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PROBLEM 1.1  
 
 
FIND:   Explain the hierarchy of standards. Explain the term standard. Cite example. 

SOLUTION  
The term standard refers to an object or instrument, a method or a procedure that provides a 
value of an acceptable accuracy for comparison.  
A primary standard defines the value of the unit to which it is associated.  Secondary 
standards, while based on the primary standard, are more readily accessible and amenable 
for use in a calibration. There is a hierarchy of secondary standards: A transfer standard 
might be maintained by a national standards lab (such as NIST in the United States) to 
calibrate industrial “laboratory standards”. It is costly and time-consuming to certify a 
laboratory standard, so they are treated carefully and not used too regularly. A laboratory 
standard would be maintained by a company to be used to certify a more common in-house 
reference called the working standard. A working standard would be calibrated against the 
laboratory standard. The working standard is used on a more regular basis to calibrate 
everyday measurement devices or products being manufactured. Working standards are more 
the norm for most of us. A working standard is simply the value or instrument that we 
assume is correct in checking the output operation of another instrument. 
Example: A government lab maintains the primary standard for pressure. It calibrates a an 
instrument called a “deadweight tester” (see C9 discussion) for high pressure calibrations. 
These form its transfer standard for high pressure. A company that makes pressure 
transducers needs an in-house standard to certify their products. They purchase two 
deadweight testers. They send one tester to the national lab to be calibrated; this becomes 
their laboratory standard. On return, they use it to calibrate the other; this becomes their 
working standard. They test their manufactured transducers using the working standard – 
usually at one or two points over the transducer range to assure that it is working. Because 
the working standard is being used regularly, it can go out of calibration.  Periodically, they 
check the working standard calibration against the laboratory standard. 
See ASME PTC 19.2 Pressure Measurements for a further discussion. 

 
A test standard defines a specific procedure that is to be followed.  

 
 
 



PROBLEM 1.2 
 
FIND: Why calibrate? What does calibrated mean? 

SOLUTION: 
 
The purpose of a calibration is to evaluate and document the accuracy of a measuring device. 
A calibration should be performed whenever the accuracy level of a measured value must be 
ascertained.  

 
An instrument that has been calibrated provides the engineer a basis for interpreting the 
device’s output indication. It provides assurance in the measurement. Besides this purpose, a 
calibration assures the engineer that the device is working as expected. 

 
A periodic calibration of measuring instruments serves as a performance check on those 
instruments and provides a level of confidence in their indicated values. A good rule is to 
calibrate measuring systems annually or more often as needed. 

 
ISO 9000 certifications have strict rules on calibration results and the frequency of 
calibration.  



 

PROBLEM 1.3 
 
FIND:  Suggest methods to estimate the accuracy and random and systematic errors  of a 
dial thermometer.  

SOLUTION: 
 
Random error is related to repeatability: how closely an instrument indicates the same value. 
So a method that repeatedly exposes the instrument to one or more known temperatures 
could be developed to estimate the random error. This is usually stated as a statistical 
estimate of the variation of the readings. An important aspect of such a test is to include 
some mechanism to allow the instrument to change its indicated value following each 
reading so that it must readjust itself.  

 
For example, we could place the instrument in an environment of constant temperature and 
note its indicated value and then move the instrument to another constant temperature 
environment and note its value there. The two chosen temperatures could be representative of 
the range of intended use of the instrument. By alternating between the two constant 
temperature environments, differences in indicated values within each environment would be 
indicative of the precision error to be expected of the instrument at that temperature. Of 
course, this assumes that the constant temperatures do indeed remain constant throughout the 
test and the instrument is used in an identical manner for each measurement.  
 

Systematic error is a fixed offset. In the absence of random error, this would be how closely 
the instrument indicates the correct value. This offset would be present in every reading. So 
an important aspect of this check is to calibrate it against a value that is at least as accurate as 
you need. This is not trivial. 

 
For example, you could use the ice point (0oC) as a check for systematic error. The ice point 
is formed from a carefully prepared bath of solid ice and liquid water. As another check, the 
melting point of a pure substance, such as silver, could be used. Or easier, the steam point. 

 
Accuracy requires a calibration to assess both random and systematic errors. If in the 
preceding test the temperatures of the two constant temperature environments were known, 
the above procedure could serve to establish the systematic error, as well as random error of 
the instrument. To do this: The difference between the average of the readings obtained at 
some known temperature and the known temperature would provide an estimate of the 
systematic error.  
 



 

PROBLEM 1.4 
 
FIND:  Discuss interference in the test of Figure 1.3 

SOLUTION : 
 
In the example described by Figure 1.3, tests were run on different days on which the local 
barometric pressure had changed. Between any two days of different barometric pressure, the 
boiling point measured would be different – this offset is due to the interference effect of the 
pressure.  
 
Consider a test run over several days coincident with the motion of a major weather front 
through the area. Clearly, this would impose a trend on the dataset. For example, the 
measured boiling point may be seem as increasing from day to day. 
 
By running over random days separated by a sufficient period of days, so as not to allow any 
one atmospheric front to impose a trend on the data, the effects of atmospheric pressure can 
be broken up into noise. The measured boiling point might then be high one test but then low 
on the next, in effect, making it look like random data scatter, i.e. noise.  
 
 



PROBLEM 1.5 
 
FIND:  How does resolution affect accuracy?  

SOLUTION  
 

The resolution of a scale is defined by the least significant increment or division on the 
output display. Resolution affects a user's ability to resolve the output display of an 
instrument or measuring system.  

 
Consider a simple experiment to show the effects of resolution. Under some fixed condition, 
ask several competent, independent observers to record the indicated value from a 
measurement system. Collect the results – this becomes your dataset. Because the indicated 
value is the same for each observer, the scatter in your dataset will be close to the value of 
the resolution of the measurement system.  

 
Data scatter contributes to the random error. As such, the output resolution of a measurement 
system forms a lower limit as to the random error to be expected.  
 

The resolution would not contribute to systematic error. Systematic error is an offset. 



PROBLEM 1.6 
 
 

FIND: How does hysteresis affect accuracy?  

SOLUTION 
 
Hysteresis error is the difference between the values indicated by a measurement system 
when the value measured is increasing in value as opposed to when it is decreasing in value; 
this despite the fact that the value being measured is actually the same for either case.  
A common cause of hysteresis in analog instruments is friction in the moving parts. This can 
cause the output indicator to 'stick'. In digital instruments, hysteresis can be caused by the 
discretization. 

If hysteresis error is ignored, the effect on any single measurement can be seen as a 
systematic error. On multiple measurements in any one direction, the effect can be to impose 
a 'trend' on the data set. The use of randomization methods can break up the trends 
incorrectly implied by hysteresis effects. Randomization makes systematic errors behave as 
random errors, which are more easily interpreted. If randomization methods are not used, the 
hysteresis effect behaves as a systematic error.  

 
 
 
 
 
 
 

PROBLEM 1.7 
 
 
 
SOLUTION 
 
This problem is open-ended and has no unique solution. We suggest that the instructor use 
this Problem as the basis for an in-class or small group discussion.



 

PROBLEM 1.8 
 
FIND:  Identify measurement stages for each device.  

SOLUTION  

a)  thermostat  
 

Sensor/transducer: bimetallic thermometer  
Output: displacement of thermometer tip  
Controller: mercury contact switch (open:furnace off; closed:furnace on)  

b)  speedometer  

Method 1: 

Sensor: usually a mechanically coupled cable  
Transducer: typically a dc generator that is turned by the cable producing an electrical 
signal  
Output: typically a pointer/scale (note: often a galvanometer is used to convert the 
electrical signal in a mechanical rotation of the pointer)  
Method 2:  

Sensor: A magnet attached to the rotating shaft 
Transducer: A Hall Effect device that is stationary but detects each sensor passage by 
creating voltage pulse 
Signal Conditioning: A pulse counting circuit; maybe also digital-analog converter (if 
analog readout is used) 
Output: An analog or digital readout calibrated to convert pulses per minute to kph or 
mph. 

 

c) Portable CD Stereo Player 
 

Sensor: laser with optical reader (reflected light signal differentiates between a "1" and 
"0")  

Transducer: digital register (stores digital information for signal conditioning) 
Signal conditioning: digital-to-analog converter and amplifier (converts digital numbers 

to voltages and amplifies the voltage) 
Output: headset/speaker (note: the headeset/speaker is a second transducer in this system 

converting an electrical signal back to a mechanical displacement)  
 



 
 

d) anti-lock braking system 
 

Sensor: brake activation switch senses brakes 'on'; encoder counts wheels revolutions per 
unit time  

Signal conditioning: timing circuit  
Output: a feedback signal that pulsates brake action overriding the driver's constant pedal 

pressure 
 

e) audio speaker  
 

Sensor: coil (to which the input terminals are connected) 
Transducer: coil-magnet-speaker cone that acts as a miniature electrical dc motor 

responding to changes in current applied. 
Output: speaker cone displacement  



 

PROBLEM 1.9 
 
KNOWN: Data of Table 1.5  

FIND:  input range, output range  

SOLUTION  
By inspection  

0.5 ≤ x ≤100 cm  

0.4 ≤ y ≤ 253.2 V  
The input range (x) is from 0.5 to 100 cm. The output range (y) is from 0.4 to 253.2V. The 
corresponding spans are given by  

ri = 99.5 cm  

ro = 252.8 V  

COMMENT  
Note that each answer has units shown. By themselves, numerical answers are meaningless. 
Always show units for data, for each step of data reduction and in all reported results.  
 
 



PROBLEM 1.10 
 
KNOWN: Data set of Table 1.5  

FIND:   Discuss advantages of different plot formats for this data  

SOLUTION:  
Both rectangular and log-log plots are shown below.  
Rectangular grid (left plot below):  

An advantage of this format is that is displays the data clearly as having a non-linear 
relationship. The data trend, while not immediately quantifiable, is established.  

A disadvantage with this data set is that the poor resolution at low x values makes 
quantification at low values difficult.  

Log-log grid (right plot below):  
An advantage of this format with this particular data set is that the data display a linear 
relationship of the form: log y = m log x  + log b. This tells us that the data have the 
relationship, y = bxm. Because of these facts, resolution is equally good over the whole scale.  

A disadvantage with this format is that one must remember the data has been conditioned to 
look linear. We are no longer plotting x versus y. This is particularly important to remember 
when attempting to find the slope of y against x.  
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PROBLEM 1.11 

 
KNOWN:  Calibration data of Table 1.5  

FIND:   K  at x = 5, 10, 20 cm  

SOLUTION:  
The data reveal a linear relation on a log-log plot suggesting y = bxm.  That is: 
           log y = log (bxm) = log b  +  m log x        or  
            Y    =  B     +   mX  
 
From the plot, B = 0, so that b = 1, and m = 1.2. Thus, we find from the calibration the 
relationship  

y = x1.2  
Because  K = [dy/dx]x = 1.2x0.2, we obtain  

          x [cm]     K [V/cm]  
           5          1.66  
          10          1.90  
          20          2.18  
 
 
We should expect that errors would 
propagate with the same sensitivity as the 
data. Hence for y=f(x), as sensitivity 
increases, the influence of the errors on y 
due to errors in x between would increase. 

 

COMMENT  
A common shortcut is to use the approximation that  

dy/dx = lim x→0 ∆y/∆x  
This approximation is valid only for very small changes in x, otherwise errors result. This is a 
common mistake. An important aspect of this problem is to draw attention to the fact that 
many measurement systems may have a static sensitivity that is dependent on input value. 
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PROBLEM 1.12 
 
KNOWN:  Sequence calibration data set of Table 1.6  

ri = 5 mV  
ro = 5 mV  

 
FIND:    %(eh)max  
SOLUTION  

By inspection of the data, the maximum hysteresis occurs at x = 3.0. For this case,  
eh = (eh)max = yup - ydown  

= 0.2 mV   or  
 

%(eh)max = 100 x (0.2 mV/5 mV)  
= 4%  
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Problem 1.13 

 
KNOWN: Comparison of three clock outputs with standard time  

FIND:  Discuss estimated accuracy  

SOLUTION  
 

Clock A shows a bias error of 2:23 s. The bias would appear to be increasing at a rate of 1 
s/hr. However, clock resolution is 1 s which by itself can lead to precision error (data scatter) 
of ± ½ s; this can create the situation noted here. Another reading would clarify this.  
Clock B shows a bias error of 5 s. There does not appear to be any precision error in the 
output.  

Clock C shows a 0 s bias error and a precision error on the order of ± 2 s.  

Because of the calibration, we now know the values of bias error for each clock. Correcting 
for bias error, we can consider Clock B to provide the more accurate time. Over time, the 
bias error in Clock A could become cumbersome to deal with, that is if the bias is indeed 
increasing in time.  Therefore, it provides the least reliable value of time.  
 



PROBLEM 1.14 
 
SOLUTION  

Each curve is plotted below in a suitable format to yield a linear shape.  
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PROBLEM 1.15 
 
KNOWN: y = 10e-5x  

FIND:  Slope at x = 0, 2 and 20  

SOLUTION  
The equation has been plotted below. The slope of the equation at any value of x can be 
found graphically or by the derivative  

dy/dx = -50e-5x  
           x [V]   dy/dx  [V/unit]  
 
            0          -50  
            2          -0.00227  
           20           0  
 
The sensitivity of y to x decreases with x.  

