re-open	the	file	and	display	its	contents	to	confirm	it	now	contains	the	entire
text	string
with	open(‘update.txt’	,	‘r+’)	as	file	:

text	=	file.read()
print(‘\nString:’	,	text)

Next,	add	indented	statements	to	display	the	current	file	position,	then	reposition

and	display	that	new	position
print(‘\nPosition	In	File	Now:’	,	file.tell())

position	=	file.seek(33)
print(‘Position	In	File	Now:’	,	file.tell())

Now,	add	an	indented	statement	to	overwrite	the	text	from	the	current	file	position

file.write(‘All	Lands’)

Then,	add	indented	statements	to	reposition	in	the	file	once	more	and	overwrite	the
text	from	the	new	position

file.seek(61)

file.write(‘the	tombstone	of	Karl	Marx.’)

Finally,	add	indented	statements	to	return	to	the	start	of	the	file	and	display	its
entire	updated	contents

file.seek(0)
text	=	file.read()

print(‘\nString:’	,	text)

Save	then	run	the	program	–	to	see	the	file	strings	get	updated

The	seek()	function	may	optionally	accept	a	second	argument	value	of	0,	1,	or	2
to	move	the	specified	number	of	characters	from	the	start,	current,	or	end	position
respectively	–	zero	is	the	default	start	position.

As	with	strings,	the	first	character	in	a	file	is	at	index	position	zero	–	not	at	index
position	one.

Summary
• Strings	can	be	manipulated	by	operators	for	concatenation	+	,	to	join	strings	together,

and	for	repetition	*	of	strings

• Strings	can	be	manipulated	by	operators	for	slice	[],	and	range	slice	[:]	,	that	reference
the	index	number	of	string	characters

• Strings	can	be	manipulated	by	membership	operators	in	and	not	in	that	seek	to	match	a
specified	character	within	a	string

• The	r	(or	R)	raw	string	operator	can	be	placed	immediately	before	a	string	to	suppress
any	escape	characters	it	contains

• A	“docstring”	is	a	descriptive	string	within	triple	quote	marks	at	the	start	of	a	module,
class,	or	function,	to	define	its	purpose

• The	__doc__	attribute	can	be	used	to	reference	the	string	description	within	a	docstring

• The	__builtins__	module	can	be	examined	using	the	dir()	function	to	reveal	the	names	of
default	functions	and	variables

• A	str	object	has	a	format()	function	for	string	formatting	and	many	functions	for	string
modification,	such	as	capitalize()

• Replacement	fields	in	a	string	to	be	formatted	using	the	format	function	are	denoted	in
a	comma-separated	list	by	{	}	braces

• Strings	can	also	be	formatted	using	the	C-style	%s	substitution	operator	to	mark	places
in	a	string	where	text	is	to	be	inserted

• A	file	object	has	open(),	read(),	write(),	and	close()	functions	for	working	with	files,	and
features	that	describe	the	file	properties

• The	open()	function	must	specify	a	file	name	string	argument	and	a	file	mode	string
parameter,	such	as	’r’	to	read	the	file

• A	opened	file	object	has	information	properties	that	reveal	its	current	status,	such	as
mode	and	readable()	values

• Position	in	a	file,	at	which	to	read	or	write,	can	be	specified	with	the	seek()	method	and
reported	by	the	tell()	function

• The	Python	with	keyword	groups	file	operational	statements	within	a	block	and
automatically	closes	an	open	file

10
Programming	objects

This	chapter	demonstrates	how	to	code	virtual	objects	into	your	programs.

Defining	classes
Copying	instances
Addressing	properties
Deriving	classes
Overriding	methods
Applying	sense
Summary

Defining	classes
The	real-world	objects	that	surround	us	each	have	attributes	and	behaviors	we	can
describe.	For	example,	a	car	might	be	described	with	a	color	attribute	“red”	and	an
“acceleration”	behavior.	Programming	objects	are	like	virtual	representations	of	real-
world	objects	that	describe	attributes	and	behaviors	in	a	“class”	structure.

A	“class”	is	a	specified	prototype	describing	a	set	of	properties	that	characterize	an	object.
Each	class	has	a	data	structure	that	can	contain	both	functions	and	variables	to
characterize	the	object.	The	properties	of	a	class	are	referred	to	as	its	data	“members”.
Class	function	members	are	known	as	its	“methods”,	and	class	variable	members
(declared	within	a	class	structure	but	outside	any	method	definitions)	are	known	as	its
“attributes”.	Class	members	can	be	referenced	throughout	a	program	using	dot	notation,
suffixing	the	member	name	after	the	class	name,	with	syntax	of	class-name.method-name()
or	class-name.attribute-name.

A	class	declaration	begins	with	the	class	keyword,	followed	by	a	programmer-specified
name	(adhering	to	the	usual	Python	naming	conventions	but	beginning	in	uppercase)	then
a	:	colon.	Next	come	indented	statements,	optionally	specifying	a	class	document	string,
class	variable	attribute	declarations,	and	class	method	definitions	–	so	the	class	block
syntax	looks	like	this:
class	ClassName	:

‘‘‘	class-documentation-string	‘‘‘
class-variable-declarations

class-method-definitions

The	class	declaration,	which	specifies	its	attributes	and	methods,	is	a	blueprint	from	which
working	copies	(“instances”)	can	be	made.	All	variables	declared	within	method
definitions	are	known	as	“instance”	variables	and	are	only	available	locally	within	the
method	in	which	they	are	declared	–	they	cannot	be	directly	referenced	outside	the	class
structure.

It	is	conventional	to	begin	class	names	with	an	uppercase	character	and	object
names	with	lowercase.

Typically,	instance	variables	contain	data	passed	by	the	caller	when	an	instance	copy	of
the	class	is	created.	As	this	data	is	only	available	locally	for	internal	use	it	is	effectively

hidden	from	the	rest	of	the	program.	This	technique	of	data	“encapsulation”	ensures	that
data	is	securely	stored	within	the	class	structure	and	is	the	first	principle	of	Object
Oriented	Programming	(OOP).

All	properties	of	a	class	are	referenced	internally	by	the	dot	notation	prefix	self	–	so	an
attribute	named	“sound”	is	self.sound.	Additionally,	all	method	definitions	in	a	class	must
have	self	as	their	first	parameter	–	so	a	method	named	“talk”	is	talk(self).

When	a	class	instance	is	created,	a	special	__init__(self)	method	is	automatically	called.
Subsequent	parameters	can	be	added	in	its	parentheses	if	values	are	to	be	passed	to
initialize	its	attributes.

A	complete	Python	class	declaration	could	look	like	this	example:
class	Critter	:

‘‘‘	A	base	class	for	all	critter	properties.	‘‘‘
count	=	0

def	__init__(self	,	chat)	:
self.sound	=	chat

Critter.count	+=	1
def	talk(self)	:

return	self.sound

The	class	documentation	string	can	be	accessed	via	the	special__doc__docstring
attribute	with	Classname.__doc__	.

It	is	useful	to	examine	the	class	components	of	this	example:

• The	variable	count	is	a	class	variable	whose	integer	value	gets	shared	among	all
instances	of	this	class	–	this	value	can	be	referenced	as	Critter.count	from	inside	or
outside	the	class

• The	first	method	__init__()	is	the	initialization	method	that	is	automatically	called	when
an	instance	of	the	class	is	created

• The	__init__()	method	in	this	case	initializes	an	instance	variable	sound,	with	a	value
passed	from	the	chat	parameter,	and	increments	the	value	of	the	count	class	variable
whenever	an	instance	of	this	class	is	created

• The	second	method	talk()	is	declared	like	a	regular	function	except	the	first	parameter	is
self	which	is	automatically	incorporated	–	no	value	needs	to	be	passed	from	the	caller

• The	talk()	method	in	this	case	simply	returns	the	value	encapsulated	in	the	sound
instance	variable

While	a	program	class	cannot	perfectly	emulate	a	real-world	object,	the	aim	is	to
encapsulate	all	relevant	attributes	and	actions.

Copying	instances
An	“instance”	of	a	class	object	is	simply	a	copy	of	the	prototype	created	by	calling	that
class	name’s	constructor	and	specifying	the	required	number	of	parameters	within	its
parentheses.	The	call’s	arguments	must	match	those	specified	by	the	__init__()	method
definition	–	other	than	a	value	for	the	internal	self	parameter.

The	class	instance	object	returned	by	the	constructor	is	assigned	to	a	variable	using	the
syntax	instance-name	=	ClassName(args).

Dot	notation	can	be	used	to	reference	the	methods	and	class	variable	attributes	of	an
instance	object	by	suffixing	their	name	as	instance-name.method-name()	or	instance-
name.attribute-name.

A	constructor	creates	a	class	instance	using	the	class	name	followed	by
parentheses	containing	any	required	parameters.

Typically,	a	base	class	can	be	defined	as	a	Python	module	file	so	it	can	be	imported	into
other	scripts	where	instance	objects	can	be	easily	created	from	the	“master”	class
prototype.

Bird.py

Start	a	new	class	file	by	declaring	a	new	class	with	a	descriptive	document	string

class	Bird	:

‘‘’A	base	class	to	define	bird	properties.’’’

Next,	add	an	indented	statement	to	declare	and	initialize	a	class	variable	attribute
with	an	integer	zero	value

count	=	0

Now,	define	the	intializer	class	method	to	initialize	an	instance	variable	and	to
increment	the	class	variable

def	__init__(self	,	chat)	:
self.sound	=	chat

Bird.count	+=	1

Finally,	add	a	class	method	to	return	the	value	of	the	instance	variable	when	called
–	then	save	this	class	file

def	talk(self)	:

return	self.sound

You	must	not	pass	an	argument	value	for	the	self	parameter	as	this	is
automatically	incorporated	by	Python.

instance.py

Start	a	program	by	making	features	of	the	class	file	available	then	display	its
document	string
from	Bird	import	*
print(‘\nClass	Instances	Of:\n’	,	Bird.__doc__)

Next,	add	a	statement	to	create	an	instance	of	the	class	and	pass	a	string	argument
value	to	its	instance	variable
polly	=	Bird(‘Squawk,	squawk!’)

Now,	display	this	instance	variable	value	and	call	the	class	method	to	display	the
common	class	variable	value
print(‘\nNumber	Of	Birds:’	,	polly.count)

print(‘Polly	Says:’	,	polly.talk())

Bird	instance	–	polly

Create	a	second	instance	of	the	class	passing	a	different	string	argument	value	to	its
instance	variable
harry	=	Bird(‘Tweet,	tweet!’)

Finally,	display	this	instance	variable	value	and	call	the	class	method	to	display	the
common	class	variable	value
print(‘\nNumber	Of	Birds:’	,	harry.count)
print(‘Harry	Says:’	,	harry.talk())

Bird	instance	–	harry

Save	both	files	then	run	the	program	–	to	see	two	instances	of	the	Bird	class	get
created

The	class	variable	count	can	also	be	referenced	with	Bird.count	but	the
encapsulated	instance	variable	sound	can	only	be	accessed	by	calling	an
instance’s	talk()	method.

Addressing	properties
An	attribute	of	a	class	instance	can	be	added,	modified,	or	removed	at	any	time	using	dot
notation	to	address	the	attribute.	Making	a	statement	that	assigns	a	value	to	an	attribute
will	update	the	value	contained	within	an	existing	attribute	or	create	a	new	attribute	of	the
specified	name	containing	the	assigned	value:
instance-name.attribute-name	=	value

del	instance-name.attribute-name

Alternatively,	you	can	use	the	following	Python	built-in	functions	to	add,	modify,	or
remove	an	instance	variable:

• getattr(instance-name	,	‘attribute-name‘)	–	return	the	attribute	value	of	the	class	instance

• hasattr(instance-name	,	‘attribute-name‘)	–	return	True	if	the	attribute	value	exists	in	the
instance,	otherwise	return	False

• setattr(instance-name	,	‘attribute-name‘	,	value)	–	update	the	existing	attribute	value	or
create	a	new	attribute	in	the	instance

• delattr(instance-name	,	‘attribute-name‘)	–	remove	the	attribute	from	the	instance

The	attribute	name	specified	to	these	built-in	functions	must	be	enclosed	within
quotes.