COMMENT  
An important aspect of this problem, is to draw attention to the fact that many measurement 
systems may have a static sensitivity that is dependent on input value. While it is desirable to 
have a constant K value, the operating principle of many systems will preclude this or 
incorporate signal conditioning stages to overcome such nonlinearity. In Chapter 3, the 
concept that system's also have a dynamic sensitivity that is frequency dependent will be 
introduced.  
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PROBLEM 1.16 
 
SOLUTION  
 
The data are plotted below. The slope of a line passing through the data is 1.365 and the y 
intercept is 2.12. The data can be fit to the line  y = 1.365x +2.12. Therefore, the static 
sensitivity is K = 1.365 for all x. 
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PROBLEM 1.17 

 
KNOWN: Data of form y = axb.  

FIND:  a and b; K  

SOLUTION  
The data are plotted below. If y = axb, then in log-log format the data will take the linear 
form  

log y = log a  +  b log x  

A more or less linear curve results with this data. From the plot, the curve fit found is  
log y = -0.23  +  2x  

This implies that  
y = 0.59x2  

so that a = 0.59 and b = 2. The static sensitivity is found by the slope dy/dx at each value of 
x.  

           x [m]     K(x1) = dy/dx x1  [cm/m]  
 
            0.5              0.54  
            2.0              2.16  
            5.0              5.40  
           10.0             10.80  
 
 
COMMENT  
An aspect of this problem is to draw attention to the fact that many measurement systems 
may have a static sensitivity that is dependent on input value. The operating principle of 
many systems will determine how K behaves.  
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PROBLEM 1.18 

 
KNOWN:  Calibration data  

FIND:   Plot data. Estimate K.  

SOLUTION  
The data are plotted below in semi-log format. A linear curve results.  

This suggests y = aebx. Plotting y vs x in semi-log format is equivalent to  
plotting  

log y = log a  +  bx  
From the plot, a = 5 and b = -1. Hence, the data describe y = 5e-x. Now, K =  

dy/dx x, so that  
    X [psi]          K  
 

0.05 -4.76  
0.1  -4.52  
0.5             -3.03  

1.0  -1.84  
 
The magnitude of the static sensitivity decreases with x. The negative sign indicates that y 
will decrease as x increases.  

COMMENT  
An aspect of this problem is to draw attention to the fact that many measurement systems 
may have a static sensitivity that is dependent on input value. The operating principle of 
many systems will determine how K behaves.  
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PROBLEM 1.19 

 
KNOWN: A bulb thermometer is used to measure outside temperature.  

FIND:  Extraneous variables that might influence thermometer output.  

SOLUTION  
A thermometer's indicated temperature will be influenced by the temperature of solid objects 
to which it is in contact, and radiation exchange with bodies at different temperatures 
(including the sky or sun, buildings, people and ground) within its line of sight. Hence, 
location should be carefully selected and even randomized. We know that a bulb 
thermometer does not respond quickly to temperature changes, so that a sufficient period of 
time needs to be allowed for the instrument to adjust to new temperatures. By replication of 
the measurement, effects due to instrument hysteresis and instrument and procedural 
repeatability can be randomized.  
Because of limited resolution in such an instrument, different competent temperature 
observers might record different indicated temperatures even if the instrument output were 
fixed. Either observers should be randomized or, if not, the test replicated. It is interesting to 
note that such a randomization will bring about a predictable scatter in recorded data of about 
½ the resolution of the instrument scale.  



 
PROBLEM 1.20 

 
KNOWN:  Input voltage, (Ei) and Load (τL) can be controlled and varied.  

Efficiency (η), Winding temperature (Tw), and Current (I) are measured.  

FIND:  Specify the dependent, independent in the test and suggest any extraneous variables.  

SOLUTION  
The measured variables are the dependent variables in the test and they depend on the 
independent variables of input voltage and load. Several influencing extraneous variables 
include: ambient temperature (Ta) and relative humidity R; Line voltage fluctuations (e); and 
each of the individual measuring instruments (mi). The variation of the independent variables 
should be performed separately maintaining one independent variable fixed while the other is 
systematically varied over the test range. A random test procedure for the independent 
variable will randomize the effects of Ta, R and e.  Replication methods using different test 
instruments would be one way to randomize the effects of the mi; alternatively, calibration of 
all measuring instruments would provide a good degree of control over these variables.  

η= η(EI, τL; Ta, R, e, mi)  
Tw = Tw(Ei, τL ;Ta, R, e, mi)  
I = I(Ei, τL ; Ta, R, e, mi)  



 
PROBLEM 1.21 

 
KNOWN:   Specifications Table 1.1  

Nominal pressure of 500 cm H2O to be measured.  
Ambient temperature drift between 18 to 25 oC  

FIND:   Magnitude of each elemental error listed.  

SOLUTION  
Based on the specifications:  

ri = 1000 cm H2O  
ro = 5 V  

 
Hence, K = 5 V/ 1000 cm H2O = 5 mV/cm H2O. This gives a nominal output at 500 cm H2O 
input of 2.5 V. This assumes that the input/output relation is linear over range but we are told 
that it is linear to within some linearity error.  

linearity error = eL = (±0.005) (1000 cm H2O)  

= ± 5 cm H2O 
= ± 0.025 V  

 
hysteresis error = eh = (±0.0015)(1000 cm H2O)  

= ±1.5 cm H2O 
= ±0.0075 V  

 
sensitivity error = eK = (±0.0025)(500 cm H2O)  

= ± 0.75 cm H2O = ± 0.00375 V  
 
thermal sensitivity error = (±0.0002)(7oC)(500 cm H2O)  

= ±0.7 cm H2O 
= ± 0.0035 V  

 
thermal drift error = (0.0002)(7oC)(1000 cm H2O)  

= 1.4 cm H2O 
= 0.007 V  

 
overall instrument error = (52+1.52+0.752+0.72+1.42)1/2 = 5.501 cm H2O 



 

PROBLEM 1.22 
 
KNOWN: FSO = 1000 N  

FIND: ec  
SOLUTION  

From the given specifications, the elemental errors are estimated by:  
eL = 0.001 x 1000N = 1N  
eH = 0.001 x 1000N = 1N  
eK = 0.0015 x 1000N = 1.5N  
ez = 0.002 x 1000N = 2N  

 
The overall instrument error is estimated as:  

ec = (12 + 12 + 1.52 + 22)1/2 = 2.9N  

 
COMMENT  

This root-sum-square (RSS) method provides a "probable" estimate (i.e.  the most likely 
estimate) of the instrument error possible in any given measurement. "Possible" is a big word 
here as error values will most likely change between measurements.  



 
PROBLEM 1.23 

 
SOLUTION  
Repetition through repeated measurements made under a fixed set of operating conditions 
provides a measure of the time (or spatial) variation of a measured variable.  
Replication through the duplication of tests conducted under similar operating conditions 
provides a measure of the effect of control of the operating conditions on the measured 
variable.  

Repetition refers to repeating the measurement during a test.  
Replication refers to repeating the test (to repeat the measurements).  

 
 

PROBLEM 1.24 
 
SOLUTION  
Replication is used to assess the ability to control any aspect of a test or its operating 
condition. Repeat the test resetting the operating conditions to their original set points.  
 

 
 

PROBLEM 1.25 
 
SOLUTION  
Randomization is used to break-up the effects of interference from either continuous or 
discrete extraneous (i.e. uncontrolled) variables.  

 
 

PROBLEM 1.26 
 

SOLUTION 

 

This problem does not have a unique solution. We suggest that the instructor use this 
problem as a basis for an in-class or small group discussion.



PROBLEM 1.27 
 
FIND: Test matrix to correlate thermostat setting with average room setting  

SOLUTION  
Although there is no single test matrix, one method of solution follows.  

Assume that average room temperature, T, is a function of actual thermostat setting, spatial 
distribution of temperature, temporal temperature distribution, and thermostat location. We 
might imagine that for a controlled (fixed) thermostat location, a direct correlation between 
setting and T could be achieved. However, factors could influence the temperature measured 
by the thermostat such as sunlight directly hitting the thermostat or the wall on which it is 
attached or a location directly exposed to furnace forced convection, a condition aggrevated 
by air conditioners or heat pumps in which delivered air temperature is a strong function of 
outside temperature. Assume a proper location is selected and controlled.  
Further, the average room temperature must be defined because local room temperature will 
vary will position within the room and with time. For the test matrix, the room should be 
divided into equal areas with temperature sensing devices placed at the center of each area. 
The output from each sensor will be averaged over a time period that is long compared to the 
typical furnace on/off cycle.  

Select four temperature sensors: A, B, C, D. Select four thermostat settings: s1, s2, s3, s4, 
where s1 < s2 < s3 < s4. Temperatures are to be measured under each setting after the room 
has adjusted to the new setting. One matrix might be:  

BLOCK  
1 s1: A, B, C, D  
2 s4: A, B, C, D  
3 s3: A, B, C, D  
4 s2: A, B, C, D  

 
Note that the order of set temperature has been shuffled to attempt to randomize the test 
matrix (hysteresis is a common problem in thermostats). The four blocks will yield the 
average temperatures, T1, T4, T3, T2. The data can be presented in a form of T versus s.  



 

PROBLEM 1.28 
 
FIND: Test matrix to evaluate fuel efficiency of a production model of automobile  

ASSUMPTIONS: Automobile model design is fixed (i.e. neglect options). Require 
representative estimate of efficiency.  

 
SOLUTION  
Although there is no single test matrix, one method of solution follows. Many variables can 
affect auto model efficiency: e.g. individual car, driver, terrain, speed, ambient conditions, 
engine model, fuel, tires, options.  Whether these are treated as controlled variables or as 
extraneous variables depends on the test matrix. Suppose we "control" the options, fuel, tires, 
and engine model, that is fix these for the test duration. Furthermore, we can fix the terrain 
and the ambient conditions by using a mechanical chassis dynamometer (a device which 
drives the wheels with a prescribed mechanical load) in an enclosed, controlled environment. 
In fact, such a machine and its test conditions have been specified within the U.S.A. by 
government test standards.  By programming the dynamometer to start, accelerate and stop 
using a preprogrammed routine, we can eliminate the effects of different drivers on different 
cars. However, this test will fail to randomize the effects of different drivers and terrain as 
noted in the government statement "... these figures may vary depending on how and where 
you drive ... ." This leaves the car itself and the test speed as independent variables, xa and xb, 
respectively. We defer considering the effects of the instruments and methods used to 
compute fuel efficiency until a later chapter, but assume here that this can be done with 
sufficient accuracy.  
With this in mind, we could choose three representative cars and three speeds with the test 
matrix:  

BLOCK  
1 xa1: xb1, xb2, xb3  
2 xa2: xb1, xb2, xb3 
3 xa3: xb1, xb2, xb3 

 
Note that since slight differences will exist between cars that can not be controlled, the autos 
are treated as extraneous variables. This matrix randomizes the effects of differences between 
cars at three different speeds and yields a curve for fuel efficiency versus speed.  
As an alternative, we could introduce a driver into the matrix. We could develop a test track 
of fixed (controlled) terrain. And we could have three drivers drive three cars at three 
different speeds. This introduces the driver as an extraneous variable, noted as A1, A2 and A3 
for each driver. Assuming that the tests are run under similar ambient conditions, one test 
matrix may be  
 
           



   xa1     xa2    xa3  
 
   A1      xb1     xb2    xb3 
   A2      xb2     xb3    xb1 
   A3       xb3     xb1    xb2 



PROBLEM 1.29 
 
SOLUTION: 
 
Test stand: 
 
Here one would operate the engine under simulated conditions similar to those encountered 
at the track – such as anticipated engine RPM and engine load (load: estimated mechanical 
loads on the engine due to mechanical losses, tire rolling resistance, aerodynamic resistance, 
etc).  
 
Measure:  

• fuel and air consumption 
• torque and power output 
• exhaust gas temperatures to set air:fuel ratio 

 
Track: 
 
Here one would operate the car at conditions similar to those anticipated during the race. 
 
Measure: 

• lap time 
• wind and temperature conditions (to normalize lap time) 
• depending on team other factors can be measured to estimate loads on the car and car 

behavior. Clemson Motorsports Engineering has been active in test method 
development for professional race teams. 

 
Obvious major differences: 
 

• Environmental conditions, which effect engine performance, car behavior and tire 
behavior. 

• Engine load on a test stand is well-controlled. On track, the driver does not execute 
exactly on each lap, hence varies load such as due to differences in drive path 'line' 
and this affects principally aerodynamic loads and tire rolling resistance. Incidentally, 
all of these are coupled effects in that a change in one affects the values of the others. 

• Ram air effect of moving car can be simulated but difficult to get exactly 
• Each engine is an individual. Even slight differences affect handling and therefore, 

how a driver drives the car (thus changing the engine load). 



 
PROBLEM 1.30 

 
KNOWN: Four lathes, 12 machinists are available to produce batches of machine shafts.  

FIND: Test matrix to estimate the tolerances held within a batch  

SOLUTION  
If we assume that batch precision, P, is only a function of lathe and machinist, then  

P = f(lathe, machinist)  

We can set up a test matrix using all four lathes, L1, L2, L3, L4, and all 12 machinists, A, B, 
..., L. The machinists are randomly assigned.  

BLOCK  
1 L1: A, B, C  
2 L2: D, E, F  
3 L3: G, H, I  
4 L4: J, K, L  

 
Data from each lathe should be indicative of the precision associated with each lathe and the 
total ensemble of data indicative of batch precision.  However, this test matrix neglects the 
effects of shift and day of the week.  