The	name	of	attributes	automatically	supplied	by	Python	always	begin	with	an	underscore
character	to	notionally	indicate	“privacy”	–	so	these	should	not	be	modified,	or	removed.
You	can	add	your	own	attributes	named	in	this	way	to	indicate	privacy	if	you	wish,	but	in
reality	these	can	be	modified	like	any	other	attribute.

address.py

Start	a	new	program	by	making	features	of	the	Bird	class	available	that	was	created
here
from	Bird	import	*

Next,	create	an	instance	of	the	class	then	add	a	new	attribute	with	an	assigned
value	using	dot	notation
chick	=	Bird(‘Cheep,	cheep!’)
chick.age	=	‘1	week’

Now,	display	the	values	in	both	instance	variable	attributes

print(‘\nChick	Says:’	,	chick.talk())

print(‘Chick	Age:’	,	chick.age)

Then,	modify	the	new	attribute	using	dot	notation	and	display	its	new	value

chick.age	=	‘2	weeks’
print(‘Chick	Now:’	,	chick.age)

Next,	modify	the	new	attribute	once	more,	this	time	using	a	built-in	function

setattr(chick	,	‘age’	,	‘3	weeks’)

Now,	display	a	list	of	all	non-private	instance	attributes	and	their	respective	values
using	a	built-in	function
print(‘\nChick	Attributes…’)

for	attrib	in	dir(chick)	:
if	attrib[0]	!=	‘_’	:

print(attrib	,	‘:’	,	getattr(chick	,	attrib))

Finally,	remove	the	new	attribute	and	confirm	its	removal	using	a	built-in	function

delattr(chick	,	‘age’)
print(‘\nChick	age	Attribute?’	,	hasattr(chick	,	‘age’))

Save	then	run	the	program	–	to	see	the	instance	attributes	get	addressed

Bird	instance	–	chick

This	loop	skips	any	attribute	whose	name	begins	with	an	underscore,	so	“private”
attributes	will	not	get	displayed	in	the	list.

Deriving	classes
A	Python	class	can	be	created	as	a	brand	new	class,	like	those	in	previous	examples,	or
can	be	“derived”	from	an	existing	class.	Importantly,	a	derived	class	inherits	members	of
the	parent	(base)	class	from	which	it	is	derived	–	in	addition	to	its	own	members.

The	ability	to	inherit	members	from	a	base	class	allows	derived	classes	to	be	created	that
share	certain	common	properties,	which	have	been	defined	in	the	base	class.	For	example,
a	“Polygon”	base	class	may	define	width	and	height	properties	that	are	common	to	all
polygons.	Classes	of	“Rectangle”	and	Triangle”	could	be	derived	from	the	Polygon	class	–
inheriting	width	and	height	properties,	in	addition	to	their	own	members	defining	their
unique	features.

The	virtue	of	inheritance	is	extremely	powerful	and	is	the	second	principle	of	Object
Oriented	Programming	(OOP).

A	derived	class	declaration	adds	()	parentheses	after	its	class	name	specifying	the	name	of
its	parent	base	class.

Polygon.py

Create	a	new	class	file	that	declares	a	base	class	with	two	class	variables	and	a
method	to	set	their	values
class	Polygon	:

width	=	0
height	=	0

def	set_values(self	,	width	,	height)	:
Polygon.width	=	width

Polygon.height	=	height

Rectangle.py

Next,	create	a	class	file	that	declares	a	derived	class	with	a	method	to	return
manipulated	class	variable	values
from	Polygon	import	*

class	Rectangle(Polygon)	:
def	area(self)	:

return	self.width	*	self.height

Triangle.py

Now,	create	another	class	file	that	declares	a	derived	class	with	a	method	to	return
manipulated	class	variable	values
from	Polygon	import	*
class	Triangle(Polygon)	:

def	area(self)	:
return	(self.width	*	self.height)	/	2

Save	the	three	class	files	then	start	a	new	program	by	making	features	of	both
derived	classes	available
from	Rectangle	import	*

from	Triangle	import	*

Next,	create	an	instance	of	each	derived	class

rect	=	Rectangle()
trey	=	Triangle()

Now,	call	the	class	method	inherited	from	the	base	class,	passing	arguments	to
assign	to	the	class	variables
rect.set_values(4	,	5)

trey.set_values(4	,	5)

Finally,	display	the	result	of	manipulating	the	class	variables	inherited	from	the
base	class
print(‘Rectangle	Area:’	,	rect.area())
print(‘Triangle	Area:’	,	trey.area())

Save	then	run	the	program	–	to	see	output	get	displayed	using	inherited	features

inherit.py

A	class	declaration	can	derive	from	more	than	one	class	by	listing	multiple	base
classes	in	the	parentheses	after	its	name	in	the	declaration.

Don’t	confuse	class	instances	and	derived	classes	–	an	instance	is	a	copy	of	a
class,	whereas	a	derived	class	is	a	new	class	that	inherits	properties	of	the	base
class	from	which	it	is	derived.

Overriding	methods
A	method	can	be	declared	in	a	derived	class	to	override	a	matching	method	in	the	base
class	–	if	both	method	declarations	have	the	same	name	and	the	same	number	of	listed
parameters.	This	effectively	hides	the	base	class	method	as	it	becomes	inaccessible	unless
it	is	called	explicitly,	using	the	base	class	name	for	identification.

Where	a	method	in	a	base	class	supplies	a	default	parameter	value	this	can	be	used	in	an
explicit	call	to	the	base	method	or	alternative	values	can	be	supplied	by	overriding
methods.

Person.py

Create	a	new	class	file	that	declares	a	base	class	with	a	initializer	method	to	set	an
instance	variable	and	a	second	method	to	display	that	variable	value
class	Person	:

‘‘’A	base	class	to	define	Person	properties.’’’
def	__init__(self	,	name)	:

self.name	=	name
def	speak(self	,	msg	=	‘(Calling	The	Base	Class)’)	:

print(self.name	,	msg)

Man.py

Next,	create	a	class	file	that	declares	a	derived	class	with	a	method	that	overrides
the	second	base	class	method
from	Person	import	*

‘‘’A	derived	class	to	define	Man	properties.’’’

class	Man(Person)	:
def	speak(self	,	msg)	:

print(self.name	,	‘:\n\tHello!’	,	msg)

Hombre.py

Now,	create	another	class	file	that	also	declares	a	derived	class	with	a	method	that
once	again	overrides	the	same	method	in	the	base	class
from	Person	import	*

‘‘’A	derived	class	to	define	Hombre	properties.’’’
class	Hombre(Person)	:

def	speak(self	,	msg)	:
print(self.name	,	‘:\n\tHola!’	,	msg)

override.py

Save	the	three	class	files	then	start	a	new	program	by	making	features	of	both
derived	classes	available
from	Man	import	*

from	Hombre	import	*

Next,	create	an	instance	of	each	derived	class,	initializing	the	“name”	instance
variable	attribute
guy_1	=	Man(‘Richard’)
guy_2	=	Hombre(‘Ricardo’)

Now,	call	the	overriding	methods	of	each	derived	class,	assigning	different	values
to	the	“msg”	parameter
guy_1.speak(‘It\’s	a	beautiful	evening.\n’)

guy_2.speak(‘Es	una	tarde	hermosa.\n’)

Finally,	explicitly	call	the	base	class	method,	passing	a	reference	to	each	derived
class	–	but	none	for	the	“msg”	variable	so	its	default	value	will	be	used
Person.speak(guy_1)
Person.speak(guy_2)

Save	then	run	the	program	–	to	see	output	from	overriding	and	base	class	methods

Man	–	Richard

Hombre	–	Ricardo

The	method	declaration	in	the	derived	class	must	exactly	match	that	in	the	base
class	to	override	it.

Applying	sense
The	three	cornerstones	of	Object	Oriented	Programming	(OOP)	are	encapsulation,
inheritance,	and	polymorphism.	Examples	earlier	in	this	chapter	have	demonstrated	how
data	can	be	encapsulated	within	a	Python	class,	and	how	derived	classes	inherit	the
properties	of	their	base	class.	This	example	introduces	the	final	cornerstone	principle	of
polymorphism.

The	term	“polymorphism”	(from	Greek,	meaning	“many	forms”)	describes	the	ability	to
assign	a	different	meaning,	or	purpose,	to	an	entity	according	to	its	context.

In	Python,	the	+	character	entity	can	be	described	as	polymorphic	because	it	represents
either	the	arithmetical	addition	operator,	in	the	context	of	numerical	operands,	or	the	string
concatenation	operator	in	the	context	of	character	operands.

Perhaps	more	importantly,	Python	class	methods	can	also	be	polymorphic	because	the
Python	language	uses	“duck	typing”	–	meaning…	if	it	walks	like	a	duck,	swims	like	a
duck,	and	quacks	like	a	duck,	then	that	bird	is	reckoned	to	be	a	duck.

In	a	duck-typed	language	you	can	create	a	function	to	take	an	object	of	any	type	and	call
that	object’s	methods.	If	the	object	does	indeed	have	the	called	methods	(is	reckoned	to	be
a	duck)	they	are	executed,	otherwise	the	function	signals	a	run-time	error.

Like-named	methods	of	multiple	classes	can	be	created	and	instances	of	those	classes	will
execute	the	associated	version.

Duck.py

Create	a	new	class	file	that	declares	a	class	with	methods	to	display	strings	unique
to	the	class
class	Duck	:

def	talk(self)	:
print(‘\nDuck	Says:	Quack!’)

def	coat(self)	:
print(‘Duck	Wears:	Feathers’)

Mouse.py

Next,	create	a	class	file	that	declares	a	class	with	like-named	methods	but	to
display	strings	unique	to	this	class
class	Mouse	:

def	talk(self)	:
print(‘\nMouse	Says:	Squeak!’)

def	coat(self)	:
print(‘Mouse	Wears:	Fur’)

polymorph.py

Save	the	two	class	files	then	start	a	new	program	by	making	features	of	both
classes	available
from	Duck	import	*

from	Mouse	import	*

Next,	define	a	function	that	accepts	any	single	object	as	its	parameter	and	attempts
to	call	methods	of	that	object
def	describe(object)	:

object.talk()

object.coat()

Now,	create	an	instance	object	of	each	class

donald	=	Duck()
mickey	=	Mouse()

Finally,	add	statements	to	call	the	function	and	pass	each	instance	object	to	it	as	an
argument
describe(donald)

describe(mickey)

Save	then	run	the	program	–	to	see	the	methods	of	the	associated	versions	get
called

Duck	–	donald

Mouse	–	mickey

A	class	can	have	only	one	method	with	a	given	name	–	method	overloading	is	not
supported	in	Python.

Object	Oriented	Programming	with	Python	allows	data	encapsulation,	inheritance,	and
polymorphism.	Base	class	methods	can	be	overridden	by	like-named	methods	in	derived
classes.	Python	does	not,	however,	support	the	technique	of	“overloading”	found	in	other
languages	–	in	which	methods	of	the	same	name	can	be	created	with	different	parameter
lists	in	a	single	class.

Summary
• Programming	objects	are	like	virtual	representations	of	real-world	objects	describing

attributes	and	behaviors	in	a	“class”

• A	class	is	a	data	structure	prototype	describing	object	properties	with	its	methods	and
attribute	members

• Each	class	declaration	begins	with	the	class	keyword	and	is	followed	by	an	indented
code	block	that	may	contain	a	class	document	string,	class	variables,	and	class
methods

• Class	variables	have	global	scope	but	instance	variables	(declared	within	method
definitions)	have	only	local	scope

• Instance	variables	encapsulate	data	securely	in	a	class	structure	and	are	initialized	when
a	class	instance	is	created

• Properties	of	a	class	are	referenced	by	dot	notation	and	are	addressed	internally	using
the	self	prefix

• A	class	instance	is	a	copy	of	the	prototype	that	automatically	calls	its	__init__()	method
when	the	instance	is	first	created

• An	attribute	of	a	class	can	be	added,	modified,	or	removed	using	dot	notation	or
manipulated	using	the	built-in	functions	getattr(),	hasattr(),	setattr(),	and	delattr()

• The	name	of	attributes	automatically	supplied	by	Python	begin	with	an	underscore
character	to	notionally	indicate	privacy

• A	derived	class	inherits	the	method	and	attribute	members	of	the	parent	base	class	from
which	it	is	derived

• The	declaration	of	a	derived	class	must	state	the	name	of	its	parent	base	class	in
parentheses	after	its	own	class	name

• A	method	of	a	derived	class	can	override	a	matching	method	of	the	same	name	in	its
parent	base	class

• A	method	of	a	base	class	can	be	called	explicitly	using	the	base	class	name	for
identification

• Python	is	a	duck-typed	language	that	supports	polymorphism	for	like-named	methods
of	multiple	classes

• The	three	cornerstones	of	Object	Oriented	Programming	(OOP)	are	Encapsulation,
Inheritance,	and	Polymorphism

11
Building	interfaces

This	chapter	demonstrates	how	to	code	graphical	windowed	programs.