One method which treats machinist and lathe as extraneous variables and reduces test size 
selects 4 machinists at random. Suppose more than one shaft size is produced at the plant. 
We could select 4 shaft diameters, D1, D2, D3, D4 and set up a Latin square matrix:  
        L1    L2     L3    L4  
 
    B    D1   D2   D3   D4  
    E    D2   D3   D4   D1  
    G    D3   D4   D1   D2  
    L    D4   D1   D2   D3  
 
Note that neither matrix includes shift or day of the week effects and these could be 
incorporated in an expanded test matrix.  



 

PROBLEM 1.31 
 
SOLUTION  

Linearity error  
A random static calibration over a specified range will provide the input-output relationship 
between y and x (i.e. y = f(x)). A first-order curve fit to this data, for example using a least 
squares regression analysis, will provide the fit yL(x). The linearity error is simply the 
difference between the measured value of y at any value of x and the value of yL predicted by 
the fit at that x.  

A manufacturer may wish to keep the linearity error below some target value and, hence, 
may limit the recommended operating range for the system for this purpose. In your 
experience, you may notice that some systems can be operated outside of their specification 
range but be aware their elemental errors may exceed the manufacturer's stated values.  

 

Hysteresis error  
A sequential static calibration over a specified range will provide the input-output behavior 
between y and x during upscale-only and downscale-only operations. This will tend to 
maximize any hysteresis in the system. The hysteresis error is the difference between the 
upscale value and the downscale value of y at any given x.  



 

PROBLEM 1.32 
 
KNOWN:  4 brands of tires  

8 cars of the same make  

FIND: Test matrix to evaluate performance  

SOLUTION  
Tire performance can mean different things but for passenger tires usually refers to braking 
and lateral load adhesion during wet and dry operations. For a given series of performance 
tests, performance will depend on tire and car (a tire will perform differently on different 
makes of cars). For the same make, subtle differences in production models can affect test 
results so we treat the car as an individual and extraneous variable.  
We could select 4 cars at random (1,2,3,4) to test four tire brands (A,B,C,D)  

1: A, B, C, D  
2: A, B, C, D  
3: A, B, C, D  
4: A, B, C, D  

 
This provides a data pool for evaluating tire performance for a make of car.  Note we ignore 
the variable of the test driver but this method will incorporate driver variation by testing four 
cars. Other strategies could be created.  

 



PROBLEM 1.33 
 
KNOWN: Water at 20oC  

Q =f(C,A,dp,ρ)  
C = 0.75; D = 1 m  
2 < Q < 10 cmm  

 
FIND: Expected calibration curve  

SOLUTION  
Part of a test matrix is to specify the range of the independent variable and to anticipate the 
range resulting in the dependent variable. In this case, the pressure drop will be measured so 
that it is the dependent variable during a static calibration. To anticipate the output range of 
the calibration then:  

Rearranging the known relation,  

dp = (Q/CA)2ρ/2  

For ρ= 998 kg/m3  (Appendix C), and A = πD2/4, we find:  

    Q (cmm)       dp (N/m2  
 

2          1.6  
5 10  
10        40  

This is plotted below. It is clear that K will not be a constant as K = f(Q).  
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PROBLEM 1.34 
 
SOLUTION  
Because  Q ∝ dp1/2 and is not linear, the calibration will not be linear. The term ‘linearity’ 
should not be applied directly. The nonlinear calibration result is just a normal consequence 
of the physics. 
However, a signal conditioning stage could be inserted within the signal path to produce a 
linear output. This is done using logarithmic amplifiers. To illustrate this, plot the calibration 
curve in Problem 1.33 on a log-log scale (see C1.6).  The result will be a linear curve. 
Alternately, you could take the log of each column and plot them on a rectangular scale to get 
that same result. A logarithmic amplifier (Chapter 6) performs this same function (as the plot 
scale or log key) directly on the signal. A linearity measure can then be extracted with some 
meaning.  

 
As flow rate is the variable varied and pressure drop is the variable measured in this 
calibration, pressure drop is the dependent variable. The flow rate and the fixed values of 
area and density are independent variables.  

 
 
 
 

PROBLEM 1.35 
 
KNOWN:  pistons are sent out for plating  

four subcontractors  
FIND: Test matrix for quality control  

SOLUTION  
Consider four subcontractors as A, B, C, D. One approach is to number the pistons and 
allocate them to the four subcontractors with subsequent analysis of the plating results. For 
example, send 24 pistons each to the four subcontractors and analyze the resulting products 
separately. The variation for each subcontractor can be estimated and can be statistically 
tested for significant differences.  



 

PROBLEM 1.36 
 
SOLUTION  

Controlled variables  
A and B (i.e. control the materials of two alloys)  
T2 (reference junction temperature)  

 

Independent variable  
T1 (measured temperature)  

Dependent variable  
E (output voltage measured)  

 
 A      voltmeter, E 

T1 B 
T2 

  



 

PROBLEM 1.37 
 
SOLUTION  

Independent variables  

micrometer setting (i.e. the applied displacement)  
Controlled variable  

power supply input  
Dependent variable  

output voltage measured  
Extraneous variables  

operator set-up, zeroing of system, and reading of micrometer  
ability to set control variables  
 

COMMENT  
If you try this you will find that the power supply excitation voltage can have a significant 
influence on the results. The ability to provide the exact voltage on replication is important in 
obtaining consistent results in many transducers. Even if you use a regulated laboratory 
variable power supply, this effect can be seen in your data variation on replication as a 
random variation. If you use an unregulated source, be prepared to trace these effects as they 
change from hour to hour or from day to day. 
 

Many LVDT units allow for use of dc power, which is then transformed to ac form before 
being applied to the coil. It is easiest to see the effect of power setting on the results when 
using this type of transducer. 



 

PROBLEM 1.38 
 
SOLUTION  
To test for repeatability in the LVDT, we might displace the core to various random values 
over a selected range, such as its expected range, and develop a data base. Data scatter about 
a curve fit will provide a measure of repeatability for this instrument (methods are discussed 
in Chapter 4).  
Reproducibility involves re-testing the system at a different facility or equivalent (such as 
different instruments and test fixtures). Think of this as a duplication. Even though a similar 
procedure and test matrix will be used to test for reproducibility, the duplication involves 
different individual instruments and test fixtures. A reproducibility test is a special type of 
replication – by using the different facility constraint added.  The combined results allow for 
interference effects to be randomized.  
Bottom Line: The results leading to a reproducibility specification are more representative of 
what can be expected by the end user (YOU!).  



PROBLEM 1.39 
 

SOLUTION: 
 
(i) Running the car on a chassis dynamometer, which applies a desired load to the wheels 
as the car is operated at a desired speed so as to simulate the car being driven, provides a 
controlled test environment for estimating fuel consumption. The operating loads form a 
'load profile' to simulate the road course. 
Allowing a driver to operate a car over a predetermined course provides a realistic 
simulation of expected consumption. No matter how well controlled the dynamometer 
test, it is not possible to completely recreate the driving situation that a real driver 
provides. However,  each driver will drive the course a bit differently.  
Extraneous variables include: individual entities of driver and of car that affect 
consumption in either method; road variations and differences between the test methods; 
road or weather conditions (which are both variable) that change the simulation.  

(ii) The dynamometer test is well controlled. In the hands of a good test engineer, 
valuable information can be ascertained and realistic mileage values obtained. Most 
important, testing different car models using a predetermined load profile forms an 
excellent basis for comparison between car makes – this is the basis of a 'standarized 
test.'.  
The variables in a test affect the accuracy of the simulation. Actual values obtained by a 
particular driver and car are not tested in a standarized test. 
 

(iii) If the two methods are conducted to represent each other, than these are concomitant 
methods. Even if not exact representations, information obtained in one can be used to 
get realistic estimates to be expected in the other. For example, a car that gets 10 mpg on 
the chassis dynamometer should not be expected to get 20 mpg on the road course. 



 

PROBLEM 1.40 
 

SOLUTION: 
This is not an uncommon situation when siblings own similar model cars.  
The drivers, the cars, and the routes driven are all extraneous variables in this direct 
comparison. Simply put, you and your brother may drive very differently. You both drive 
different cars. You likely drive over different routes, maybe very different types of 
driving routes. You might live in very different geographic locations (altitude, weather). 
The maintenance of the car would play a role, as well.  

An arbitrator might suggest that the two of you swap cars for a few weeks to compare. If 
the consumption of each car remains the same under different drivers (and associated 
different routes, location, etc), then the car is the culprit. If not, then driver and other 
variables remain involved. 

 
 

 

PROBLEM 1.41 
 

SOLUTION: 
 

The measure of  'diameter' represents an average or nominal value of the object. 
Differences along and around the rod affect the value of 'diameter.' Try this with a rod 
and a micrometer.  
Measurements made at different positions along the rod show 'noise', that is data scatter, 
which is handled statistically (that is, we average the values to obtain a single diameter). 
Using just a single measurement introduces interference, since that one value may not be 
the same as the average value. 
 

Tabulated values of material properties represent average or nominal values. These 
should not be confused as being exact values, regardless of the number of decimal places 
found in the tables (although the values can be assumed to be reasonably representative to 
within a decimal place). Properties of a material will vary with individual specimens – as 
such, differences between a nominal value and the actual specimen value will behave as 
an interference.



 

PROBLEM 1.42 
 
SOLUTION  

Independent variable:  

Applied tensile load  
Controlled variable:  

Bridge excitation voltage  

Dependent variable:  
Bridge output voltage (which is related to gauge resistance changes  
due to the applied load)  
 

Extraneous variables:  

Specimen and ambient temperature will affect gauge resistance  
      
A replication will involve resetting the control variable and specimen and duplicating the 
test.  
 

PROBLEM 1.43 
 
SOLUTION  
To test repeatability, apply various tensile loads at random over the useful operating range of 
the system to build a data base. Be sure to operate within the elastic limit of the specimen. 
Direct comparison and data scatter about a curve fit will provide a measure of repeatability 
(specific methods to evaluate this are discussed in C4).  

Reproducibility involves re-testing the system at a different facility or equivalent (such as 
different instruments and test fixtures). Think of this as a duplication. Even though a similar 
procedure and test matrix will be used to test for reproducibility, the duplication involves 
different individual instruments and test fixtures. Note that the reproducibility test is also a 
replication but with the different facility constraint added.  The combined results allow for 
interference effects to be randomized.  

Bottom Line: The results leading to a reproducibility specification are more representative of 
what can be expected by the end user (YOU!).  



PROBLEM 1.44 
 

This problem is open-ended and does not have a unique solution. This forms a good 
opportunity for class discussion. 
 
 

PROBLEM 1.45 
 
SOLUTION 
 
 
A car rolling down the hill whose speed is determined by two sensors separated by a distance 
s. Car speed could be determined as: speed = (distance traveled)/(elapsed time) = s/(t2 – t1). 
The following is a list of the minimum variables that are important in this test: 
 
L: length of car 
s: distance between measurements (distance traveled) 
θ: angle of inclination 
(t2 – t1): elapsed time  
where 

t1: instance car passes sensor 1 
t2: instance car passes sensor 2 

 
Intrinsic assumptions in this test that affect the accuracy of the result: 
 
(1) the speed of the car is actually an average between the speed of the car as it passes sensor 
1 and then as it passes sensor 2. The assumption is that any speed change is small in regards 
to the measured value. This assumption imposes a systematic error on the measured result.  
 
(2) The length of the car could be a factor if it affects how the sensors are triggered. The car 
is assumed to be a point. This assumption may introduce a systematic error into the results. 
 
As for a concomitant approach: 
If we consider the gravitational pull as constant (reasonable over a sensible distance), then 
the car’s acceleration is simply, a = gsin θ. So its acceleration is easily anticipated and the 
ideal velocity at any point along the path can be calculated directly from simple physics. The 
actual velocity will be the ideal velocity reduced by resistance effects, including frictional 
effects, such as between the car’s wheels and the track and within the wheel axles, and 
aerodynamic effects. The actual velocity will be a bit smaller than the ideal velocity, a 
consequence of the systematic error in the assumptions. But what it does give us is a value of 
comparison for our measurement. If the measured value is markedly different, then we will 
know we have some problems in the test.  
 



PROBLEM 1.46 
 
SOLUTION 
 
The power (P) to move a car at any speed (U) equals the aerodynamic drag (D) plus 
mechanical drag (M) times the speed plus the parasitic power (Pp) required to turn the 
compressor and other mechanical components in the car: i.e. 
 

 P = (D+M)U + Pp   
 
With the air conditioning (A/C) off, the parasitic power due to the compressor goes down but 
because the windows would then be rolled open, the aerodynamic drag goes up. The 
aerodynamic drag increases with speed while the compressor power remains fairly constant 
with speed.   
 
To test this question, you might develop a test plan as follows: 
 
Operate the car at several fixed, but well separated, speeds U1, U2, U3  in each of two 
configurations, A and B. Configuration A uses the compressor and all windows are rolled up 
closed. Configuration B turns the compressor off but driver window is rolled down (open). 
Obviously, there can be alternate configurations by rolling down differing windows, but the 
idea is the same. 
 
A:   U1, U2, U3 
B:   U1, U2, U3 
 
Concomitant approach: An analytical approach to this problem would tradeoff the power 
required to operate the vehicle at different speeds under the two configurations based on 
some reasonable published or handbook values (for example, most modern full-sized sedans 
have a drag coefficient of about 0.33 based on a frontal area of about 2.1 m2 (these exact 
values are for a Toyota Camry) for windows closed, increasing to 0.36 with driver window 
open) and maybe about 3HP to run the compressor. But you might research these numbers. 

 
 

 



 
PROBLEM 1.49 

 
This problem is open-ended and does not have a unique solution. Most of these codes can be 
found in a library with a quality engineering section or at the appropriate website for the 
professional group cited. The results from these searches form a good opportunity for class 
discussion. 
 



PROBLEM 1.50 
 
 
SOLUTION 
 
Transform each relation into the linear form  Y = a1X + a0 
 
(a) KNOWN: my bx=  
This function can be rearranged as 

mlog y log bx log b m log x= = +  
so if we let  

1 0
Y a a X= +  

then 
 

X = log x ; Y = log y ; ao = log b ; a1 = m  
 
(b) KNOWN: mxy be=  
 
identity: ln x = 2.3 log x 
 
This function can be rearranged as 
 

mxln y ln b ln e ln b mx= + = +  
 
so if we let 

1 0
Y a a X= +  

then 
 

X = x ; a1 = m ; ao = ln b ; Y = ln y 
 
(c) KNOWN: my b c x= +  
This function can be rearranged as 
 

my b c x− =  
or log (y-b) = log c + m log x 
so if we let 

1 0
Y a a X= +  

then 
 

X = log x ; a1 = m ; ao = log c ; Y = log (y-b) 
 
 



PROBLEM 2.1 
 
  
FIND:  Define signal and provide examples of static and dynamic input signals to 
measurement systems. 

 
SOLUTION:  A signal is information in motion from one place to another, such as 
between stages of a measurement system.  Signals have a variety of forms, including 
electrical and mechanical. 
 
Examples of static signals are: 
 
 1. weight, such as weighing merchandise, etc. 
 2. body temperature, over the time period of interest 
 3. length or height, such as the length of a board or a person's height 
 
Examples of dynamic signals: 
 
 1. input to an automobile speed control 
 2. input to a stereo amplifier from a component such as a CD player 
 3. output signal to a printer from a computer 

 
 



PROBLEM 2.2 
 
 
  
FIND:  List the important characteristics of signals and define each. 
 
SOLUTION: 
 
1. Magnitude - generally refers to the maximum value of a signal  
2. Range - difference between maximum and minimum values of a signal 
3. Amplitude - indicative of signal fluctuations relative to the mean 
4. Frequency - describes the time variation of a signal 
5. Dynamic - signal is time varying 
6. Static - signal does not change over the time period of interest 
7. Deterministic - signal can be described by an equation  

(other than a Fourier series or integral approximation) 
8. Non-deterministic - describes a signal which has no discernible pattern of repetition 
andcannot be described by a simple equation. 

 
COMMENT:  A random signal, or stochastic noise, represents a truly non-deterministic 

signal.  However, chaotic systems produce signals that appear random, but are truly 
deterministic.  An example would be the velocity in a turbulent fluid flow, that may appear 

random, but is actually governed by the Navier-Stokes equations.



PROBLEM 2.3 
 
KNOWN: 

y t t( ) cos= +30 2 6π  
  
FIND:  y yrms and  for the time periods t1 to t2 listed below  
 

a) 0 to 0.1 s 
b) 0.4 to 0.5 s 
c) 0 to 1/3 s 
d) 0 to 20 s 

 
SOLUTION:   
 
For the function y(t) 
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The resulting values are 
 

a) 31.01       31.02rmsy y= =  
 

b) 28.99       29.00rmsy y= =  
 

c) 30            30.03rmsy y= =  
 

d) 30            30.03rmsy y= =  
 
COMMENT:   The average and rms values for the time period 0 to 20 seconds 
represents the long-term average behavior of the signal.  The values which result in parts 
a) and b) are accurate over the specified time periods, and for a measured signal may have 
specific significance.  If we examined the period 0 to 1/3, it would represent one complete 
cycle of the simple periodic signal and results in average and rms values which accurately 
represent the long-term behavior of the signal. 
 

PROBLEM 2.4 
 
 
KNOWN:  Discrete sampled data, corresponding to measurement every 0.4 seconds.  
 
FIND:  The mean and rms values of the measured data. 
 
SOLUTION:    
The mean value for y1 is 0 and for y2 is also 0. 

However, the rms value of y1 is 13.49 and for y2 is 17.53. 

COMMENT:  The mean value contains no information concerning the time varying 
nature of a signal; both these signals have an average value of  0.  But the differences in 
the signals are made apparent when the rms value is examined. 



PROBLEM 2.5 
 
 
KNOWN:  The effect of a moving average signal processing technique is to be 
determined for the signal in Figure 2.21 and ( ) sin 5 cos11y t t t= +  
  
FIND:  Discuss Figure 2.22 and plot the signal resulting from applying a moving average 
to y(t). 
 
ASSUMPTIONS:  The signal y(t) may be represented by making a discrete 
representation with δt = 0.05.  
 
SOLUTION: 
 
a)  The signal in Figure 2.22 clearly has a reduced level of high frequency content.  In 
essence, this emphasizes longer term variations, while removing short-term fluctuations.  
It is clear that the peak-to-peak value in the original signal is significantly higher than in 
the signal that has been averaged. 
b) The figures below show in the effect of applying a moving average to y(t). 

Signal y(t) = sin 5t + cos 11t
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PROBLEM 2.6 
 
 
KNOWN:  A spring-mass system, with 

m = 0.5 kg 
T = 2.7 s 

  
FIND:  Spring constant, k, and natural frequency ω 
 
SOLUTION: 
 
Since 

k
m

ω =  

 
(as shown in association with equation 2.7) 
 
and 
 

2 1 2.7 s

= 2.33 rad/s

T
f

π
ω

ω

= = =
 

 
 
The natural frequency is then found as ω = 2.33 rad/s 
 
And 

 

 
2

2.33
0.5 kg

2.71 N/m (kg/sec )

k

k

ω = =

=

 



PROBLEM 2.7 
 
 
KNOWN:  A spring-mass system having 

m = 1 kg 
k = 5000 N/cm 

  
FIND: The natural frequency in rad/sec (ω) and Hz (f ).  
 
SOLUTION: 
 
The natural frequency may be determined,  
 

ω

ω
π

= = =

=

k
m

5000 100
7071

112 5

 N
cm

cm
m

1 kg
 rad / s

and

f =
2

 Hz

.

.

 

 
 



PROBLEM 2.8 
 
 
KNOWN:  Functions: 
 

a) 2sin
5

tπ  

b) 5cos 20t  

c) sin3n t nπ  for = 1 to ∞ 
 
FIND:  The period, frequency in Hz, and circular frequency in rad/s. 
 
SOLUTION: 
 
a) ω = 2π/5 rad/s  f = 0.2 Hz  T  = 5 s 
 
b) ω = 20 rad/s   f = 3.18 Hz  T  = 0.31 s 
 
c) ω = 3nπ rad/s  f = 3n/2 Hz  T  = 2/(3n) s 
 
 



PROBLEM 2.9 
 
 
KNOWN:  ( ) 5sin 4 3cos 4y t t t= +   
  
FIND:  Equivalent expression containing a cosine term only 
 
SOLUTION:  From Equations 2.10 and 2.11 
 

( )y C t
B
A

= − = −cos tanω φ φ    1  

and with  
 

( )A t B t A B tcos sin cosω ω ω φ+ = + −2 2  
 
we find 
 

2 2 2 25 3 5.83C A B= + = + =  
 
 

1 5tan 1.03 rad
3

φ −= =  

and  
 
( ) ( )5.83cos 4 1.03y t t= −  



PROBLEM 2.10 
 
 
KNOWN:  ( ) 4sin 2 15cos 2y t t tπ π= +   
  
FIND:   
a)  Equivalent expression containing a cosine term only 

b)  Equivalent expression containing a sine term only 

 
 
SOLUTION:  From Equations 2.10 and 2.11 
 

( )

( )

y C t B
A

y C t A
B

= − =

= + =

−

−

cos tan

sin tan* *

ω φ φ

ω φ φ

    

    

1

1
 

and with  
 

( )

( )
A t B t A B t

A t B t A B t

cos sin cos

cos sin sin *

ω ω ω φ

ω ω ω φ

+ = + −

+ = + +

2 2

2 2
 

 
we find 
 

2 2 2 215 4 15.52C A B= + = + =  
 
 

1

* 1

4tan 0.26 rad
15
15tan 1.31 rad
4

φ

φ

−

−

= =

= =
 

and  
 

( )
( )

15.52cos 2 0.26   Answer (a)

15.52sin 2 1.31    Answer (b)

y t

y t

π

π

= −

= +
 



PROBLEM 2.11 
 
 

KNOWN: y t n n t n n t
n

( ) sin cos= +
=

∞

∑ 2
6

4
6

1

π π π π  

  
FIND:   
a)  Equivalent expression containing a cosine term only 
 
SOLUTION:  From Equation 2.19 
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B
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we find 
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π π  

 
 

 
 
 
 



PROBLEM 2.12 
 
 
KNOWN:   T is a period of y(x) 
  
FIND:  Show that nT for n=2,3,... is a period of y(x)  
 
SOLUTION: Since T is a period of y(x) 
 

y(x + T) = y(x) 
 
Letting x1 = x + T yields 
 

y(x1) = y(x) = y(x + T) 
 
But since T is a period of y(x) 
 

y(x + 2T) = y(x1 + T) = y(x) 
 
By analogy then 
 

y(x + nT) = y(x) 



PROBLEM 2.13 
 
 
KNOWN:    

y t
n

nt
n

nt
n

( ) sin cos= +
=

∞

∑ 3
2

5
31

 

  
FIND:   a)  fundamental frequency and period 
  b)  cosine series  
 
SOLUTION:  
 
a)  The fundamental frequency corresponds to n = 1, so ω = 1 rad/s;    T = 2π 
 
b) From equation 2.19 
 

y t A C
n t
T

C A B
B
A

o n n
n

n n n n
n

n

( ) cos

tan

= + −








= + =

=

∞

∑ 2
1

2 2

π
φ

φ     
 

For this Fourier series 

C
n n

nn

n

=






 +







 =

=






 ⇒ =−

3
2

5
3

181
36

9
10

0 7328

2 2
2

1φ φtan .

 

Thus the series may be written 

( )2

1

181( ) cos 0.7328
36n

y t n nt
∞

=

= −∑  

 



PROBLEM 2.14 
 
 
KNOWN:    

1

2 120( ) 4 cos sin
10 4 30 4n

n n n ny t t tπ π π π∞

=

= + +∑  

  
FIND:   a)  1 1 and fω  

b) 1T  

c)  *

1

2( ) sino n
n

n ty t A C
T
π φ

∞

=

 = + + 
 

∑  

 
SOLUTION:  

a) When n = 1, 1 1
1

4,   8fπω = =  

b) 1 8 secT =  

c) From Eq. (2.21) 

2 2 *  and  tan n
n n n

n

AC A B
B

φ= + =  

 
2 22 120 4

10 30n
n nC nπ π π   = + =   

   
 

( )
( )

* 1 12 10 1tan tan 0.05 rad
120 30 20n

n
n
π

φ
π

− −  = = = 
 

 

and the Fourier sine series 

  

1
( ) 4 4 sin 0.05

4n

n ty t n ππ
∞

=

 = + + 
 

∑  



PROBLEM 2.15 
 
 
KNOWN:    

( ) 0  for 0

( ) 1  for 0 2
( ) 1  for 2

y t t

y t t

y t t

π
π

π π

= − ≤ ≤

= − ≤ ≤

= ≤ ≤

 

  
FIND:   Fourier series for y(t) 
 
SOLUTION:  Since the function is neither even nor odd, the Fourier series will contain 
both sine and cosine terms.  The coefficients are found as  
 

( ) ( )

2

2

0 2

0 2

1 1( ) ( )
2

1 0 1 1
2
1 0 0    02 22

T

o T

o

A y t dt y t dt
T

dt dt dt

A

π

π

π π

ππ

π

π

π ππ
π

−

− −

−

= =

 = + − +  

 −= − + − = ∴ = 

∫ ∫

∫ ∫ ∫  

 
Note:  Since the contribution from −π to 0 is identically zero, it will be omitted. 
 
 

2

0 2

2

0 2

2 2 21cos 1cos
2

1 1 1sin sin

1 2sin
2

n
n t n tA dt
T T

nt nt
n n

n
n

π π

π

π π

π

π π
π

π

π
π

 = − +  
 −    = +         

−  =  
 

∫ ∫

 

 

[ ] [ ]{ } ( ) ( )

2

0 2

2
0 2

2 2 21sin 1sin
2

1 1cos cos cos 0 cos

n
nt ntB dt dt

T T

nt nt n
n n

π π

π

π π
π

π π
π

π
π π

 = − +  

= + − = − −  

∫ ∫
 

Noting that An is zero for n even, and Bn is zero for n odd, the resulting Fourier series is 

 2 1 1 1 1 1 1( ) cos sin 2 cos3 sin 4 cos5 sin 6 cos 7 ...
2 3 4 5 6 7

y t t t t t t t t
π
 = − − + − − − + −  
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PROBLEM 2.16 
 
KNOWN:   y(t) = t  for   −5 < t < 5  
  
FIND:  Fourier series for the function y(t). 

ASSUMPTIONS: An odd periodic extension is assumed. 