Launching	interfaces
Responding	buttons
Displaying	messages
Gathering	entries
Listing	options
Polling	radios
Checking	boxes
Adding	images
Summary

Launching	interfaces
The	standard	Python	module	that	you	can	use	to	create	graphical	applications	is	called
“tkinter”	–	a	toolkit	to	interface	with	the	system	GUI	(Graphical	User	Interface).

The	tkinter	module	can	be	imported	into	a	program	like	any	other	module	to	provide
attributes	and	methods	for	windowed	apps.	Every	tkinter	program	must	begin	by	calling
the	Tk()	constructor	to	create	a	window	object.	The	window’s	size	can	optionally	be
specified	as	a	‘widthxheight’	string	argument	to	the	window	object’s	geometry()	method.
Similarly,	the	window’s	title	can	be	specified	as	a	‘title’	string	argument	to	the	window
object’s	title()	method.	If	not	specified	default	size	and	title	values	will	be	used.

There	can	be	only	one	call	to	the	Tk()	constructor	and	it	must	be	at	the	start	of	the
program	code.

Every	tkinter	program	must	also	call	the	window	object’s	mainloop()	method	to	capture
events,	such	as	when	the	user	closes	the	window	to	quit	the	program.	This	loop	should
appear	at	the	end	of	the	program	as	it	also	handles	window	updates	that	may	be
implemented	during	execution.

With	tkinter,	all	the	graphical	controls	that	can	be	included	in	the	application	window,	such
as	buttons	or	checkboxes,	are	referred	to	as	“widgets”.	Perhaps	the	simplest	widget	is	a
non-interactive	label	object	that	merely	displays	text	or	an	image	in	the	app	interface.	A
label	object	can	be	created	by	specifying	the	window	object’s	name	and	text=’string’	as
arguments	to	a	Label()	constructor.

Once	created,	each	widget,	such	as	a	label,	must	then	be	added	to	the	window	using	one	of
these	“geometry	manager”	methods:

• pack()	–	places	the	widget	against	a	specified	side	of	the	window	using	TOP,	BOTTOM,
LEFT,	or	RIGHT	constant	values	specified	to	its	side=	argument

• place()	–	places	the	widget	at	XY	coordinates	in	the	window	using	numerical	values
specified	to	its	x=	and	y=	arguments

• grid()	–	places	the	widget	in	a	cell	within	the	window	using	numerical	values	specified
to	row=	and	column=	arguments

The	grid()	geometry	manager	method	is	demonstrated	in	the	example	here.

Optionally,	the	pack()	method	may	include	a	fill	argument	to	expand	the	widget	in	available

space.	For	example,	with	fill	=	‘x’.	Alternatively,	the	pack()	method	may	include	padx	and
pady	arguments	to	expand	the	widget	along	an	axis	a	specified	amount.

window.py

Start	a	new	program	with	a	statement	to	make	the	“tkinter”	module	GUI	methods
and	attributes	available
from	tkinter	import	*

Next,	add	a	statement	to	call	upon	a	constructor	to	create	a	window	object

window	=	Tk()

Now,	add	a	statement	to	specify	a	title	for	this	window

window.title(‘Label	Example’)

Then,	add	a	statement	to	call	upon	a	constructor	to	create	a	label	object

label	=	Label(window	,	text	=	‘Hello	World!’)

Use	the	packer	to	add	the	label	to	the	window	with	both	horizontal	and	vertical
padding	for	positioning
label.pack(padx	=	200	,	pady	=	50)

Finally,	add	the	mandatory	statement	to	maintain	the	window	by	capturing	events

window.mainloop()

Save	then	run	the	program	–	to	see	a	window	appear	containing	a	label	widget

Widgets	will	not	appear	in	the	window	when	running	the	program	unless	they
have	been	added	with	a	geometry	manager.

Responding	buttons
A	Button	widget	provides	a	graphical	button	in	an	application	window	that	may	contain
either	text	or	an	image	to	convey	the	button’s	purpose.	A	button	object	is	created	by
specifying	the	window	name	and	options	as	arguments	to	a	Button()	constructor.	Each
option	is	specified	as	an	option=value	pair.	The	command	option	must	always	specify	the
name	of	a	function	or	method	to	call	when	the	user	clicks	that	button.	The	most	popular
options	are	listed	below	together	with	a	brief	description:

Option: Description:

activebackground Background	color	when	the	cursor	is	over

activeforeground Foreground	color	when	the	cursor	is	over

bd Border	width	in	pixels	(default	is	2)

bg Background	color

command Function	to	call	when	clicked

fg Foreground	color

font Font	for	button	label

height Button	height	in	text	lines,	or	pixels	for	images

highlightcolor Border	color	when	in	focus

image Image	to	be	displayed	instead	of	text

justify Multiple	text	lines	as	LEFT,	CENTER,	or	RIGHT

padx Horizontal	padding

pady Vertical	padding

relief Border	style	of	SUNKEN,	RIDGE,	RAISED	or	GROOVE

state Enabled	status	of	NORMAL	or	DISABLED

underline Index	number	in	text	of	character	to	underline

width Button	width	in	letters,	or	pixels	for	images

wraplength Length	at	which	to	wrap	text

You	can	also	call	a	button’s	invoke()	method	to,	in	turn,	call	the	function
nominated	to	its	command	option.
The	values	assigned	to	other	options	determine	the	widget’s	appearance.	These	can	be
altered	by	specifying	a	new	option=value	pair	as	an	argument	to	the	widget’s	configure()
method.	Additionally,	a	current	option	value	can	be	retrieved	by	specifying	its	name	as	a
string	argument	to	the	widget’s	cget()	method.

button.py

Start	a	new	program	by	making	GUI	features	available	then	create	a	window	and
specify	a	title
from	tkinter	import	*

window	=	Tk()
window.title(‘Button	Example’)

Next,	create	a	button	to	exit	the	program	when	clicked

btn_end	=	Button(window	,	text	=	‘Close’	,	command=exit)

Now,	add	a	function	to	toggle	the	window’s	background	color	when	another	button
gets	clicked
def	tog()	:

if	window.cget(‘bg’)	==	‘yellow’	:
window.configure(bg	=	‘gray’)

else	:
window.configure(bg	=	‘yellow’)

Then,	create	a	button	to	call	the	function	when	clicked

btn_tog	=	Button(window	,	text	=	‘Switch’	,	command=tog)

Add	the	buttons	to	the	window	with	positional	padding

btn_end.pack(padx	=	150	,	pady	=	20)

btn_tog.pack(padx	=	150	,	pady	=	20)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	then	run	the	program	and	click	the	button	–	to	see	the	window’s	background
color	change

Only	the	function	name	is	specified	to	the	command	option.	Do	not	add	trailing
parentheses	in	the	assignment.

The	‘gray’	color	is	the	original	default	color	of	the	window.

Displaying	messages
A	program	can	display	messages	to	the	user	by	calling	methods	provided	in	the
“tkinter.messagebox”	module.	This	must	be	imported	separately	and	its	lengthy	name	can
usefully	be	assigned	a	short	alias	by	an	import	as	statement.

A	message	box	is	created	by	supplying	a	box	title	and	the	message	to	be	displayed	as	the
two	arguments	to	one	of	these	methods:

Method: Icon: Buttons:

showinfo() OK

showwarning() OK

showerror() OK

askquestion() Yes	(returns	the	string	‘yes’)	and
No	(returns	the	string	‘no’)

askokcancel() OK	(returns	1)	and	Cancel

askyesno() Yes	(returns	1)	and	No

askretrycancel() Retry	(returns	1)	and	Cancel

Only	the	askquestion()	method	returns	two	values	–	the	askyesno()	No	button
and	both	Cancel	buttons	return	nothing.

Those	methods	that	produce	a	message	box	containing	a	single	OK	button	return	no	value
when	the	button	gets	clicked	by	the	user.	Those	that	do	return	a	value	can	be	used	to
perform	conditional	branching	by	testing	that	value.

message.py

Start	a	new	program	by	making	GUI	features	available	and	message	box	features
available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

Next,	create	a	window	object	and	specify	a	title

window	=	Tk()
window.title(‘Message	Box	Example’)

Add	a	function	to	display	various	message	boxes

def	dialog()	:

var	=	box.askyesno(‘Message	Box’	,	‘Proceed?’)
if	var	==	1	:

box.showinfo(‘Yes	Box’,	‘Proceeding…’)
else	:

box.showwarning(‘No	Box’,	‘Canceling…’)

Then,	create	a	button	to	call	the	function	when	clicked

btn	=	Button(window	,	text	=	‘Click’	,	command=dialog)

Add	the	button	to	the	window	with	positional	padding

btn.pack(padx	=	150	,	pady	=	50)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	then	run	the	program	and	click	the	button	–	to	see	the	message	boxes
appear

Options	can	be	added	as	a	third	argument	to	these	method	calls.	For	example,
add	type=’abortretryignore’	to	get	three	buttons.

Gathering	entries
An	Entry	widget	provides	a	single-line	input	field	in	an	application	where	the	program	can
gather	entries	from	the	user.	An	entry	object	is	created	by	specifying	the	name	of	its	parent
container,	such	as	a	window	or	frame	name,	and	options	as	arguments	to	an	Entry()
constructor.	Each	option	is	specified	as	an	option=value	pair.	Popular	options	are	listed
below	together	with	a	brief	description:

Option: Description:

bd Border	width	in	pixels	(default	is	2)

bg Background	color

fg Foreground	color	used	to	render	the	text

font Font	for	the	text

highlightcolor Border	color	when	in	focus

selectbackground Background	color	of	selected	text

selectforeground Foreground	color	of	selected	text

show Hide	password	characters	with	show=’*’

state Enabled	status	of	NORMAL	or	DISABLED

width Entry	width	in	letters

Multiple	widgets	can	be	grouped	in	frames	for	better	positioning.	A	frame	object	is	created
by	specifying	the	name	of	the	window	to	a	Frame()	constructor.	The	frame’s	name	can	then
be	specified	as	the	first	argument	to	the	widget	constructors	to	identify	it	as	that	widget’s
container.

When	actually	adding	widgets	to	the	frame,	you	can	specify	which	side	to	pack	them	to	in
the	frame	with	TOP,	BOTTOM,	LEFT,	or	RIGHT	constants.	For	example,	entry.pack(side=LEFT).

Use	the	Text	widget	instead	of	an	Entry	widget	if	you	want	to	allow	the	user	to

enter	multiple	lines	of	text.

Typically,	an	entry	widget	will	appear	alongside	a	label	describing	the	type	of	input
expected	there	from	the	user,	or	alongside	a	button	widget	that	the	user	can	click	to
perform	some	action	on	the	data	they	have	entered,	so	positioning	in	a	frame	is	ideal.

Data	currently	entered	into	an	entry	widget	can	be	retrieved	by	the	program	using	that
widget’s	get()	method.

entry.py

Start	a	new	program	by	making	GUI	features	available	and	message	box	features
available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

Next,	create	a	window	object	and	specify	a	title

window	=	Tk()
window.title(‘Entry	Example’)

Now,	create	a	frame	to	containing	an	entry	field	for	input

frame	=	Frame(window)

entry	=	Entry(frame)

Then,	add	a	function	to	display	data	currently	entered

def	dialog()	:
box.showinfo(‘Greetings’	,	‘Welcome	’	+	entry.get())

Now,	create	a	button	to	call	the	function	when	clicked

btn	=	Button(frame,	text	=	‘Enter	Name’	,	command=dialog)

Add	the	button	and	entry	to	the	frame	at	set	sides

btn.pack(side	=	RIGHT	,	padx	=	5)

entry.pack(side	=	LEFT)
frame.pack(padx	=	20	,	pady	=	20)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	and	run	the	program,	then	enter	your	name	and	click	the	button	–	to
see	a	greeting	message	appear

Use	a	Label	widget	instead	of	an	Entry	widget	if	you	want	to	display	text	that	the
user	cannot	edit.