SOLUTION: 
The function is approximated as shown below 

 
 
Since the function is odd, the Fourier series will contain only sine terms 
 

y t B
n t
Tn

n
( ) sin=

=

∞

∑ 2
1

π
 

where, from (2.17) 
 

B
T

y t n t
T

dtn
T

T

=
−∫

2 2

2

2
( )sin π  

Thus 

B t n t dtn =
−∫

2
10

2
105

5

sin π  

 
which is of the form sinx ax , and 
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n t t
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n t
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      ( ) ( ){ } ( ) ( ){ }=






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n
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n
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π
π π

π
π πsin sin cos cos  

 

for n even  B
nn =
−10
π

 

 

for n odd  B
nn =
10
π

 

 
The resulting Fourier series is  
 

y t
t t t t

( ) sin sin sin sin= − + − +
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PROBLEM 2.17 
 
KNOWN: 2( )   for ;  ( 2 ) ( )y t t t y t y tπ π π= − ≤ ≤ + =  
 
FIND:  Fourier series for the function y(t). 
 

SOLUTION: 
 
Since the function y(t) is an even function, the Fourier series will contain only cosine 
terms, 

y t A A n t
T

A A n to n

n

o n

n

( ) cos cos= + = +
=

∞

=

∞

∑ ∑2

1 1

π ω  

The coefficients are found as 

A
T

y t dt t dto
T

T

= = =
−− ∫∫1 1

2 3
2

2

2

2
( )

π
π

π

π

 

A t n t dtn =
−∫

1 2
2

2

π
π
ππ

π

cos  

 

 

( ) ( )

= +
−









= + −





−

1 2 2

1 2 2

2

2 2

3

2 2

π

π
π π π π

π

π
t nt

n
n t

n
nt

n
n

n
n

cos sin

cos cos

 

 
for n even An= 4/n2   for n odd An = −4/n2 and the resulting Fourier series is 
 

y t t t t( ) cos cos cos ...= − − + − +





π 2

3
4 1

4
2 1

9
3  

 
a series approximation for π is  
 

y( ) cos cos cos ...

...

π π π π π π

π

= = − − + − +





= + + + +

2
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4 1
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1
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PROBLEM 2.18 
 
 
KNOWN:    

y(t) = 
t t

t
  for 

  for 1 < t < 2
0 1

2
< <

−








 

  
FIND:   Fourier series representation of y(t)  
 
ASSUMPTION:   Utilize an odd periodic extension of y(t) 
 
SOLUTION:  
 
The function is extended as shown below with a period of 4.  
 

 
 
 
 
 
The Fourier series for an odd function contains only sine terms and can be written 

 

y t B n t
T

B n tn

n

n

n

( ) sin sin= =
=

∞

=

∞

∑ ∑2

1 1

π ω  
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B y t n t
T

dtn
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−∫ ( )sin 2

2

2 π  

Odd Periodic Extension
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For the odd periodic extension of the function y(t) shown above, this integral can be 
expressed as the sum of three integrals 

 

( )B t n t dt t n t dt t n t dtn = − + + + −
−

−

−∫ ∫ ∫( )sin sin sin2 2
4

2
4

2 2
42

1

1

1

1

2π π π  

These integrals can be evaluated and simplified to yield the following expression for Bn 

( )
B

n n

nn =
− + 





4
2

2
2 2

sin sinπ π

π
 

 

Since sin(nπ) is identically zero, and sin(nπ/2) is zero for n even, the Fourier series can be 
written 

 

y t t t t t( ) sin sin sin sin ...= − + − + −





8
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1
9

3
2

1
25

5
2

1
49

7
22π

π π π π  

 
The first four partial sums of this series are shown below 
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PROBLEM 2.19 
 
KNOWN:   
  a) sin 10t  V 
  b) 5 2cos 2   mt+  
  c)  5   st  
  d)  2  V  
FIND:  Classification of signals 

SOLUTION: 
  a)  Dynamic, deterministic, simple periodic waveform 
  b)  Dynamic, deterministic periodic with a zero offset 
  c)  Dynamic, deterministic, unbounded as t →∞  
  d)  Static, deterministic   
 

PROBLEM 2.20 
 
KNOWN:  At time zero (t = 0) 

 
x
dx
dt

f

=

= =

0

5 1 cm / s    Hz
 

FIND: 
 a) period, T 
 b) amplitude, A 
 c) displacement as a function of time, x(t) 
 d) maximum speed 
 
SOLUTION: 
 
The position of the particle as a function of time may be expressed 

x t A t( ) sin= 2π  
so that  

dx
dt

A t= 2 2π πcos  

Thus, at t = 0 dx
dt

= 5 

From these expressions we find 
a) T = 1 s 
b) amplitude, A = 5/2π 
c) x t A t( ) sin= 2π  
d) maximum speed  = 5 cm/s 



PROBLEM 2.21 
 
KNOWN:   
 a) Frequency content  c)  Magnitude 
 b)  Amplitude   d)  Period  
 
FIND: 
 Define the terms listed above 
 
SOLUTION: 
 

a) Frequency content - for a complex periodic waveform, refers to the relative amplitude 
of the terms which comprise the Fourier series for the signal, or the result of a Fourier 
transform. 

b)  Amplitude - the range of variation of a particular frequency component in a complex 
periodic waveform 

c)  Magnitude - the value of a signal, which may be a function of time 

 
d)  Period - the time for a signal to repeat, or the time associated with a particular 
frequency component in a complex periodic waveform.  



PROBLEM 2.22 
 
KNOWN:   
 Fourier series for the function y(t) = t in Problem 2.16 
 

10 2 10 4 10 6 10 8( ) sin sin sin sin
10 2 10 3 10 4 10

t t t ty t π π π π
π π π π

= − + − + 

 
FIND: 
 Construct an amplitude spectrum plot for this series.  
 
SOLUTION: 
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PROBLEM 2.23 
 
KNOWN:  Fourier series for the function y(t) = t2 in Problem 2.17    
 

 y t t t t( ) cos cos cos ...= − − + − +








π 2

3
4

1
4

2
1
9

3  

FIND:   
 
 Construct an amplitude spectrum plot for this series. 
 
SOLUTION: 
The corresponding frequency spectrum is shown below 

 
COMMENT:  The relative importance of the various terms in the Fourier series as 

discerned from the amplitude of each term would aid in specifying the required frequency 
response for a measurement system.  For example, the term cos 4x has an amplitude of 
1/16, which for many purposes may not influence a measurement, and would allow a 

measurement system to be selected to measure frequencies up to 0.6 Hz.
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PROBLEM 2.24 
 
KNOWN:  Signal sources: 

a) thermostat on a refrigerator 

b) input to a spark plug 

c) input to a cruise control 

d) a pure musical tone 

e) note produced by a guitar string 

f) AM and FM radio signals 
 
FIND:  Sketch representative signal waveforms. 
 
SOLUTION:  
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
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c) 

 
 
 
d) 
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f) 
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PROBLEM 2.25 
 
KNOWN:  ( ) 5sin 31.4 2sin 44    Voltse t t t= +  
 
FIND:  e(t) as a discrete-time series of N = 128 numbers separated by a time increment of 
δt .  Find the amplitude-frequency spectrum. 
 
SOLUTION: 
 
With N = 128 and δt = 1/N, the discrete-time series will represent a total time (or series 
length) of N δt = 1 sec.  The signal to be represented contains two fundamental 
frequencies, 
  f1 = 31.4/2π = 5 Hz and  f2 = 44/2π = 7 Hz  
 
We see that the total time length of the series will represent more than one period of the 
signal e(t) and, in fact, will represent 5 periods of the f1 component and 7 periods of the f2 
component of this signal.  This is important because if we represent the signal by a 
discrete-time series that has an exact integer number of the periods of the fundamental 
frequencies, then the discrete Fourier series will be exact. 
 Any DFT or FFT program can be used to solve this problem.  Using the 
companion software disk, issues associated with sampling continuous signals to create 
discrete-time series.   The time series and the amplitude spectrum are plotted below. 

5sin31.4t + 2 sin44t Volts
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PROBLEM 2.27 

 
KNOWN:  3250 µε < ε < 4150 µε ,   f = 1 Hz 
  
FIND:  a) average value 

b) amplitude and frequency when the output is expressed as a simple 
periodic function 
c) express the signal, y(t), as a Fourier series. 

 
SOLUTION:   
 
a) ( ) average value = 3250 4150 2 3700 oA µε= + =  
 

b) ( )1

1

4150 3250 2 450 
1 Hz

C
f

µε= − =

=
 

 
 
c) ( )( ) 3700 450sin 2   2y t t ππ µε= + ±  



PROBLEM 2.28 
 
KNOWN:  A force input signal varies between 100 and 170 N (100 < F < 170 N) at a 
frequency of ω = 10 rad/s.  
  
FIND:  Signal average value, amplitude and frequency.  Express the signal, y(t), as a 
Fourier series. 
 
SOLUTION:   
The signal characteristics may be determined by writing the signal as 
 

y(t) = 135 + 35 sin 10t  [N] 
 

a) Ao = Average value = (170 + 100)/2 = 135 N 

b) C1 = (170 − 100)/2 = 135 N;  f1 = ω/2π = 10/2π = 1.59 Hz 

c) y(t) = 135 + 35 sin (10t ± π/2)   

 
 
 
 



PROBLEM 2.29 
 
 
KNOWN:  A periodic displacement varies between 2 and 5 mm (2 < x < 5) at a 
frequency of f = 100 Hz. 
 
FIND:   Express the signal as a Fourier series and plot the signal in the time domain, and 
construct an amplitude spectrum plot. 
 
SOLUTION: 
Noting that 

 
( )

( )1

1

 Average value = 2 5 2  3.5 mm

5 2 2  1.5 mm
100 Hz

oA

C
f

= + =

= − =

=

 

The displacement may be expressed 
 

( )( ) 3.5 1.5sin 200  mm2y t t ππ= + ±  

 
The resulting time domain behavior is a simple periodic function; an amplitude spectrum 
plot should show a value of 3.5 mm at zero frequency and a value of 1.5 mm at a 
frequency of 100 Hz. 



PROBLEM 2.30 
 
 
KNOWN:  Wall pressure is measured in the upward flow of water and air.  The flow is 
in the slug flow regime, with slugs of liquid and large gas bubbles alternating in the flow.  
Pressure measurements were acquired at a sample frequency of 300 Hz, and the average 
flow velocity is 1 m/sec. 
 
FIND:   Construct an amplitude spectrum for the signal, and determine the length of the 
repeating bubble/slug flow pattern. 
 
SOLUTION: 
The figure below shows the amplitude spectrum for the measured data.  There is clearly a 
dominant frequency at 0.73 Hz.  Then with an average flow velocity of 1 m/sec, the length 
is determined as  
 

 1 m/sec 1.37 m
0.73 Hz

L = =  
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PROBLEM 2.31 

 
 
KNOWN:   
Signals, 

a) Clock face having hands  b) Morse code 

c) Musical score   d) Flashing neon sign 

e) Telephone conversation  f) Fax transmission  
 
  
FIND:  Classify signals as completely as possible 
 
SOLUTION: 
a) Analog, time-dependent, deterministic, periodic, steady-state 

b) Digital, time-dependent, nondeterministic 

c) Digital, time-dependent, nondeterministic 

d) Digital, time-dependent, deterministic 

e) Analog or digital, time-dependent, nondeterministic 

f) Digital, time-dependent, nondeterministic 



 
 
 

PROBLEM 2.32 
 
KNOWN:   Amplitude and phase spectrum for {y(rδt)} from Figure 2.26 
 

FIND: {y(rδt)}, ,   f tδ δ  

SOLUTION: 
By inspection of Figure 2.27: 
 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

5 V   0 V   3 V   0 V   1 V
1 Hz   2 Hz   3 Hz   4 Hz  5 Hz
0 rad   0 rad   0.2 rad   0 rad   0.1 rad

C C C C C
f f f f f
φ φ φ φ φ

= = = = =
= = = = =
= = = = =

 

 
and 1 Hzfδ = . 
 
The signal can be reconstructed from the above information, as 
 

 ( ) ( ) ( )( ) 5sin 2 3sin 6 0.2 sin 10 0.1y t t t tπ π π= + + + +  

 
The exact phase of the signal relative to t = 0 is not known, so y(t) is ambiguous within 

2π± in terms of its overall phase. 
 
A DFT returns N/2 values.  Therefore 5 spectral values implies that N = 10.  Then 

1 1 Hz 1 10  giving  0.1 sec or 10 Hzsf N t t t fδ δ δ δ= = = = =  

Alternatively, by inspection of the plots  

2 5 Hz giving 10 Hz or 0.1 secN s sf f f tδ= = = =  
 



PROBLEM 2.33 
 
KNOWN:    

( )
( )

( ) 4     2 0

( ) 4     0 2

y t C T t C T t

y t C T t C t T

= + − ≤ ≤

= − + ≤ ≤
 

 
  
FIND:  Show that the signal y(t) can be represented by the Fourier series 

( )
( )

y t A C n
n

n t
To

n

( )
cos

cos= +
−

=

∞

∑ 4 1 2
2

1

π
π

π  

SOLUTION: 
 
a)  Since the function y(t) is an even function, the Fourier series will contain only cosine 
terms, 

y t A A n t
T

A A n to n

n

o n

n

( ) cos cos= + = +
=

∞

=

∞

∑ ∑2

1 1

π ω  

The value of Ao is determined from Equation (2.17) 

A
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integrating yields a value of zero for Ao 
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Then to determine An 
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The values of An are zero for n even, and the first three nonzero terms of the Fourier 
series are  
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The first term represents the fundamental frequency. 
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PROBLEM 2.33 
 
KNOWN:  Figure 2.16 illustrates the nature of spectral distribution or frequency 
distribution on a signal. 
 
FIND:  Discuss the effects of low amplitude high frequency noise on signals. 
 
SOLUTION:    
Assume that Figure 2.16a represents a signal, and that Figures 2.16 b-d represent the 
effects of noise superimposed on the signal.  Several aspects of the effects of noise are 
apparent.  The waveform can be altered significantly by the presence of noise, particularly 
if rates of change of the signal are important for specific purposes such as control.  
Generally, high frequency, low amplitude noise will not influence a mean value, and most 
of the signal statistics are not affected when calculated for a sufficiently long signal. 



 
PROBLEM 3.1 

 
 
KNOWN:  K = 2 V/kg  
         F(t) = constant = A 
  Possible range of A: 1 kg to 10 kg 
     
FIND:   y(t)  
 
SOLUTION  
 
    We will model the input as a static value and interpret the static output that results. To do 
this, this system is modeled as a zero order equation.  
 
 y(t) =  KF(t)   where F(t) is constant for all time; so y(t) is constant 
 
At the low end of the range, F(t) = A = 1 kg, then  
 
           y =  KF(t) = (2 V/kg)(1 kg) = 2 V 
 
At the high end of the range, F(t) = A = 10 kg, then  
 
 y =  KF(t) = (2 V/kg)(10 kg) = 20 V 
 
Hence, the output will range from 2 V to 20 V depending on the applied static input value.  
 
Clearly, the model shows that if K were to be increased, the static output y would be 
increased. Here K is a constant, meaning that the relationship between the applied input and 
the resulting output is constant. The calibration curve must be a linear one.  Notice how K, 
through its value, takes care of the transfer in the units between input F and output y.  
 
COMMENT  
 

Because we have modeled this system as a zero order responding system,  
we have eliminated any accommodation for a transient response in the system model 
solution. The forcing function (i.e., input signal) is constant (i.e., static) for all time. So in the 
transient sense, this solution for y is valid only under static conditions. However, it is correct 
in its prediction in the steady output value following any change in input value.  



PROBLEM 3.2 
 
KNOWN: System model  
 
FIND:  75%, 90% and 95% response times  
 
ASSUMPTIONS: Unless noted otherwise, all initial conditions are zero.  
 
SOLUTION  
 
    We seek the rise time to 75%, 90% and 95% response. For a first order system, the percent 
response time is found from the time response of the system to a step change in input. The 
error fraction for such an input is given by  
 
    C(t) = e-t/τ  
 
from which the percent response at time t is found by  
 
    % response = (1 - Γ(t)) x 100  
 
               = (1 - e-t/τ) x 100  
 
from which t is computed directly. Alternatively, Figure 3.7 could be used. 
  
For a second order system, the system response depends on the damping ratio and natural 

frequency of the system and can be established from either (3.15) or Figure 3.14.  
     
By direct comparison to the general model of a first order system, τ = 0.4 s. Hence,  
 
     75% = (1 - e-t/0.4) x 100     or  t75 = 0.55 s  
 
     90% = (1 - e-t/0.4) x 100     or  t90 = 0.92 s  
 
     95% = (1 - e-t/0.4) x 100     or  t95 = 1.2 s  
 
Alternatively, Figure 3.7 could be used.  
 

)(44.0) tUTTa =+
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Problem 3.2 continued 
 
 

 
    By direct comparison to equations (3.12) and (3.13),  
 
    ζ = 0.5 and ωn = 2 rad/s  
 
Then using Figure 3.14 as a guide, for a response of  
 
    75%:    ωn t ~ 1.75  so that  t75 ~ 0.9 s  
 
    90%:    ωn t ~ 2     so that  t90 ~ 1.0 s  
 
    95%:    ωn t ~2.4   so that  t95 ~ 1.2 s  
 
 

 
     By direct comparison to equations (3.12) and (3.13),  
 
     ζ = 1.0 and ωn = 2 rad/s  
 
Then using Figure 3.14 as a guide, for a response of  
 
     75%:    ωn t ~ 2.6   so that  t75 ~ 1.3 s  
 
     90%:    ωn t ~3.7   so that  t90 ~ 1.9 s  
 
     95%:    ωn t ~ 4.6   so that  t95 ~ 2.3 s  
 

 
By direct comparison to the general model of a first order system,  
 τ = 1 s and K = 0.2 units/unit.  
 
     75% = (1 - e-t/τ) x 100     or  t75 = 1.4 s  
 
     90% = (1 - e-t/τ) x 100     or  t90 = 2.3 s  
 
     95% = (1 - e-t/τ) x 100     or  t95 = 3.0 s  

)(42) tUyyyb =++
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PROBLEM 3.3 
 
 
KNOWN:   let X = % vapor  
 
            X     y [units]  
 
            0       80  
            50      40  
           100       0  
 
FIND:    K  
 
SOLUTION  
 
    The data fit the linear curve,  
 
         y = -0.8x + 80  
 
The static sensitivity is defined as  
 
         K = dy/dx x = -0.80 units/% vapor  
 
where K is independent of input x.  
 
COMMENT  
 
Because this system's calibration curve is linear, the static sensitivity remains constant over 
the input range.  
 
Be certain to always provide units for all answers; magnitudes alone are not sufficient.  
 



PROBLEM 3.4 
 
 
KNOWN:   System model equation  

       K = 1 unit/unit  
       F(t) = 100U(t)  
       y(0) = 75 units  

 
FIND:  y(t)  
 
SOLUTION  
 
(a)  The solution to the system model was shown to be given by the general form,  
 
           y(t) = y∞ + (y(0) - y∞ )e-t/τ 
 
where here,  
 
           y(0) = 75 units  

y∞ = 100 units  
           τ = 0.5 s  (determined from the system equation) 
 
then,  
 
           y(t) = 100 + (75 - 100) e-t/0.5  units  
 
Alternatively, by direct solution and with y(0) = 75 units, 

 
for t ≥ 0+ 
 
            y(t) = yh + yp  
 
                 = Ce-t/τ

 + B  
 
By substitution, B = 100. Then, if y(0) = 75 and τ = 0.5, C = -25.  
 
          y(t) = 100 - 25 e-t/0.5 

0.5 100 ( )y y U t
•
+ =



 
(b) The input signal and output signal are shown below.  
 

P3.4

50

75

100

125

0 2 4 6t(sec)

Te
m

pe
ra

tu
re

 ( 
C

) y(t)
F(t)

 
 
 



PROBLEM 3.5 
 
 
KNOWN:  Thermometer similar to Example 3.3  
           First order system model  

          K = 1 oF/oF  
τ = 30 s  
F(t) = AU(t) = (120 - 32 oF)U(t)  
T(0) = 32 oF  

 
FIND: T(t); 90% rise time  
 
SOLUTION  
 
(a) From Example 3.3,  

 
or      

 
for t ≥0+ with T(0) = 32 oF. Subbing yields 
 
    T(t) = 120 - 88e-t/30   for t ≥0+  
 
This response is plotted below.  
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(b) To find the 90% response or rise time,  
 
    %response = 1 - Γ(t) = 1 – e-t/τ 

 
For τ = 30 s and Γ =  0.1 , this yields  
 
    t90 = 69 s  
 



PROBLEM 3.6 
                      
 
SOLUTION: 
 
We saw in Example 3.3 that the time constant for a thermal system was dependent on 
ambient conditions. Specifically, the heat transfer coefficient is dependent on such 
conditions.  
 
If a student were to remove a sensor from hot water and transfer it to cold water by hand, it 
would be in motion part of the time. Further, one student may hold the sensor in the cold bath 
more steadily than another. Movement will change the heat transfer coefficient on the sensor 
by a factor of from 2 to 5 or more. Hence, the variation in time constant noted between 
students was simply a lack of control of the heat transfer coefficient – that is, a lack of 
control of the test condition.  
 
Their answers (results) are not incorrect, just inconsistent! The results simply show the 
effects of a random error, in this case due to variations in the test condition. By proper test 
plan design, they can obtain a reasonable result that is bracketed by their test uncertainty. 
This uncertainty can be quantified by methods developed in Chapters 4 and 5. 



PROBLEM 3.7  
 
 
KNOWN:  First order instrument  
           τ = 20 ms  
 
FIND:   Rise time  
 
SOLUTION  
 
    The percent response of a first order system subjected to a step input is  
 
    %response = 1 - Γ(t) = 1 - e-t/τ 
 
For example, for a 90% rise time, Γ(t) = 0.1. Solving for time,  
 
    t90 = 2.3τ 
 
          = 46 ms  



 
 

PROBLEM 3.8 
 
 
KNOWN: Dynamic calibration using a step input  

        y∞ - y(0) = 100 units  
        y(t = 1.2 s) = 80 units  
        y(0) = 0 units  

 
FIND:  τ, y(t = 1.5 s)  
 
SOLUTION  
 
    A first order system subjected to a step input can be modeled as  
 

  
with y(0). The solution is given by (3.5) as  
 
    y(t) = KA + (y(0) - y∞ ) e-t/τ 
 
From the information provided, we establish that KA = 100 units. Then,  
 
    y(t) = 100 - 100 e-t/τ 
 
Using the information that y(1.2) = 80 units, we solve for τ, 
 
    y(1.2) = 80 units = 100 - 100 e-t/τ units  
 
then  
 
    τ= 0.75 s.  
 
At time 1.5 s,  
 
    y(1.5) = 100 - 100 e-1.5/0.75 units = 86.5 units  
 

KAU(t)yyτ =+
•



 
PROBLEM 3.9 

 
 
KNOWN:  First order system  
         τ = 0.7 s  

 KF(t) = KAsin 4πt   (note here, 2 fω π= where f = 2 Hz) 
 
FIND:  δ 
 
SOLUTION  
 
    The dynamic error is defined as  
 
    δ (ω) = M(ω) - 1  
 
where for a first order system  
 
    M(ω)= 1/[1 + (τω)2]½ 
 
Now, ω = 2πf so that  
 
    M(f) = 1/[1 + (2πf τ)2]½ 
 
By direct substitution,  
 
   M(f) = 1/[1 + (2.8π)2]½  = 0.11  
 
So that the dynamic error,  
 
   δ(2 Hz) = δ(4π rad/s) = - 0.89  
 
COMMENT  
 
    This result means that the output amplitude of the 2 Hz signal will be 89% smaller than the 
sensed input amplitude KA. That is, the value KA will be attenuated by a factor of 0.89. 
Attenuation results with a negative value for δ while a positive value indicates a gain.  



 
PROBLEM 3.10 

 
 
KNOWN:         First order instrument  

       τ= 1 s  
       K = 1 unit/unit  
       F(t) = 10cos 2.5t = 10sin (2.5t π/2)  
       y(0) = 0  

 
FIND:   ysteady(t), β1 
 
SOLUTION  
 
    For a first order system subjected to a simple periodic waveform input signal, the output 
response has the form  
 
    y(t) = ce-t/τ+ M(ω)KAsin (2.5t + π/2 + φ(ω))  
 
The steady response is given by the second term on the right side where  
 
    M(ω)= 1/[1 + (τω)2]½ 
    φ(ω) = - tan-1 τω 
 
or these can be found from Figures 3.12 and 3.13. With ω = 2.5 rad/s,  
 
    M(2.5) = 0.37  
 
    φ(2.5) = -68o = -1.19 rad  
 
Then,  
 
    ysteady(t) = (0.37)(1)(10)sin (2.5t + π/2  - 1.19)  
 
                 = 3.7sin (2.5t + 0.38)  
 
The time lag arising between input and output signals is given by  
 
    β1= φ(ω)/ω 
           = -1.19/2.5 = 0.48 s  
 



 
COMMENT  
 
The dynamic error in this problem is -63%, and this is a very large number. In effect, the 
measurement system cannot respond quickly enough to follow the input signal. This creates a 
filtering effect whereby a significant portion of the signal amplitude is attenuated (the term 
"attenuation" refers to a reduction in value and is indicated by a negative dynamic error).  
 
This system is a more effective as a filter than it is as a measuring system. Associated with 
this large dynamic error is a large phase shift and associated time lag.  



 
PROBLEM 3.11 

 
 
KNOWN:  First order system  

            τ = 2 s  
           0.98 ≤ δ(ω) ≤ 1.02  required  

 
FIND:  The maximum frequency that can be measured ωmax  
 
SOLUTION  
 
    The dynamic error is defined as  
 
           δ(ω) = M(ω) - 1  
 
    A first order system cannot have a value of M(ω) that is greater than 1.  
So based on the constraint for dynamic error, we want  
 
        1  ≥  M(ω) ≥ 0.98  
 
or  
 
        0.98 ≤ 1/[1 + (τω)2]½ 
 
At τ = 2 s, we find  
 
        ω  ≤ 0.10 rad/s  
 
For this to be true,  
 
       ωmax = 0.10 rad/s  
 
or in terms of cyclical frequency  
 

fmax = 2πωmax = 0.016 Hz  
 
and 
 
 β1 = - 1.97 seconds 



 
 

PROBLEM 3.12 
 
 
KNOWN:  First order system  

τ = 0.01 s = 10 ms 
            δ(ω) ≤  ±0.10  

 
FIND:  M(ω), φ(ω). Frequency range to meet δ constraint.  
 