Listing	options
A	Listbox	widget	provides	a	list	of	items	in	an	application	from	which	the	user	can	make	a
selection.	A	listbox	object	is	created	by	specifying	the	name	of	its	parent	container,	such
as	a	window	or	frame	name,	and	options	as	arguments	to	a	Listbox()	constructor.	Popular
options	are	listed	below	together	with	a	brief	description:

Option: Description:

bd Border	width	in	pixels	(default	is	2)

bg Background	color

fg Foreground	color	used	to	render	the	text

font Font	for	the	text

height Number	of	lines	in	list	(default	is	10)

selectbackground Background	color	of	selected	text

selectmode SINGLE	(the	default)	or	MULTIPLE	selections

width Listbox	width	in	letters	(default	is	20)

yscrollcommand Attach	to	a	vertical	scrollbar

With	tkinter,	a	scrollbar	is	a	separate	widget	that	can	be	attached	to	Listbox,	Text,
Canvas	and	Entry	widgets.

Items	are	added	to	the	listbox	by	specifying	a	list	index	number	and	the	item	string	as
arguments	to	its	insert()	method.

You	can	retrieve	any	item	from	a	listbox	by	specifying	its	index	number	within	the
parentheses	of	its	get()	method.	Usefully,	a	listbox	also	has	a	curselection()	method	that
returns	the	index	number	of	the	currently	selected	item,	so	this	can	be	supplied	as	the
argument	to	its	get()	method	to	retrieve	the	current	selection.

listbox.py

Start	a	new	program	by	making	GUI	features	available	and	message	box	features
available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

Next,	create	a	window	object	and	specify	a	title

window	=	Tk()
window.title(‘Listbox	Example’)

Now,	create	a	frame	to	contain	widgets

frame	=	Frame(window)

Create	a	listbox	widget	offering	three	list	items

listbox	=	Listbox(frame)

listbox.insert(1	,	‘HTML5	in	easy	steps’)
listbox.insert(2	,	‘CSS3	in	easy	steps’)

listbox.insert(3	,	‘JavaScript	in	easy	steps’)

Next,	add	a	function	to	display	a	listbox	selection

def	dialog()	:
box.showinfo(‘Selection’	,	‘Your	Choice:	’	+	\

listbox.get(listbox.curselection()))

Now,	create	a	button	to	call	the	function	when	clicked

btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Then,	add	the	button	and	listbox	to	the	frame	at	set	sides

btn.pack(side	=	RIGHT	,	padx	=	5)
listbox.pack(side	=	LEFT)

frame.pack(padx	=	30	,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	and	run	the	program,	then	select	an	option	and	click	the	button	–	to
see	your	selection	confirmed

If	the	selectmode	is	set	to	MULTIPLE,	the	curselection()	method	returns	a	tuple
of	the	selected	index	numbers.

Polling	radios
A	Radiobutton	widget	provides	a	single	item	in	an	application	that	the	user	may	select.
Where	a	number	of	radio	buttons	are	grouped	together	the	user	may	only	select	any	one
item	in	the	group.	With	tkinter,	radio	button	objects	are	grouped	together	when	they
nominate	the	same	control	variable	object	to	assign	a	value	to	upon	selection.	An	empty
string	variable	object	can	be	created	for	this	purpose	using	the	StringVar()	constructor	or	an
empty	integer	variable	object	using	the	IntVar()	constructor.

You	cannot	use	a	regular	variable	to	store	values	assigned	from	a	radio	button
selection	–	it	must	be	an	object.

A	radio	button	object	is	created	by	specifying	four	arguments	to	a	Radiobutton()
constructor:

• Name	of	the	parent	container,	such	as	the	frame	name

• Text	for	a	display	label,	specified	as	a	text=text	pair

• Control	variable	object,	specified	as	a	variable=variable	pair

• Value	to	be	assigned,	specified	as	a	value=value	pair

Each	radio	button	object	has	a	select()	method	that	can	be	used	to	specify	a	default
selection	in	a	group	of	radio	buttons	when	the	program	starts.	A	string	value	assigned	by
selecting	a	radio	button	can	be	retrieved	from	a	string	variable	object	by	its	get()	method.

radio.py

Start	a	new	program	by	making	GUI	features	available	and	message	box	features
available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

Next,	create	a	window	object	and	specify	a	title

window	=	Tk()
window.title(‘Radio	Button	Example’)

Now,	create	a	frame	to	contain	widgets

frame	=	Frame(window)

Then,	construct	a	string	variable	object	to	store	a	selection

book	=	StringVar()

Next,	create	three	radio	button	widgets	whose	value	will	be	assigned	to	the	string
variable	upon	selection
radio_1	=	Radiobutton(frame	,	text	=	‘HTML5’	,	\

variable	=	book	,	value	=	‘HTML5	in	easy	steps’)
radio_2	=	Radiobutton(frame	,	text	=	‘CSS3’	,	\

variable	=	book	,	value	=	‘CSS3	in	easy	steps’)
radio_3	=	Radiobutton(frame	,	text	=	‘JS’	,	\

variable	=	book	,	value	=	‘JavaScript	in	easy	steps’)

Now,	add	a	statement	to	specify	which	radio	button	will	be	selected	by	default
when	the	program	starts
radio_1.select()

Then,	add	a	function	to	display	a	radio	button	selection	and	a	button	to	call	this
function
def	dialog()	:

box.showinfo(‘Selection’	,	\

‘Your	Choice:	\n’	+	book.get())
btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Add	the	push	button	and	radio	buttons	to	the	frame

btn.pack(side	=	RIGHT	,	padx	=	5)

radio_1.pack(side	=	LEFT)
radio_2.pack(side	=	LEFT)

radio_3.pack(side	=	LEFT)
frame.pack(padx	=	30	,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	and	run	the	program,	then	choose	an	option	and	click	the	button	–	to
see	your	choice	confirmed

A	Radiobutton	object	has	a	deselect()	method	that	can	be	used	to	cancel	a
selection	programatically.

Checking	boxes
A	Checkbutton	widget	provides	a	single	item	in	an	application	that	the	user	may	select.
Where	a	number	of	check	buttons	appear	together	the	user	may	select	one	or	more	items.
Check	button	objects	nominate	an	individual	control	variable	object	to	assign	a	value	to
whether	checked	or	unchecked.	An	empty	string	variable	object	can	be	created	for	this
using	the	StringVar()	constructor	or	an	empty	integer	variable	object	using	the	IntVar()
constructor.

A	check	button	object	is	created	by	specifying	five	arguments	to	a	Checkbutton()
constructor:

• Name	of	the	parent	container,	such	as	the	frame	name

• Text	for	a	display	label,	as	a	text=text	pair

• Control	variable	object,	as	a	variable=variable	pair

• Value	to	assign	if	checked,	as	an	onvalue=value	pair

• Value	to	assign	if	unchecked,	as	an	offvalue=value	pair

An	integer	value	assigned	by	a	check	button	can	be	retrieved	from	a	integer	variable
object	by	its	get()	method.

check.py

Start	a	new	program	by	making	GUI	features	available	and	message	box	features
available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

Next,	create	a	window	object	and	specify	a	title

window	=	Tk()
window.title(‘Check	Button	Example’)

Now,	create	a	frame	to	contain	widgets

frame	=	Frame(window)

Then,	construct	three	integer	variable	objects	to	store	values

var_1	=	IntVar()

var_2	=	IntVar()
var_3	=	IntVar()

Create	three	check	button	widgets	whose	values	will	be	assigned	to	the	integer

variable	whether	checked	or	not
book_1	=	Checkbutton(frame	,	text	=	‘HTML5’	,	\

variable	=	var_1	,	onvalue	=	1	,	offvalue	=	0)
book_2	=	Checkbutton(frame	,	text	=	‘CSS3’	,	\

variable	=	var_2	,	onvalue	=	1	,	offvalue	=	0)
book_3	=	Checkbutton(frame	,	text	=	‘JS’	,	\

variable	=	var_3	,	onvalue	=	1	,	offvalue	=	0)

Next,	add	a	function	to	display	a	check	button	selection

def	dialog()	:
s	=	‘Your	Choice:’

if	var_1.get()	==	1	:	s	+=	‘\nHTML5	in	easy	steps’
if	var_2.get()	==	1	:	s	+=	‘\nCSS3	in	easy	steps’

if	var_3.get()	==	1	:	s	+=	‘\nJavaScript	in	easy	steps’
box.showinfo(‘Selection’	,	s)

Now,	create	a	button	to	call	the	function	when	clicked

btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Then,	add	the	push	button	and	check	buttons	to	the	frame

btn.pack(side	=	RIGHT	,	padx	=	5)

book_1.pack(side	=	LEFT)
book_2.pack(side	=	LEFT)

book_3.pack(side	=	LEFT)
frame.pack(padx	=	30,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	and	run	the	program,	then	check	boxes	and	click	the	button	–	to	see
your	selection	confirmed

A	Checkbutton	object	has	select()	and	deselect()	methods	that	can	be	used	to
turn	the	state	on	or	off.	For	example,	check_1.	select().

The	state	of	any	Checkbutton	object	can	be	reversed	by	calling	its	toggle()
method.

Adding	images
With	the	tkinter	module,	images	in	GIF	or	PGM/PPM	file	formats	can	be	displayed	on
Label,	Button,	Text	and	Canvas	widgets	using	the	PhotoImage()	constructor	to	create	image
objects.	This	simply	requires	a	single	file=	argument	to	specify	the	image	file.	Interestingly,
it	also	has	a	subsample()	method	that	can	scale	down	a	specified	image	by	stating	a	sample
value	to	x=	and	y=	arguments.	For	example,	values	of	x=2,	y=2	samples	every	second	pixel	–
so	the	image	object	is	half-size	of	the	original.

Once	an	image	object	has	been	created	it	can	be	added	to	a	Label	or	Button	constructor
statement	by	an	image=	option.

The	PhotoImage	class	also	has	a	zoom()	method	that	will	double	the	image	size
with	the	same	x=2,y=2	values.
Text	objects	have	an	image_create()	method	with	which	to	embed	an	image	into	the	text
field.	This	requires	two	arguments	to	specify	location	and	image=.	For	example,	‘1.0’
specifies	the	first	line	and	first	character.

Canvas	objects	have	a	create_image()	method	that	requires	two	arguments	to	specify
location	and	image=.	Here	the	location	sets	the	x,y	coordinates	on	the	canvas	at	which	to
paint	the	image.

image.py

Start	a	new	program	by	making	GUI	methods	and	attributes	available	then	create	a
window	object	and	specify	a	title
from	tkinter	import	*

window	=	Tk()
window.title(‘Image	Example’)

Now,	create	an	image	object	from	a	local	image	file

img	=	PhotoImage(file	=	‘python.gif’)

python.gif
(200	x	200)

Then,	create	a	label	object	to	display	the	image	above	a	colored	background

label	=	Label(window	,	image	=	img	,	bg	=	‘yellow’)

Create	a	half-size	image	object	from	the	first	image	object

small_img	=	PhotoImage.subsample(img	,	x	=	2	,	y	=	2)

Now,	create	a	button	to	display	the	small	image

btn	=	Button(window	,	image	=	small_img)

Create	a	text	field	and	embed	the	small	image	then	insert	some	text	after	it

txt	=	Text(window	,	width	=	25	,	height	=	7)

txt.image_create(‘1.0’	,	image	=	small_img)
txt.insert(‘1.1’,	‘Python	Fun!’)

Create	a	canvas	and	paint	the	small	image	above	a	colored	background	then	paint	a
diagonal	line	over	the	top	of	it
can	=	\

Canvas(window	,	width	=	100	,	height	=	100	,	bg	=	‘cyan’)
can.create_image((50	,	50),	image	=	small_img)

can.create_line(0	,	0	,	100	,	100,	width	=	25	,	fill	=	‘yellow’)

Then,	add	the	widgets	to	the	window

label.pack(side	=	TOP)
btn.pack(side	=	LEFT	,	padx	=	10)

txt.pack(side	=	LEFT)
can.pack(side	=	LEFT,	padx	=	10)

Finally,	add	the	loop	to	capture	this	window’s	events

window.mainloop()

Save	the	file	then	run	the	program	–	to	see	the	image	on	the	Label,	Button,	Text
and	Canvas	widgets

Notice	that	the	Text	method	is	image_	create()	but	the	Canvas	method	is	create_
image()	–	similar	yet	different.

Text	and	Canvas	widgets	are	both	powerful	and	flexible	–	discover	more	online	at
docs.python.org/3.3/library/tkinter.html

http://docs.python.org/3.3/library/tkinter.html

Summary
• The	tkinter	module	can	be	imported	into	a	Python	program	to	provide	attributes	and

methods	for	windowed	applications

• Every	tkinter	program	must	begin	by	calling	Tk()	to	create	a	window	and	call	its
mainloop()	method	to	capture	events

• The	window	object’s	title	is	specified	by	its	title()	method

• A	label	widget	is	created	by	specifying	the	name	of	its	parent	container	and	its	text	as
arguments	to	the	Label()	constructor

• Widgets	can	be	added	to	an	application	using	the	pack(),	grid()	or	place()	geometry
managers

• A	button	widget	is	created	by	specifying	the	name	of	its	parent	container,	its	text,	and
the	name	of	a	function	to	call	when	the	user	pushes	it,	as	arguments	to	the	Button()
constructor

• The	tkinter.messagebox	module	can	be	imported	into	a	Python	program	to	provide
attributes	and	methods	for	message	boxes

• Message	boxes	that	ask	the	user	to	make	a	choice	return	a	value	to	the	program	for
conditional	branching

• The	Frame()	constructor	creates	a	container	in	which	multiple	widgets	can	be	grouped
for	better	positioning

• The	Entry()	constructor	creates	a	single	line	text	field	whose	current	contents	can	be
retrieved	by	its	get()	method

• Items	are	added	to	a	Listbox	object	by	its	insert()	method	and	retrieved	by	specifying
their	index	number	to	its	get()	method

• Radiobutton	and	Checkbutton	objects	store	values	in	the	StringVar	or	IntVar	object
nominated	by	their	variable	attribute

• The	PhotoImage()	constructor	creates	an	image	object	that	has	a	subsample()	method
which	can	scale	down	the	image

• Images	can	be	added	to	Button	and	Label	objects,	embedded	in	Text	objects,	and	painted
on	Canvas	objects

12
Developing	apps

This	chapter	brings	together	elements	from	previous	chapters	to	develop	a	windowed	application.

Generating	randoms
Planning	needs
Designing	layout
Assigning	statics
Loading	dynamics
Adding	functionality
Testing	programs
Deploying	applications
Summary

Generating	randoms
The	graphical	application	developed	on	subsequent	pages	of	this	book	will	generate	six
random	numbers	within	a	specific	range.	Initially,	its	functionality	can	be	developed	as	a
console	application	then	transferred	later	to	illustrate	how	it	can	be	applied	to	graphical
widget	components.

The	standard	Python	library	has	a	random	module	that	provides	methods	to	generate
pseudo-random	numbers.	The	current	system	time	is	used	by	default	to	“seed”	the	random
generator	whenever	it	gets	initialized	–	so	it	does	not	repeat	its	selections.

A	pseudo-random	floating-point	number	from	0.0	to	1.0	can	be	generated	by	calling	the
random()	method	from	the	random	module.	The	range	of	generated	numbers	can	be
modified	using	the	*	multiplication	operator	to	specify	a	maximum	value	and	can	be
rounded	down	to	integer	values	using	the	built-in	int()	function.	For	example,	to	generate
an	integer	within	the	range	of	zero	to	nine:
int(random.random()	*	10)

Or	to	generate	a	whole	number	within	the	range	of	1	to	10:
int(random.random()	*	10)	+	1

Floating-point	numbers	cast	from	the	float	data	type	to	the	int	data	type	by	the
built-in	int()	function	get	truncated	at	the	decimal	point.
This	statement	could	be	used	in	a	loop	to	generate	multiple	random	integers	within	a	given
range	but	any	number	may	be	repeated	in	that	output	–	there	is	no	guaranteed	uniqueness.
Instead,	multiple	unique	random	integers	within	a	given	range	can	be	generated	by	the
sample()	method	from	the	random	module.	This	requires	two	arguments	to	specify	the	range
and	the	number	of	unique	integers	to	be	returned.	It	is	convenient	to	use	the	built-in	range()
function	to	specify	a	maximum	value.	For	example,	to	generate	six	unique	numbers	within
the	range	of	1	to	9:
random.sample(range(10)	,	6)

Or	to	generate	six	unique	numbers	within	the	range	of	1	to	10:
random.sample(range(1	,	11)	,	6)

This	technique	could	represent	a	random	lottery	entry	by	choosing,	say,	six	unique
numbers	between	1	and	49.

The	range()	function	can	specify	start	and	end	values.	If	no	starting	value	is
supplied,	zero	is	assumed	by	default.

sample.py

Start	a	new	program	by	importing	two	functions	from	the	“random”	module

from	random	import	random	,	sample

Next,	assign	a	random	floating-point	number	to	a	variable	then	display	its	value

num	=	random()

print(‘Random	Float	0.0-1.0	:	‘	,	num)

Now,	multiply	the	floating-point	number	and	cast	it	to	become	an	integer	then
display	its	value
num	=	int(num	*	10)
print(‘Random	Integer	0	-	9	:	‘	,	num)

Add	a	loop	to	assign	multiple	random	integers	to	a	list,	then	display	the	list	items

nums	=	[]	;	i	=	0

while	i	<	6	:
nums.append(int(random()	*	10)	+	1)

i	+=	1
print(‘Random	Multiple	Integers	1-10	:’	,	nums)

Finally,	assign	multiple	unique	random	integers	to	the	list	then	display	the	list
items
nums	=	sample(range(1,	49)	,	6)

print(‘Random	Integer	Sample	1	-	49	:	‘	,	nums)

Save	the	file	then	run	the	program	several	times	–	to	see	the	generated	random
numbers

The	random.sample()	function	returns	a	list	but	does	not	actually	replace	any
elements	in	the	specified	range.

Planning	needs
When	creating	a	new	graphical	application	it	is	useful	to	first	spend	some	time	planning	its
design.	Clearly	define	the	program’s	precise	purpose,	decide	what	application
functionality	will	be	required,	then	decide	what	interface	widgets	will	be	needed.

A	plan	for	a	simple	application	to	pick	numbers	for	a	lottery	entry	might	look	like	this:

Program	purpose

• The	program	will	generate	a	series	of	six	unique	random	numbers	in	the	range	1-49	and
have	the	ability	to	be	reset

Functionality	required

• A	function	to	generate	and	display	six	unique	random	numbers

• A	function	to	clear	the	last	six	random	numbers	from	display

Interface	widgets	needed

• One	non-resizable	window	to	contain	all	other	widgets	and	to	display	the	application
title.

• One	Label	widget	to	display	a	static	application	logo	image	–	just	to	enhance	the
appearance	of	the	interface.

• Six	Label	widgets	to	dynamically	display	the	generated	series	of	unique	random
numbers	–	one	number	per	Label.

• One	Button	widget	to	generate	and	display	the	numbers	in	the	Label	widgets	when	this
Button	gets	clicked.	This	Button	will	not	be	enabled	when	the	numbers	are	on	display.

• One	Button	widget	to	clear	the	numbers	on	display	in	the	Label	widgets	when	this
Button	gets	clicked.	This	Button	will	not	be	enabled	when	the	numbers	are	not	on
display.

Having	established	a	program	plan	means	you	can	now	produce	the	application	basics	by
creating	all	the	necessary	widgets.

Toggle	the	value	of	a	Button	widget’s	state	property	from	NORMAL	to
DISABLED	to	steer	the	user	–	in	this	case	the	application	must	be	reset	before	a

further	series	of	unique	random	numbers	can	be	generated.

lotto(widgets).py

Start	a	new	program	by	importing	all	features	from	the	“tkinter”	module

#	Widgets:

from	tkinter	import	*

Next,	add	statements	to	create	a	window	object	and	an	image	object

window	=	Tk()
img	=	PhotoImage(file	=	‘lotto.gif’)

lotto.gif

Now,	add	statements	to	create	all	the	necessary	widgets

imgLbl	=	Label(window,	image	=	img)

label1	=	Label(window,	relief	=	‘groove’,	width	=	2)
label2	=	Label(window,	relief	=	‘groove’,	width	=	2)

label3	=	Label(window,	relief	=	‘groove’,	width	=	2)
label4	=	Label(window,	relief	=	‘groove’,	width	=	2)

label5	=	Label(window,	relief	=	‘groove’,	width	=	2)
label6	=	Label(window,	relief	=	‘groove’,	width	=	2)

getBtn	=	Button(window)
resBtn	=	Button(window)

Then,	add	the	widgets	to	the	window	using	the	grid	layout	manager	–	ready	to
receive	arguments	to	specify	how	the	widgets	should	be	positioned	at	the	design
stage	next
#	Geometry:

imgLbl.grid()
label1.grid()

label2.grid()
label3.grid()

label4.grid()
label5.grid()

label6.grid()

getBtn.grid()

resBtn.grid()

Finally,	add	a	loop	statement	to	sustain	the	window

#	Sustain	window:
window.mainloop()

Save	the	file	then	run	the	program	–	to	see	the	window	appear	containing	all	the
necessary	widgets

The	relief	property	specifies	a	border	style	and	the	width	property	specifies	the
label	width	in	character	numbers.

Designing	layout
Having	created	all	the	necessary	widgets,	on	the	previous	page,	you	can	now	design	the
interface	layout	by	adding	arguments	to	specify	how	the	widgets	should	be	positioned.	A
horizontal	design	will	position	the	logo	Label	on	the	left,	and	on	its	right	all	six	other
Labels	in	a	row	with	both	Buttons	below	this.	The	grid	layout	manager,	which	positions
widgets	in	rows	and	columns,	can	easily	produce	this	design	by	allowing	the	logo	Label	to
span	a	row	containing	all	six	other	Labels	and	also	a	row	containing	both	Buttons.	One
Button	can	span	four	columns	and	the	other	Button	can	span	two	columns,	arranged	like
this:

The	grid	layout	manager’s	rowspan	and	columnspan	properties	work	like	the
HTML	rowspan	and	colspan	table	cell	attributes.

lotto(layout).py

Edit	the	program	started	on	the	previous	page	–	firstly	by	positioning	the	Label
containing	the	logo	in	the	first	column	of	the	first	row,	and	have	it	span	across	the
second	row
#	Geometry:

imgLbl.grid(row	=	1,	column	=	1,	rowspan	=	2)

Next,	position	a	Label	in	the	second	column	of	the	first	row	and	add	10	pixels	of
padding	to	its	left	and	right
label1.grid(row	=	1,	column	=	2,	padx	=	10)

Now,	position	a	Label	in	the	third	column	of	the	first	row	and	add	10	pixels	of
padding	to	its	left	and	right
label2.grid(row	=	1,	column	=	3,	padx	=	10)

Position	a	Label	in	the	fourth	column	of	the	first	row	and	add	10	pixels	of	padding
to	its	left	and	right
label3.grid(row	=	1,	column	=	4,	padx	=	10)

Position	a	Label	in	the	fifth	column	of	the	first	row	and	add	10	pixels	of	padding	to
its	left	and	right
label4.grid(row	=	1,	column	=	5,	padx	=	10)

Position	a	Label	in	the	sixth	column	of	the	first	row	and	add	10	pixels	of	padding
to	its	left	and	right
label5.grid(row	=	1,	column	=	6,	padx	=	10)

Position	a	Label	in	the	seventh	column	of	the	first	row	then	add	10	pixels	of
padding	to	the	left	side	of	the	Label	and	20	pixels	of	padding	to	the	right	side	of
the	Label
label6.grid(row	=	1,	column	=	7,	padx	=	(10,	20))

Next,	position	a	Button	in	the	second	column	of	the	second	row	and	have	it	span
across	four	columns
getBtn.grid(row	=	2,	column	=	2,	columnspan	=	4)

Now,	position	a	Button	in	the	sixth	column	of	the	second	row,	and	have	it	span
across	two	columns
resBtn.grid(row	=	2,	column	=	6,	columnspan	=	2)

Save	the	file	then	run	the	program	–	to	see	the	window	appear	containing	all	the
necessary	widgets	now	arranged	in	your	grid	layout	design

The	window	size	is	automatically	adjusted	to	suit	the	grid	contents	and	the	Button	widgets
are	automatically	centered	in	the	spanned	column	width.