ASSUMPTION: Input of the form, F(t) = A sin ωt  
 
SOLUTION  
 
    For a first order system subjected to a periodic waveform input, the magnitude ratio and 
phase shift are given by (3.10) and (3.9) respectively. For this particular system,  
 
    M(ω) = 1/[1 + (0.01τω)2]½ 
 
 
    φ(ω) = - tan-1 0.01ω 
 
or  
 
    ω [rad/s]       M(ω)  φ(ω) 
 
        1   1.0   -0.6o  
       10   0.995  -5.7o  
      100  0.707   -45o  
     1000  0.10  -84o  
 
Note that at ω = τ, that M(ω) = 0.707, a value that defines the bandwidth of a system.  
 
For a first order system, M(ω) will always be equal or less than unity. So that the dynamic 
error constraint reduces to δ(ω) ≤  -0.1. For this to be true,  
 
       -0.1 ≥ (1/[1 + (0.01ω)2]½ -  1  
 
solving,  
 
    ω ≤ 48.5 rad/s  
 
It is clear that for all ω such that 0 ≤  ω ≤  48.5 rad/s,  the constraint is met.  



 
PROBLEM 3.13 

 
 
KNOWN:  First order system  

τ = 0.15 s  
          K = 5 mV/oC  

T(0) = 115 oC  
          F(t) = T(t) = 115 + 12sin 2t  oC  

 
ASSUMPTIONS:  Output signal is linearly proportional to input signal (that is, K is 
constant)  
 
FIND:  Output response, E(t) ; δ(ω); β1 
 
SOLUTION  
 
We see immediately from the units of static sensitivity that this first order instrument senses 
temperature and outputs a voltage signal. Hence, a good system model can be written as 

(3.4),  
 
where E(t) represents the output voltage signal. Specifically, the system model is written as  

 
with E(0) = KT(0) = 575 mV.  
 
To solve for E(t), we assume a solution consisting of both homogeneous and particular parts,  
 
     E(t) = Eh + Ep  
 
Because a first order system has only one root, the solution to the characteristic equation has 
the form,  
 
     Eh = Ce-t/τ = Ce-t/0.15  
 
We guess a particular solution of the form,  
 
     Ep = A + Bsin 2t + Dcos 2t  
 

KF(t)EEτ =+
•

mV    12sin2t)5(115EE0.15 +=+
•



substitute back into the model with E(t) = Ep and  
 
     Ep = 2Bcos 2t - 2Dsin 2t  
 
This leads to A = 575, B = 64.95 and D = 16.51. The full solution then has the form,  
 
    E(t) = Ce-t/0.15 + 575 + 64.95 sin 2t + 16.51 cos 2t  
 
Evaluating at E(0) = 575 yields that C = -16.51. Lastly, the measurement system's output 
response to this input can be rewritten as  
 
    E(t) = 575 + 67 sin(2t + 0.254) - 16.51e-t/0.15   mV  
 
The dynamic error at ω = 2 rad/s can be expressed as  
 
    δ(2) = M(2) - 1  
 
Using equation 3.10 to solve for M(ω) yields  
 
    M(2) = 1/[1 + ((2)(0.15))2]½ = 0.96  
 
so that δ(2) = - 0.04.  
 
The time lag can be found from  
 
    β1 (ω) = φ(ω)/ω 
 
Using (3.9) at ω = 2 rad/s,  
     
    φ(2) = -tan-1 (2)(0.15) = -16.7o = 0.29 rad  
 
so that the time lag is β1(2) = 0.29/2 = 0.15 s.  



 
PROBLEM 3.14 

 
 
KNOWN:   First order instrument  

F(t) = 100U(t) oC  
Five seconds are available to interpret signal and provide control signal back 
to process.  

 
FIND:   τmax 
 
SOLUTION  
 
    In such a situation, we will want the system to commence a shut-down when the output 
signal achieves some set threshold value. We must set this threshold value. However, we 
probably do not wish to set it too low or we run the risk of an unnecessary shut down 
resulting from just random noise. Suppose we set the error fraction at 10%, that is at  
 
      Γ ≤ 0.10  
 
reactor shut down will commence. Then with this value we can find the acceptable time 
constant using  
 
      Γ = e-t/τ 
 
With Γ = 0.10 and τ ≤ 5 s, we solve that  τ ≤ 2.17 s.  
 
COMMENT  
 
    We should note that as the set threshold value is pushed to lower values of error fraction, 
the value for time constant becomes smaller. For example, at Γ = 0.01, τ ≤ 0.92 s. This places 
a more restrictive design constraint on the sensor and installation selected.  



 
PROBLEM 3.15 

 
 
KNOWN:   Single loop LR circuit (see below) used as filter  

           R = 1million ohm  
 τ = L/R  

 
FIND:   L such that M(2000π) ≤ 0.5  
 
SOLUTION  
 
    For the LR filter circuit shown, we can use the voltage loop law to write  
 
    L dI/dt + IR = Ei(t)  
 
But across the resistor, I = Eo(t)/R. So the system governing equation is given by  

 
with Ei(t) = A sin ωt. This is a first order system which has a magnitude ratio defined as  
 
    M(2000π) = 1/[1 + (2000πτ)2]½ ≤ 0.5  
 
Solving leads to τ ≤ 0.276 ms. From which  
 
    L = Rτ = (1 x 106Ω)(0.000276 s) = 276 H  
 
 
 
     Eo 
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PROBLEM 3.16 

 
 
KNOWN:   F(t) = 2U(t)  
  ωn = 0.5 rad/s; ζ = 0.5; K = 0.5 m/V 

      
 
FIND:   90% rise time and settling time  
 
SOLUTION  
 
      
     From (3.14a), for t ≥ 0+ 

 
 
where ωd = 0.43 rad/s. 
 
By inspection,  
 
        90% rise time = 2.74 s 
 
        90% settling time = 9.5 s 
 
 

0y(0)(0)y ==
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PROBLEM 3.17 

 
 
KNOWN:   Second order system  
          ζ = 0.6, 0.9, 2.0  
 
FIND:    Plot M(ω) and φ(ω).  

Find the frequency range in which δ(ω) ≤ ±5%  
 
SOLUTION  
 
    The magnitude ratio and phase shift of a second order system is given by (3.21) and (3.19), 
respectively,  
 
    M(ω)= 1/[(1 - {ω/ωn}2)2 + (2ζω/ωn)2]½ 
 
    φ(ω) = tan-1 -(2ζω/ωn )/(1 - [ω/ωn ]2)  
 
These are plotted below.  
 
    For a constraint of δ(ω) ≤ ±5%:  0.95 ≤ M(ω) ≤ 1.05.Either from the plots or from (3.21) 
directly, for δ(ω) ≤ ±5%, then  
 
    ζ = 0.6;  0 ≤ ω/ωn  ≤ 0.84  
 
    ζ = 0.9; 0 ≤ ω/ωn  ≤ 0.28  
 
    ζ = 2.0;  0 ≤ ω/ωn  ≤ 0.08  
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PROBLEM 3.18 
 
 
KNOWN:  Input: 30 ≤ C1 ≤ 40oC with f1 = 10 Hz  

δ ≤ -0.01  
 
FIND:   T(t), τmax  
 
ASSUMPTIONS:   First-order system (i.e. τ requested)  

               K = 1 unit/unit  
 
SOLUTION  
 
    The input signal has the form:  
 
        T(t) = (40 + 30)/2  +  [(40 - 30)/2] sin(2π(10Hz)t ±π/2)  
               = 35 + 5 sin(20πt ±π/2)  
 
The dynamic error δ(ω) = M(ω) - 1  so setting M(ω) ≥ 0.99:  
 
        0.99 ≥ 1/[1 + (20πτ)2

)
½ 

 
        τ  ≤ 2.27 ms  



 
PROBLEM 3.19 

 
 
KNOWN:  Step test imposed on a second order system  

Damped oscillating response, therefore ζ < 1  
 
FIND: Test plan to find ωn and ζ 
 
SOLUTION  
 
The step test response for an underdamped system is plotted in Figure 3.14 (and the concept 
further explored in the Example surrounding Figure 3.15). The period of oscillation gives Td 
= 2π/ωd   where  
 
                ωd  = ωn (1 - ζ2)1/2             (1)  
 
and the decay of the oscillations (i.e. the decay of the peaks of each cycle) follows e-ωn ζt. The 
test plan should impose the step input and system output recorded at time intervals much less 
than Td (e.g. 20 measurements per cycle). The peak values (maximum amplitudes), or 
alternatively the minimum amplitudes, should be plotted versus time. Because the decay is 
exponential, that is ymax = e-ωn ζt , a plot using semi-log will yield  
 
              ln ymax = ln (e-ωn ζt ) =  -ωn ζt   
 
where the slope of this plot (ln ymax vs. t) is  
 
                   m = -ωn ζ                  (2)  
 
Equations 1 and 2 provide for the two unknowns.  
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PROBLEM 3.20 
 
 
KNOWN:  Td = 0.577 ms from a step test  

Second-order system due to oscillations observed  
 
FIND:  ωd 
 
SOLUTION  
 
      The period of oscillation of a step test is the period of ringing.  
Accordingly, the ringing frequency is  
 
            ωd  = 2π/Td = 1089 rad/s  
 
or  fd = ωd /2π = 173 Hz. 
 
 



PROBLEM 3.21 
 
 
KNOWN: ζ = 0.8  

        ωd  = 2000π rad/s   (where ω [rad/s] = 2πf [Hz] and f = 1000 Hz)  
        K = 1.5 V/V  
        F(t) = (12 + 24)/2  + [(24 - 12)/2]sin 600πt = 18 + 6sin 600πt  

 
FIND:   ysteady(t)  
 
ASSUMPTIONS:  Second order system  
 
SOLUTION  
 
    The steady response to this input will have the form  
 
     ysteady(t) = KA + KAM(ω)sin ωt + φ(ω)  
 
where  
 
 M(ω)= 1/[(1 - {ω/ωn}2)2 + (2ζω/ωn)2]½ 
 
    φ(ω) = tan-1 -(2ζω/ωn )/(1 - [ω/ωn ]2) 
 
 
The natural frequency is readily computed from the measured ringing  
frequency by  
 
    ωd  = ωn (1 - ζ2)1/2 
 
yielding ωn  = 3333π rad/s. Then at ω = 600π,  
 
    M(600π) = 0.99  
 
    φ(600π) = - 0.289 rad  
 
Hence,  
 
    ysteady(t) = 27 + 8.9 sin 600πt - 0.289  
 
COMMENT  
 
    Recall that the steady response is the output signal after all transients have died out. The 
transient response is found from the homogeneous solution to the equation model.  



PROBLEM 3.22 
 
 
KNOWN:    F(t) = A sin 500πt    (recall ω [rad/s] = 2πf [Hz] and f = 250 Hz) 

        Constraint:  δ ≤ ±0.02  
        Available  ωn = 1200π rad/s    (recall ω [rad/s] = 2πf [Hz] and f = 600 Hz)  
        Available values of 0.5  ≤ ζ ≤ 1.5  

 
FIND: ζ required to meet the dynamic error constraint.  
 
ASSUMPTIONS: Second order system  
 
SOLUTION  
 
For δ ≤ ±0.02 , we want 0.98 ≤ M(ω) ≤ 1.02. From the information given, the frequency ratio 
is ω/ωn = 0.417. Then solving for ζ in the equation (3.19),  
 
    0.98 ≤ 1/[(1 - {ω/ωn}2)2 + (2ζω/ωn)2]½ 
 
 
yields  
 
    δ ≤ 0.72  
 
Repeating at the other limit,  
 
    1.02 ≤ 1/[(1 - {ω/ωn}2)2 + (2ζω/ωn)2]½ 
 
yields  
 
    δ ≤ 0.63  
 
Thus, either a transducer having δ = 0.65 or 0.7 will work.  



 
PROBLEM 3.23 

 
 
KNOWN:   Second order system responding to a sine wave as an input  

        2 ≤  f ≤  40 Hz  
        M(f) ≤  0.5  

 
FIND:   m, k, c  
 
SOLUTION  
 
 Because we wish to attenuate frequency information at and above 2 Hz, we can initiate the 
design of the system so that it meets the attenuation constraint at 2 Hz. Then we want,  
 
    M(f) = M(ω⁄2π) = 1/[(1 - {ω/ωn}2)2 + (2ζω/ωn)2]½ ≤ 0.5  
 
A freebody diagram is constructed from a model below. The system model will have the 
form,  

 
 so that, ωn = (k/m)1/2 ;  ζ = c/2(mk)1/2;  K = 1/k. Now at f = 2 Hz or ω = 2πf = 12.57 rad/s, 
ω/ωn  = 0.4. Use Figure 3.16 as a guide, note that for ω/ωn  = 0.4 and M = 0.5, we will need 
to have  ζ < 2.5. Also from the Figure, it is apparent that this value will meet the constraint at 
40 Hz as well. Suppose we select m = 2 kg as a reasonable estimate for the mass of a 
turntable and select k = 4000 N/m, a value that allows the isolation pad to deflect 5 mm. 
Then, the damping coefficient of the pad should be 447 N-s/m. Of course, the actual values 
selected will depend on availability.  
 
 
      F(t)         F(t) 
 
      m(d2y/dt2)            
y            y 
   
 
 ky   c(dy/dt)    k  c   
 
 
 
Freebody diagram       Idealized model 
 

F(t)kyycym =++
•••

       m m  



PROBLEM 3.24  
 

KNOWN: RCL circuit: L = 2 H; C = 1 µF; R = 10kΩ  
         Ei (t) = 1 + 0.5 sin 2000t  V  
         I(0) = dI(0)/dt = 0  (initial conditions) 
 
ASSUMPTIONS: Values for R, C, L remain constant.  
 