Additional	padding	to	the	right	of	the	Label	in	the	final	column	of	the	first	row
extends	the	window	width	to	simply	create	a	small	right-hand	margin	area.

The	Buttons	will	expand	to	fit	static	text	that	will	appear	on	each	Button	face	–
specified	in	the	next	stage.

Assigning	statics
Having	arranged	all	the	necessary	widgets	in	a	grid	layout,	on	the	previous	page,	you	can
now	assign	static	values	to	the	widgets.	These	values	will	not	change	during	execution	of
the	program.

lotto(static).py

Modify	the	program	on	the	previous	page	by	inserting	a	new	section	just	before	the
final	loop	statement,	which	begins	with	a	statement	specifying	a	window	title
#	Static	Properties:

window.title(‘Lotto	Number	Picker’)

Next,	add	a	statement	to	prevent	the	user	resizing	the	window	along	both	the	X
axis	and	the	Y	axis	–	this	will	disable	the	window’s	“resize”	button
window.resizable(0,	0)

Now,	add	a	statement	to	specify	text	to	appear	on	the	face	of	the	first	Button
widget
getBtn.configure(text	=	‘Get	My	Lucky	Numbers’)

Then,	add	a	statement	to	specify	text	to	appear	on	the	face	of	the	second	Button
widget
resBtn.configure(text	=	‘Reset’)

Save	the	file	then	execute	the	program	–	to	see	the	window	now	has	a	title,	its
resize	button	is	disabled,	and	the	buttons	have	now	been	resized	to	suit	their	text

The	widget’s	configure()	method	allows	properties	to	be	subsequently	added	or
modified	after	they	have	been	created.

Loading	dynamics
Having	specified	values	for	static	properties,	on	the	facing	page,	initial	values	can	now	be
specified	for	those	properties	whose	values	will	change	dynamically	during	execution	of
the	program.

lotto(initial).py

Modify	the	program	on	the	facing	page	by	inserting	another	new	section	just
before	the	final	loop	statement,	which	specifies	that	each	small	empty	Label
should	initially	display	an	ellipsis
#	Initial	Properties:

label1.configure(text	=	‘…’)
label2.configure(text	=	‘…’)

label3.configure(text	=	‘…’)
label4.configure(text	=	‘…’)

label5.configure(text	=	‘…’)
label6.configure(text	=	‘…’)

Next,	add	a	statement	to	specify	that	the	second	Button	widget	should	initially	be
disabled
resBtn.configure(state	=	DISABLED)

Save	the	file	then	run	the	program	–	to	see	each	small	Label	now	displays	an
ellipsis	and	that	the	“Reset”	Button	has	been	disabled

Button	states	are	recognized	by	tkinter	constants	of	DISABLED	(off),	NORMAL
(on),	or	ACTIVE	(pressed).

Adding	functionality
Having	created	code	to	initialize	dynamic	properties,	on	the	previous	page,	you	can	now
add	runtime	functionality	to	respond	to	clicks	on	the	Button	widgets	during	execution	of
the	program.

lotto.py

Modify	the	program	on	the	previous	page	by	inserting	one	more	new	section	just
before	the	final	loop	statement,	which	begins	by	making	the	sample()	function
available	from	the	“random”	module
#	Dynamic	Properties:

from	random	import	sample

Next,	define	a	function	that	generates	and	assigns	six	unique	random	numbers	to
the	small	Labels	and	reverses	the	state	of	both	Buttons
def	pick()	:

nums	=	sample(range(1,	49),	6)

label1.configure(text	=	nums[0])
label2.configure(text	=	nums[1])

label3.configure(text	=	nums[2])
label4.configure(text	=	nums[3])

label5.configure(text	=	nums[4])
label6.configure(text	=	nums[5])

getBtn.configure(state	=	DISABLED)
resBtn.configure(state	=	NORMAL)

Now,	define	a	function	to	display	an	ellipsis	on	each	small	Label	and	revert	both
Buttons	to	their	initial	states
def	reset()	:

label1.configure(text	=	‘…’)
label2.configure(text	=	‘…’)

label3.configure(text	=	‘…’)
label4.configure(text	=	‘…’)

label5.configure(text	=	‘…’)
label6.configure(text	=	‘…’)

getBtn.configure(state	=	NORMAL)
resBtn.configure(state	=	DISABLED)

Then,	add	statements	to	nominate	the	relevant	function	to	be	called	when	each

Button	is	pressed	by	the	user
getBtn.configure(command	=	pick)

resBtn.configure(command	=	reset)

Finally,	save	the	file	–	the	complete	program	should	look	like	that	shown	below

These	steps	provide	comparable	functionality	to	that	of	the	console	application
here.

It	is	convention	to	place	all	import	statements	at	the	start	of	the	script	but	they
can	appear	anywhere,	as	listed	here.

Testing	programs
Having	worked	through	the	program	plan,	on	the	previous	pages,	the	widgets	needed	and
functionality	required	have	now	been	added	to	the	application	–	so	it’s	ready	to	be	tested.

Launch	the	application	and	examine	its	initial	appearance

Static	text	appears	on	the	window	title	bar	and	on	the	Button	widgets,	the	window’s	resize
button	is	disabled,	the	small	Labels	contain	their	initial	ellipsis	text	values,	and	the
“Reset”	button	is	in	its	initial	disabled	state.

Next,	click	the	“Get	My	Lucky	Numbers”	Button	widget	–	to	execute	all	the
statements	within	the	pick()	function

A	series	of	numbers	within	the	desired	range	is	displayed	and	the	Button	states	have
changed	as	required	–	a	further	series	of	numbers	cannot	be	generated	until	the	application
has	been	reset.

Make	a	note	of	the	numbers	generated	in	this	first	series	for	comparison	later

No	number	is	repeated	in	any	series	because	the	random	sample()	function
returns	a	set	of	unique	random	integers.

Click	the	“Reset”	Button	widget	–	to	execute	all	the	statements	within	the	reset()
function	and	see	the	application	resume	its	initial	appearance	as	required

Click	the	“Get	My	Lucky	Numbers”	Button	widget	again	–	to	execute	its	pick()
function	again	and	confirm	that	the	new	series	of	numbers	differ	from	the	first
series

Finally,	restart	the	application	and	click	the	“Get	My	Lucky	Numbers”	Button
widget	once	more	–	and	confirm	that	this	first	series	of	numbers	are	different	to
those	noted	in	the	first	series	when	the	application	last	ran

The	series	of	generated	numbers	are	not	repeated	each	time	the	application	gets
launched	because	the	random	generator	is	seeded	by	the	current	system	time	–
which	is	different	each	time	the	generator	gets	called.

Deploying	applications
Your	apps	developed	in	the	Python	language	can	be	deployed	on	Windows	systems	where
the	Python	interpreter	is	not	installed.	To	do	so,	all	the	program	files	must	be	“frozen”	into
a	bundle	that	includes	an	executable	(.exe)	file	to	create	a	simple	MSI	installer.	The
“cx_Freeze”	tool	is	a	free	set	of	scripts	and	modules	for	freezing	Python	programs
available	at	cx-freeze.sourceforge.net

The	cx_Freeze	tool	uses	Python’s	“distutils”	package	and	requires	a	setup	script	to
describe	your	module	distribution	in	order	to	bundle	appropriate	support	for	your
application.	The	setup	script	is	traditionally	named	setup.py	and	consists	mainly	of	a	call	to
a	cx_Freeze	setup()	function	–	supplying	information	as	parameter	pairs.	This	specifies	any
required	build	options,	such	as	image	files	or	modules	to	be	included,	and	identifies	the
executable	script	and	system	platform	type.	For	example,	the	setup	script	for	the
application	developed	throughout	this	chapter	must	include	the	logo	image	file	lotto.gif	and
specify	the	final	code	script	named	lotto.py	as	the	executable	script.	Once	cx_Freeze	is
installed,	a	setup	script	can	be	executed	from	a	Windows	Command	Prompt	with	the
argument	bdist-msi	–	to	create	a	sub-directory	named	“dist”	containing	a	distributable	MSI
installer	for	your	app.

The	cx_Freeze	tool	can	also	create	executable	files	for	Mac	and	Linux	systems.
Discover	more	on	cx_Freeze	online	at	cx_freeze.readthedocs.org	setup.py

setup.py

In	IDLE	start	a	Python	setup	script	by	making	available	the	“sys”	module	and
items	from	the	“cx_Freeze”	module
import	sys

from	cx_Freeze	import	setup,	Executable

Next,	add	statements	to	identify	the	base	platform	in	use

base	=	None
if	sys.platform	==	‘win32’	:	base	=	‘Win32GUI’

Now,	add	a	statement	listing	options	to	be	included

opts	=	{	‘include_files’	:	[‘lotto.gif’]	,	‘includes’	:	[‘re’]	}

Finally,	add	a	call	to	the	setup()	function	passing	all	information	as	parameter	pairs

http://cx-freeze.sourceforge.net
http://cx_freeze.readthedocs.org

setup(name	=	‘Lotto’,

version	=	‘1.0’,
description	=	‘Lottery	Number	Picker’,

author	=	‘Mike	McGrath’,
options	=	{	‘build_exe’	:	opts	},

executables	=	[Executable(‘lotto.py’,	base=	base)])

Save	the	setup	script	alongside	the	application	files	then	run	the	script	command	to
create	the	Windows	installer

Wait	until	the	process	creates	the	installer	in	a	“dist”	sub-directory	then	copy	the
installer	onto	portable	media,	such	as	a	USB	flash	drive

Now,	copy	the	installer	onto	another	Windows	computer	where	Python	may	not	be
present	and	run	the	installer

Then,	select	an	installation	location,	or	accept	the	suggested	default	location

When	the	installer	has	finished	copying	files,	navigate	to	your	chosen	installation
location	and	run	the	executable	file	–	to	see	the	application	launch

Lotto-1.0-win32.msi

lotto.exe

Summary
• The	standard	Python	library	has	a	random	module	that	provides	functions	to	generate

pseudo-random	numbers

• A	pseudo-random	floating-point	number	from	0.0	to	1.0	can	be	generated	by	the	random
module’s	random()	function

• Multiple	unique	random	integers	within	a	given	range	can	be	generated	by	the	random
module’s	sample()	function

• A	program	plan	should	define	the	program’s	Purpose,	required	Functionality,	and	the
Interface	widgets	needed

• In	designing	a	program	interface	the	grid()	layout	manager	positions	widgets	in	rows
and	columns

• Static	properties	do	not	change	during	execution	of	a	program

• Dynamic	properties	do	change	during	execution	of	a	program	using	runtime
functionality	to	respond	to	a	user	action

• Upon	completion,	a	program	should	be	tested	to	ensure	it	performs	as	expected	in
every	respect

• Program	files	can	be	“frozen”	into	a	bundle	for	distribution	to	other	computers	where
the	Python	interpreter	is	not	present

• The	cx_Freeze	tool	uses	Python’s	“disutils”	package	to	freeze	programs	into
executables	for	Windows,	Mac,	or	Linux

• A	setup	script	describes	your	module	distribution	so	cx_Freeze	will	bundle	appropriate
support	for	the	application

• Traditionally,	a	setup	script	is	named	setup.py	and	consists	mainly	of	a	call	to	the
cx_Freeze	setup()	function

• Applications	can	be	deployed	on	Windows	systems	using	the	cx_Freeze	tool	to	create	a
simple	installer

• When	a	setup	script	is	executed	with	the	bdist_msi	command	an	MSI	installer	is	created
that	will	copy	the	distribution	bundle	onto	the	host	computer,	including	an	executable
file

13
Transferring	skills

This	chapter	demonstrates	similarities	and	differences	in	coding	various	popular
programming	languages.

Understanding	compilers
Compiling	code
Coding	C
Coding	C++
Coding	C#
Coding	Java
Summary

Understanding	compilers
Modern	apps	are	coded	in	“high-level”	languages	that	provide	a	high	level	of	abstraction
between	machine	code,	which	is	understood	by	computers,	and	source	code	that	is	human-
readable.	In	order	to	run	programs	the	source	code	must	first	be	rendered	into	machine
code	that	the	computer	can	execute.	This	process	is	accomplished	either	by	an
“interpreter”	or	by	a	“compiler”	depending	upon	the	language	in	which	the	program	is
written.

The	Python	programming	language,	used	for	demonstration	throughout	the	previous
chapters	of	this	book,	uses	an	interpreter	to	translate	program	source	code.	As	a	program
proceeds,	the	interpreter	dynamically	translates	its	functions	and	statement	code	objects
into	“bytecode”.	The	bytecode	can	then	be	executed	via	Python’s	bytecode	interpreter
(a.k.a	“Virtual	Machine”	or	“VM”).

Often	languages	that	employ	an	interpreter	are	referred	to	as	“interpreted
languages”	and	those	that	use	a	compiler	are	referred	to	as	”compiled
languages”.

Other	programming	languages	that	employ	an	interpreter	to	translate	source	code	into
bytecode	for	execution	by	the	computer	via	their	virtual	machine	include	Java	and	Ruby.

Traditional	programming	languages,	such	as	the	C	language,	use	a	compiler	to	convert
program	source	code	into	machine	code.	Compilation	takes	the	entire	source	code	and	first
generates	intermediate	“object	code”	representing	the	program’s	functions	and	statements
in	binary	machine	code	format.	The	compiler	then	combines	the	object	code	into	a	single
binary	machine	code	file	(.exe)	that	can	be	executed	directly	by	the	computer.

Notice	that	the	Virtual	Machine	(VM)	must	be	present	on	the	user’s	computer	to
execute	those	programs	written	in	interpreted	languages.

Other	programming	languages	that	employ	a	compiler	to	convert	source	code	into
machine	code	for	direct	execution	by	the	computer	include	C++	(“C	plus	plus”)	and	C#	(
“C	sharp”).

There	are,	therefore,	fundamental	differences	in	the	way	programs	written	in	“interpreted
languages”,	such	as	Python,	and	“compiled	languages”	such	as	the	C	language,	are
executed	by	the	computer.	Each	offers	some	advantages	and	disadvantages	in	terms	of
performance	and	portability,	as	listed	in	the	table	below:

Interpreter: Compiler:

Takes	individual	code	objects	as	input	for	translation Takes	the	entire	source	code	as	input	for
conversion

Does	not	generate	intermediate	object	code Does	generate	intermediate	object	code

Executes	conditional	control	statements	slowly Executes	conditional	control	statements	quickly

Requires	little	memory	as	object	code	is	not	generated Requires	more	memory	as	object	code	is
generated

Translates	the	source	code	every	time	the	program	runs Converts	the	source	code	once	during
compilation

Reports	any	errors	immediately	when	they	occur	in	a
statement

Reports	any	errors	only	after	an	attempt	to
compile	the	entire	source	code

Programs	run	slower	while	code	objects	get	individually
translated	to	machine	code

Programs	run	faster	while	machine	code	runs
directly	on	the	computer

Distributed	programs	are	human-readable	source	code
so	are	easy	to	modify

Distributed	programs	are	compiled	machine	code
so	are	difficult	to	modify

Offers	poorer	protection	of	intellectual	property	rights Programs	run	faster	while	machine	code	runs
directly	on	the	computer

Don’t	be	confused	by	Java	programs.	They	are	“compiled”	into	bytecode	as	a
distributable	(.class)	file	that	nonetheless	require	the	Java	VM	bytecode
interpreter	to	run.

Compiling	code
To	more	fully	understand	the	compilation	process	it	is	useful	to	examine	in	detail	the
compilation	of	a	simple	C	language	program.	In	producing	an	executable	file	from	an
original	C	source	code	file	the	compilation	process	actually	undergoes	four	separate
stages,	which	each	generate	a	new	file:

• Preprocessing	–	the	preprocessor	stage	first	substitutes	all	“preprocessor”	directives,
such	as	statements	to	import	libraries,	with	the	actual	library	code.	For	instance,	in	the
C	language	the	library	code	is	substituted	for	#include	import	directives.	The	generated
file	containing	the	substitutions	is	in	text	format	and	typically	has	a	.i	file	extension

• Translating	–	the	compiler	stage	translates	the	high-level	instructions	in	the	.i	file	into
low-level	Assembly	language	instructions.	The	generated	file	containing	the
translation	is	in	text	format	and	typically	has	a	.s	file	extension

• Assembling	–	the	assembler	stage	converts	the	Assembly	language	text	instructions	in
the	.s	file	into	machine	code.	The	generated	object	file	containing	the	conversion	is	in
binary	format	and	typically	has	a	.o	file	extension

• Linking	–	the	linker	stage	combines	one	or	more	binary	object	.o	files	into	a	single
executable	file.	The	generated	file	is	in	binary	format	and	typically	has	a	.exe	file
extension

Strictly	speaking,	“compilation”	describes	the	first	three	stages	above,	which	operate	on	a

single	source	code	text	file	and	ultimately	generate	a	single	binary	object	file.	Where	the
program	source	code	contains	syntax	errors,	such	as	a	missing	statement	terminator	or	a
missing	parenthesis,	they	will	be	reported	by	the	compiler	and	compilation	will	fail.

The	linker,	on	the	other	hand,	can	operate	on	multiple	object	files	and	ultimately	generates
a	single	executable	file.	This	allows	the	creation	of	large	programs	from	modular	object
files	that	may	each	contain	re-usable	functions.	Where	the	linker	finds	a	function	of	the
same	name	defined	in	multiple	object	files	it	will	report	an	error	and	the	executable	file
will	not	be	created.

Normally,	the	temporary	files	created	during	the	intermediary	stages	of	the	compilation
process	are	automatically	deleted,	but	the	GNU	C	Compiler	(gcc)	provides	a	-save-temps
option	in	the	compiler	command	that	allows	them	to	be	saved	for	inspection.

For	a	simple	“Hello	World!”	program	in	the	C	language,	type	a	command	gcc
hello.c	-save-temps	-o	hello.exe	then	hit	Return	to	compile	and	save	the	temporary
files

Open	the	hello.i	file	in	a	plain	text	editor,	such	as	Windows’	Notepad,	to	see	the
source	code	appear	at	the	very	end	of	the	file	–	preceded	by	substituted	library
code

Now,	open	the	hello.s	file	in	a	plain	text	editor	to	see	the	translation	into	low-level
Assembly	code	and	note	how	unfriendly	that	appears	in	contrast	to	high-level	code

In	the	command	here,	gcc	invokes	the	compiler,	the	source	code	file	is	hello.c,
and	-o	hello.exe	specifies	the	executable	file	to	be	output.

A	complete	example	demonstrating	how	to	code	and	compile	programs	in	the	C
programming	language	is	provided	overleaf.

Coding	C
The	coding	data	structures	and	control	structures	described	and	demonstrated	throughout
this	book	in	the	Python	programming	language	also	exist	in	other	programming	languages.
Your	skills	gained	with	Python	coding	can	be	transferred	to	other	languages,	such	as	the	C
programming	language,	by	recognizing	similarities.	The	C	programming	language
originated	way	back	in	the	1970s	and	is	designed	to	be	easily	compiled	to	low-level
machine	code.	Its	efficiency	makes	it	suitable	for	a	wide	range	of	applications	in
everything	from	embedded	systems	to	operating	systems.

The	simple	Guessing	Game	program,	described	in	Python	code	here	and	here,	can	be
recreated	in	a	similar	C	equivalent.

guess.c

Start	a	new	C	program	by	importing	libraries	to	make	input-output,	random
number,	and	time	functions	available
#include	<stdio.h>

#include	<stdlib.h>
#include	<time.h>

Next,	define	a	“main”	function	body	that	will	enclose	the	entire	game	code	and
return	a	zero	value	on	completion
int	main()

{
/*	Statements	to	be	added	here	*/

return	0	;
}

Now,	add	statements	to	initialize	variables	with	a	random	number	in	the	range	1-
20,	a	Boolean	true,	and	an	integer
srand(time(NULL))	;

int	num	=	(rand()	%	20)	+	1	;
int	flag	=	1	;

int	guess	=	0	;

Add	a	statement	to	request	user	input

printf(“Guess	my	number	1-20	:	“)	;

Then,	add	a	loop	statement	that	reads	input	into	the	integer	variable	and	will
enclose	a	conditional	test
while	(flag	==	1)

{

scanf(“%d”	,	&guess)	;	fflush(stdin)	;
/*	Conditional	test	to	be	added	here	*/

}

This	C	program	will	accept	floating-point	guesses	as	their	value	gets	truncated	to
an	integer	in	the	assignment	to	the	guess	variable.

Finally,	add	a	conditional	test	inside	the	loop	then	save,	compile,	and	run	the
program
if(guess	==	0)
{

printf(“Invalid!	Enter	only	digits	1-20\n”)	;
break	;

}
else	if	(guess	<	num)	{	printf(“Too	low,	try	again	:	“)	;	}

else	if	(guess	>	num)	{	printf(“Too	high,	try	again	:	“)	;	}
else

{
printf(“Correct…	My	number	is	%d	\n”	,	num)	;

flag	=	0	;
}

The	GNU	C	Compiler	(gcc)	is	widely	used	and	is	freely	available	as	part	of	the
Minimalist	GNU	for	Windows	(MinGW)	package	from
sourceforge.net/projects/mingw	For	installation	instructions	and	other	help	refer
to	the	documentation	at	mingw.org/wiki

http://sourceforge.net/projects/mingw
http://mingw.org/wiki

Guessing	Game	in	C	–	program	comparison

• Library	functions	are	made	available	in	C	programs	with	an	#include	directive,	like
using	Python’s	import	keyword

• C	programs	always	have	a	main()	function	that	gets	called	automatically	whenever	the
program	runs

• Statements	in	C	programs	are	grouped	inside	{	}	braces

• Variables	in	C	are	not	loosely	typed	so	their	data	type,	such	as	int	(integer),	must	be
defined	in	their	declaration

• The	end	of	each	statement	in	C	must	be	denoted	with	a	;	semi-colon	character	–	tabs
and	spaces	are	irrelevant

• Control	structures	in	C	programs	use	if	,	else,	and	while	keywords	–	in	much	the	same
way	as	Python	programs

Coding	C++
The	coding	data	structures	and	control	structures	described	and	demonstrated	throughout
this	book	in	the	Python	programming	language	also	exist	in	the	C++	programming
language.	Your	skills	gained	with	Python	coding	can	be	transferred	to	that	language	by
recognizing	its	similarities	to	Python	code.	The	C++	programming	language	originated
back	in	the	1980s	as	an	enhancement	of	the	C	language,	known	as	“C	with	classes”.	These
classes	define	programming	objects	that	transform	the	procedural	nature	of	C	for	object-
oriented	programming	in	C++.

The	simple	Guessing	Game	program,	described	in	Python	code	here	and	here,	can	be
recreated	in	a	similar	C++	equivalent.

guess.cpp

Start	a	new	C++	program	by	importing	libraries	to	make	input-output,	random
number,	and	time	functions	available
#include	<iostream>

#include	<cstdlib>
#include	<ctime>

Next,	define	a	“main”	function	body	that	will	enclose	the	entire	game	code	and
return	a	zero	value	on	completion
int	main()

{
/*	Statements	to	be	added	here	*/

return	0	;
}

Now,	add	statements	to	initialize	variables	with	a	random	number	in	the	range	1-
20,	a	Boolean	true,	and	an	integer
srand(time(0))	;

int	num	=	(rand()	%	20)	+	1	;
bool	flag	=	true	;

int	guess	=	0	;

Add	a	statement	to	request	user	input

std::cout	<<	“Guess	my	number	1-20	:	“	;

Then,	add	a	loop	statement	that	reads	input	into	the	integer	variable	and	will
enclose	a	conditional	test
while	(flag	==	1)

{

std::cin	>>	guess	;	std::cin.ignore(256	,	‘\n’)	;
/*	Conditional	test	to	be	added	here	*/

}

This	C++	program	will	accept	floating-point	guesses	as	their	value	gets	truncated
to	an	integer	in	the	assignment	to	the	guess	variable.

Finally,	add	a	conditional	test	inside	the	loop	then	save,	compile,	and	run	the
program
if(guess	==	0)	{

std::cout	<<	“Invalid!	Enter	only	digits	1-20\n”	;

break	;
}

else	if	(guess	<	num)	{
std::cout	<<	“Too	low,	try	again	:	“	;	}

else	if	(guess	>	num)	{
std::cout	<<	“Too	high,	try	again	:	“	;	}

else	{
std::cout	<<	“Correct…	My	number	is	”	<<	num	<<	“\n”	;

flag	=	0	;
}

The	Minimalist	GNU	for	Windows	(MinGW)	package	from
sourceforge.net/projects/mingw	also	optionally	provides	a	compiler	for	C++
code.	In	the	command	here	c++	invokes	the	compiler,	the	source	code	file	is
guess.cpp,	and	-o	guessplus.exe	specifies	the	executable	file	to	be	output.
Guessing	Game	in	C++	–	program	comparison

http://sourceforge.net/projects/mingw

• Library	functions	are	made	available	in	C++	programs	with	an	#include	directive,	like
using	Python’s	import	keyword

• C++	programs	always	have	a	main()	function	that	gets	called	automatically	whenever
the	program	runs

• Statements	in	C++	programs	are	grouped	inside	{	}	braces

• Variables	in	C++	are	not	loosely	typed	so	their	data	type,	such	as	int	(integer),	must	be
defined	in	their	declaration

• The	end	of	each	statement	in	C++	must	be	denoted	with	a	;	semi-colon	character	–	tabs
and	spaces	are	irrelevant

• Control	structures	in	C++	programs	use	if,	else,	and	while	keywords	–	in	much	the	same
way	as	Python	programs

Coding	C#
The	coding	data	structures	and	control	structures	described	and	demonstrated	throughout
this	book	in	the	Python	programming	language	also	exist	in	the	C#	programming
language.	Your	skills	gained	with	Python	coding	can	be	transferred	to	that	language	by
recognizing	its	similarities	to	Python	code.	The	C#	programming	language	was	developed
by	Microsoft	for	its	.NET	initiative.	Programs	in	C#	require	the	Common	Language
Runtime	(CLR)	to	be	installed	on	the	host	computer	to	produce	machine	code	at	runtime	–
a	process	known	as	“Just-In-Time”	(JIT)	compilation.

The	simple	Guessing	Game	program,	described	in	Python	code	here	and	here,	can	be
recreated	in	a	similar	C#	equivalent.

guess.cs

Start	a	new	C#	program	by	importing	the	namespace	to	make	input-output	and
random	number	functions	available
using	System	;

Next,	define	a	class	structure	to	enclose	the	entire	game	code	within	a	“Main”
function
class	Guess

{
static	void	Main()

{
/*	Statements	to	be	added	here	*/

}
}	;

Now,	add	statements	to	initialize	variables	with	a	random	number	in	the	range	1-
20,	a	Boolean	true,	and	an	integer
Random	generator	=	new	Random()	;

int	num	=	generator.Next(1	,	20	+	1)	;
bool	flag	=	true	;

int	guess	=	0	;

Add	a	statement	to	request	user	input

Console.WriteLine(“Guess	my	number	1-20	:	“)	;

Then,	add	a	loop	statement	that	reads	input	into	the	integer	variable	and	will
enclose	a	conditional	test
while	(flag	==	true)

{

int.TryParse(Console.ReadLine()	,	out	guess)	;
/*	Conditional	test	to	be	added	here	*/

}

This	C#	program	will	not	accept	floating-point	guesses	as	they	are	intelligently
recognized	as	non-integers	by	the	int.TryParse()	function.

Finally,	add	a	conditional	test	inside	the	loop	then	save,	compile,	and	run	the
program
if(guess	==	0)	{

Console.Write(“Invalid!	Enter	only	digits	1-20\n”)	;

break	;
}

else	if	(guess	<	num)	{
Console.Write(“Too	low,	try	again	:	“)	;	}

else	if	(guess	>	num)	{
Console.Write(“Too	high,	try	again	:	“)	;	}

else	{
Console.Write(“Correct…	My	number	is	”	+	num	+	“\n”)	;

flag	=	false	;
}

The	Visual	Studio	Community	IDE	is	a	great	development	environment	for	C#
programming.	It	is	available	free	from	visualstudio.com	and	includes	the	C
Sharp	Compiler	(csc.exe).	In	the	command	here	csc	invokes	the	compiler,	/out:
guesssharp.exe	specifies	the	executable	file	to	be	output,	and	the	source	code

http://visualstudio.com

file	is	named	guess.cs.
Guessing	Game	in	C#	–	program	comparison

• Library	functions	are	made	available	in	C#	programs	with	a	using	directive,	like	using
Python’s	import	keyword

• C#	programs	always	have	a	class	structure	enclosing	a	Main()	function	that	gets	called
automatically	when	the	program	runs

• Statements	in	C#	programs	are	grouped	inside	{	}	braces

• Variables	in	C#	are	not	loosely	typed	so	their	data	type,	such	as	bool	(Boolean),	must	be
defined	in	their	declaration

• The	end	of	each	statement	in	C#	must	be	denoted	with	a	;	semi-colon	character	–	tabs
and	spaces	are	irrelevant

• Control	structures	in	C#	programs	use	if,	else,	and	while	keywords	–	in	much	the	same
way	as	Python	programs

Coding	Java
The	coding	data	structures	and	control	structures	described	and	demonstrated	throughout
this	book	in	the	Python	programming	language	also	exist	in	the	Java	programming
language.	Your	skills	gained	with	Python	coding	can	be	transferred	to	that	language	by
recognizing	its	similarities	to	Python	code.	The	Java	programming	language	has	the
admirable	mantra	“write	once	–	run	anywhere”.	Programs	in	Java	require	the	Java
Runtime	Environment	(JRE)	to	be	installed	on	the	host	computer	to	produce	machine
code	at	runtime	–	a	process	known	as	“Just-In-Time”	(JIT)	compilation.

The	simple	Guessing	Game	program,	described	in	Python	code	here	and	here,	can	be
recreated	in	a	similar	Java	equivalent.

Guess.java

Start	a	new	Java	program	by	defining	a	class	structure	to	enclose	the	entire	game
code	within	a	“main”	function
class	Guess

{
public	static	void	main(String[]	args)

{
/*	Statements	to	be	added	here	*/

}
}	;

Now,	add	statements	to	initialize	variables	with	a	random	number	in	the	range	1-
20,	a	Boolean	true,	and	an	integer
int	num	=	(int)	(Math.random()	*	20	+	1)	;

boolean	flag	=	true	;
int	guess	=	0	;

Add	a	statement	to	request	user	input

System.out.print(“Guess	my	number	1-20	:	“)	;

Then,	add	a	loop	statement	that	reads	input	into	the	integer	variable	and	will
enclose	a	conditional	test
while	(flag	==	true)

{
try	{

guess	=	Integer.parseInt(System.console().readLine())	;	}
catch	(NumberFormatException	ex)	{	}

/*	Conditional	test	to	be	added	here	*/

}

This	Java	program	will	not	accept	floating-point	guesses	as	they	are	recognized
as	non-integers	by	the	function	Integer.parseInt().

Finally,	add	a	conditional	test	inside	the	loop	then	save,	compile,	and	run	the
program
if(guess	==	0)	{

System.out.println(“Invalid!	Enter	only	digits	1-20”)	;
break	;

}
else	if	(guess	<	num)	{

System.out.print(“Too	low,	try	again	:	“)	;	}
else	if	(guess	>	num)	{

System.out.print(“Too	high,	try	again	:	“)	;	}
else	{

System.out.println(“Correct…	My	number	is	”	+	num)	;
flag	=	false	;

}

The	Java	Development	Kit	(JDK)	is	needed	to	create	Java	programs.	It	is
available	free	from	oracle.com	and	includes	the	command-line	Java	Compiler
(javac.exe).	In	the	command	here	javac	invokes	the	compiler	for	Guess.java

http://oracle.com

source	code	and	will	automatically	output	an	executable	file	named	Guess.exe.
This	can	then	be	run	by	the	JRE	using	the	java	command.
Guessing	Game	in	Java	–	program	comparison

• Input-output	and	random	number	functions	are	readily	available	in	Java	programs
without	import	statements

• Java	programs	always	have	a	class	structure	enclosing	a	main()	function	that	gets	called
automatically	when	the	program	runs

• Statements	in	Java	programs	are	grouped	inside	{	}	braces

• Variables	in	Java	are	not	loosely	typed	so	their	data	type,	such	as	boolean,	must	be
defined	in	their	declaration

• The	end	of	each	statement	in	Java	must	be	denoted	with	a	;	semi-colon	character	–	tabs
and	spaces	are	irrelevant

• Control	structures	in	Java	programs	use	if,	else,	and	while	keywords	–	in	much	the	same
way	as	Python	programs

Summary
• Modern	programming	languages,	like	Python	or	C,	provide	a	high	level	of	abstraction

from	low	level	machine	code

• Human-readable	high-level	source	code	can	be	rendered	into	low-level	machine	code
by	an	interpreter	or	by	a	compiler

• Interpreted	programming	languages,	such	as	Python,	translate	source	code	into
bytecode,	which	can	then	be	executed	via	their	Virtual	Machine	bytecode	interpreter

• Compiled	programming	languages,	such	as	C,	generate	intermediate	object	code	that
gets	combined	into	machine	code,	which	can	then	be	executed	directly	on	the
computer

• The	compilation	of	a	C	program	translates	high-level	source	code	into	low-level
Assembly	language	then	machine	code

• Intermediate	files	generated	during	the	compilation	process	are	normally	deleted
automatically	by	the	compiler

• The	data	structures	and	control	structures	used	in	Python	also	exist	in	the	C,	C++,	C#,
and	Java	programming	languages	–	so	programming	skills	are	transferrable	across
languages

• Compiled	programming	languages,	such	as	C,	have	a	main	function	that	is	called
automatically	when	the	program	runs

• Statements	in	many	programming	languages	are	grouped	within	{	}	braces	and	must	end
with	a	;	semi-colon

• Programming	languages	that	have	strongly	typed	variables	require	the	data	type	that
the	variable	may	contain,	such	as	int	integer,	to	be	defined	in	the	variable	declaration

• Like	Python,	other	programming	languages	can	also	import	functionality	from	their
libraries

• C#	programs	require	the	Common	Language	Runtime	(CLR)	to	be	installed	to	produce
machine	code	at	runtime

• Java	programs	require	the	Java	Runtime	Environment	(JRE)	to	be	installed	to	produce
machine	code	at	runtime

	Title
	Copyright
	Contents
	Preface
	1 Getting started
	Programming code
	Setting up
	Exploring IDLE
	Getting help
	Saving programs
	Storing values
	Adding comments
	Naming rules
	Summary

	2 Saving data
	Storing input
	Controlling output
	Recognizing types
	Converting data
	Guessing game
	Correcting errors
	Summary

	3 Performing operations
	Doing arithmetic
	Assigning values
	Comparing values
	Finding truth
	Testing condition
	Setting order
	Summary

	4 Making lists
	Writing lists
	Changing lists
	Fixing lists
	Setting lists
	Naming elements
	Summary

	5 Controlling blocks
	Branching choices
	Counting loops
	Looping conditions
	Skipping loops
	Catching errors
	Summary

	6 Creating functions
	Defining blocks
	Adding parameters
	Returning results
	Storing functions
	Importing functions
	Summary

	7 Sorting algorithms
	Copying sorts
	Selecting sorts
	Inserting sorts
	Bubbling sorts
	Merging sorts
	Partitioning sorts
	Summary

	8 Importing libraries
	Inspecting Python
	Doing mathematics
	Calculating decimals
	Telling time
	Running timers
	Summary

	9 Managing text
	Manipulating strings
	Formatting strings
	Modifying strings
	Accessing files
	Manipulating content
	Updating content
	Summary

	10 Programming objects
	Defining classes
	Copying instances
	Addressing properties
	Deriving classes
	Overriding methods
	Applying sense
	Summary

	11 Building interfaces
	Launching interfaces
	Responding buttons
	Displaying messages
	Gathering entries
	Listing options
	Polling radios
	Checking boxes
	Adding images
	Summary

	12 Developing apps
	Generating randoms
	Planning needs
	Designing layout
	Assigning statics
	Loading dynamics
	Adding functionality
	Testing programs
	Deploying applications
	Summary

	13 Transferring skills
	Understanding compilers
	Compiling code
	Coding C
	Coding C++
	Coding C#
	Coding Java
	Summary

	Back Cover