FIND: Governing equation and steady output form  
 
SOLUTION  
 
    For a single loop RCL circuit, we apply the voltage law to the RCL loop,  
 
    

R C L i
E (t) E (t) E (t) E (t)+ + =  

 
But,  
 

    ER= IR;    EL= L dI/dt;  
C

1E Idt
C

= ∫  

 
Substituting back into the loop equation and differentiating once gives,  
 

    
2

i
2

dEd I dI 1L R I
dt dt C dt

+ + =  

This is of the form for a second order system. It follows that  
 
    

n
1/ LR; R / 2 LC;K 1/ Cω = ς = =  

 
    

n
ω = 707 rad/s;  ς = 3.54; K = 1 x 10-6 

 
From equations 3.21 and 3.19, respectively with ω  = 2000 rad/s,  
 
    M(2000 rad/s) = 0.05  
 
    φ (2000 rad/s) = -1.23 rad  
 
Then, with 

i
dE / dt 1000sin 2000t=  

 
    [I(t)]steady = 1 + 0.025 sin(2000t - 1.23)  Aµ  



 
PROBLEM 3.25 

 
KNOWN:   Second order instrument  
           ς = 0.7  
           

n
ω = 2000 π  rad/s    (recall ω [rad/s] = 2πf [Hz] and f = 1000 Hz) 

         Input: 0 1500≤ ω ≤ π  rad/s  
 
FIND:    Does transducer meet a +/- 10% dynamic error constraint?   
 
�SOLUTION � 
 
    The dynamic error is defined by  
 
           ( ) M( ) 1δ ω = ω −  
 
where for a second order system  
 

    

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M ω

ω ω ζ ω ω

 

 
The dynamic error constraint can be rewritten as  
 
    0.9 M(0 1500 ) 1.10≤ ≤ ω ≤ π ≤  
 
Inspection of Figure 3.16 shows that the magnitude ratio will never exceed a value of 1.10 
over this frequency range. However, its value can fall below 0.90. If we test the frequency 
response at 1500 π  rad/s, we can check this. Solving with for M( ω) at 

n
/ω ω = 0.75 and ς = 

0.7 yields M(1500 π ) = 0.88.  
 
This gives a dynamic error of -12%. So the transducer does not meet the constraint over  
the entire frequency range of interest. 



PROBLEM 3.26 
 
 
KNOWN: t90 = 100 ms  

     fd = 1200 Hz   
             ς  = 0.8  
                 Recall ω [rad/s] = 2πf [Hz]; and so / /n nf fω ω = , and so forth 
 
FIND: δ (1 Hz), 

1
β  

 
SOLUTION  
 
       2

d n
f f 1= − ς   or  2

n
f 1200 / 1 0.8= − = 2000 Hz  

 
The dynamic error is given by  (f )δ = M(f) - 1:  
 

          

( ) ( )
1/ 222 2

1( 1)

1 2

= =
   − +     

n n

M f

f f f fζ

 

              = 
( ) ( )

1/ 222 2

1

1 1 2000 2(0.8)1/ 2000
  − +    

 = 1.0  

 
so δ (1 Hz) = 0.0.  
 
The time lag is given by  
 

       1
( ) ( )

2
Φ Φ

= = =
f
f

ωβ
ω π ( )

1
2

2
tan / 2

1
−

 
 −
 −  

n

n

f f
f

f f

ζ
π  = 7.3 ms  

 
COMMENT  
     The dynamic error of zero indicates that the amplitude of the input  
signal KF(t) and the steady output signal are essentially equal. The time lag indicates that  
the output signal appears at a time 

1
β after the input signal is applied.  



PROBLEM 3.27 
 
KNOWN: 

R
ω  = 1414 rad/s  

      ς = 0.5  
      f = 6000 Hz    
      Recall ω [rad/s] = 2πf [Hz]  

 
FIND: δ (6000 Hz), Φ (6000 Hz)  
 
SOLUTION  
 
     For resonance,  
 
     2

R n
1 2ω = ω − ς    or  2

n
1414 1 2(0.5)= ω − , so 

n
ω = 2000 r/s  

 
That means,  fn = 318 Hz  (because ω [rad/s] = 2πf [Hz])   
 
The ratio  f/fn = 6000/318 = 18.87 ; ς  = 0.5 and so for f = 6000 Hz,   
 

               

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M f

f f f fζ

 

 
or M(6000 Hz) = 0.0028.  
 
    The dynamic error,  
 
     δ (6000 Hz) = M(6000 Hz) - 1 = - 0.997  
 
   The phase shift is  
 

    Φ (6000 Hz) = 
( ) ( )

1 1
2 2

2 2(0.5)(18.87)tan tan
1 18.871

− −− = −
−−

n

n

f f

f f

ζ = 3.04 rad = - 174o.  

 
So the input signal amplitude is attenuated 99.7% at 6000 Hz with a 174o phase shift between 
the input and output signals. The instrument effectively filters out the information at 6000 
Hz.  
 



PROBLEM 3.28 
 
KNOWN: Second-order instrument  
            0 100≤ ω ≤ rad/s  

     Constraint: ( )δ ω ≤ ± 10%  
 
FIND: Select appropriate values for 

n
ω  and δ  

 
SOLUTION 
 
     The most demanding application will be at the highest input frequency  
because ( ) M( ) 1δ ω = ω − . Inspection of Figure 3.16 or use of equation 3.21 proves  
useful to find:  
 

      
n
[rad / s]ω   ς  

n

ω
ω

     M( )ω    ( )δ ω  

             200    0.4          0.5     1.18     0.18  
             200    1.0          0.5      0.64    -0.36  
             200    2.0          0.5      0.47    -0.53  
             500    0.4          0.2      1.03     0.03  
             500    1.0          0.2      0.96    -0.04  
             500    2.0          0.2      0.80    -0.20  
 
So  ς  between 0.4 through 1 and with  

n
ω = 500 rad/s will meet the constraint. 



PROBLEM 3.29  
 
 
KNOWN:  First order system: τ  = 0.2 s; K = 1 V/N  
                F(t) = sin t + 0.3 sin 20 t  N   (and so A1 = 1N and A2 = 0.3N)  
 
FIND:   Steady response output signal  
 
SOLUTION  
 
    This system must respond to two frequencies 

1
ω  = 1 rad/s and 

2
ω = 20 rad/s. The steady 

output will have the form,  
 
    

steady 1 1 1 1 2 2 2 2
y KA M( )sin( t ) KA M( )sin( t )= ω ω + Φ + ω ω + Φ  

  
For a first order system, we use equations 3.10 and 3.9 to solve for each M and Φ :  
 
    M(1 rad/s) = 0.98        Φ (1 rad/s) = -0.197 rad  
 
    M(20 rad/s) = 0.24       Φ (20 rad/s) = -1.326 rad  
 
so that,  
 
    

steady
y = 0.98 sin(t - 0.197) + 0.072 sin(20t - 1.326)  

 
COMMENT 
 
    While the 

1
ω information is passed onto the output signal with a  

minor attenuation (2%), the 
2

ω  information is well attenuated (filtered) by 76%. This  

measurement system is not a good choice for measuring the 
2

ω information. 



PROBLEM 3.30  
 
 
KNOWN:   Second order system accelerometer:  
                 ς = 0.5  
                  

n
f = 4000 Hz         (recall ω [rad/s] = 2πf [Hz]) 

                 f  = 2000 Hz  
 
FIND:    

R
(f ), fδ  

 
SOLUTION  
 
    For any system,  
 
           (f ) M(f ) 1δ = −  
 
where 

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M f

f f f fζ

. Then, for this system  

 
           M(2000) = 1.11  
 
so that  
 
           (2000)δ  = + 0.11  
 
The output magnitude from this system at this frequency will be 11% greater  
than the input magnitude, KA. The system fails the criterion of +/- 10%.  
 
    The resonance frequency is found from  
 
        2

R n
f f 1 2= − ς   = 2828 Hz    or about 2800 Hz. 



PROBLEM 3.31 
            
 
KNOWN:  Second order transducer  
                  ς  = 0.4  
                 

n
f = 18,000 Hz  

                  F(t) = A sin 9000 π t    (recall ω [rad/s] = 2πf [Hz] and f = 4500 Hz) 
 
FIND:  

R
(f ),fδ , (f )Φ  

 
 
SOLUTION  
 
    For any second order system,  
 
           (f ) M(f ) 1δ = −  
 

where 

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M f

f f f fζ

. Then, for this system  

 
           M(4500 Hz) = 1.04    
 
So output amplitude B is 4% higher than input amplitude A. This means the dynamic error 
is  
 
           (4500Hz)δ = + 0.04  
 
The phase shift is found from equation 3.19. For this system,  
 

           
( ) ( )

1 1
2 2

2 2(0.4)(0.25)(4500) tan tan
1 0.251

n

n

f f

f f

ζ− −Φ = − = −
−−

= - 0.21 rad  

That is about a 12o lag between input and output signals. The resonance frequency is found to 
be  
 
          2

R
f 18000 1 2(0.4)= −  = 14,843 Hz 



PROBLEM 3.32 
 
 
KNOWN:  Seismic Accelerometer of Example 3.1  
         F(t) = 

o
x sin tω  

 
FIND:   M( ω) and ( )Φ ω  
 
SOLUTION  
 
    From example 3.1,  
 

my cy ky cx kx+ + = +    
which can be rewritten,  
 

    
2

1 2 2
+ + = +  

n nn

y y y x xζ ζ
ω ωω

 

 
Assuming zero value initial conditions, y(0) y(0) 0= =  
 

[ ]

( ) ( )
1/ 222 2

( )sin ( )
( )

1 2

+ Φ
= +

   − +     

n
h

n n

t
y t y

ω ω ωω

ω ω ζ ω ω

 

 
Then,  
 

 

( ) ( )
1/ 222 2

( )
( )

1 2

=
   − +     

n

n n

M
ω

ω
ω

ω ω ζ ω ω

 

 

 
( )

1
2

2
( ) tan

1
−Φ = −

−

n

n

ζ ω ω
ω

ω ω
 

 
By inspection, this instrument will be best suited to measure signals having frequency 
content that is greater than its natural frequency.  
 
COMMENT   
 
    The instructor may wish to augment this problem with material from Section 12.5 or refer 
students to this section of the text for further reading.  



PROBLEM 3.33  
 
KNOWN:  Second order system pressure transducer  
         ς  = 0.6  
         nω  = 8706 rad/s  
 
FIND: M(ω), Φ(ω), ωR 
 
SOLUTION  
 
    For a second order system the magnitude ratio and phase shift are   
 

   

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M ω

ω ω ζ ω ω

 

 

    
( )

1
2

2
( ) tan

1
−Φ = −

−

n

n

ζ ω ω
ω

ω ω
 

Using the known values, we construct the frequency response as  
 
           ω [rad/s]      M(ω)        Φ(ω) [rad]  
 
              10            1.0           0  
            1000          1.0          -0.14  
            4607          1.04        -0.72  
            8706          0.83        -1.57  
           87000          0.01       -3.02  
 
For underdamped systems, the 
maximum value for M(ω) occurs 
at ωR,  
 
    2

R n
1 2ω = ω − ς = 4607 rad/s  

 
so (4607)M = 1.042. The resonance is slight for ζ = 0.6 as verified in the magnitude ratio 
plot in the text. 
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PROBLEM 3.34 

 
 
KNOWN:  Coupled first and second order systems  
                F(t) = 10 + 50 sin 628t  oC  
          Input Stage Device:  
             τ  = 1.4 ms  
             K = 2 V/oC  
          Output Stage Device  
             K = 1 V/V  
             ς  = 0.9  
             nω  = 10000π  rad/s  
 
FIND:   Steady portion of output signal y(t)  
 
SOLUTION  
 
    For a coupled system of two components, call them 1 and 2, the system output is defined 
by  
           1 2( )

1 1 2 2 1 2 1 2( ) ( ) ( ) iKG s K G s K G s K K M M e Φ +Φ= =  
with  
 
           1 2( ) ( ) ( )systemM M Mω ω ω=  

           Ksystem = K1K2  
  
           1 2( ) ( )system ω ωΦ = Φ + Φ   

For ω  = 628 rad/s,  

            
( ){ }1 1/ 22

1(628 rad/s)
1

M
ωτ

=
+

= 0.75,  

            

( ) ( )
2 1/ 222 2

1(628 rad/s)

1 2n n

M

ω ω ζ ω ω

=
   − +     

= 1.0,  

            1
1(628 rad/s) tan ωτ−Φ = −  = -0.721 rad,  

            
( )

1
2 2

2
(628 rad/s) tan

1
n

n

ζ ω ω

ω ω
−Φ = −

−
= -0.036 rad  

 
Then, with Ksystem = (2V/oC)(1 V/V) , 
    ysteady(t) = (10)(2)(1) + (50)(2)(1)(1)(.75)sin(628t + (-0.721-0.036)  

      = 20 + 75 sin(628t - 0.757)  V  



PROBLEM 3.35 
 
KNOWN:   Two coupled second order systems  
                  Input signal: 

1
2 C 5mm≤ ≤    and  f1 = 85 Hz  

                Constraint: ( )δ ω ≤ ± 0.05  
 
FIND:    

n
,ω ζ  for each of the two measurement system stages  

 
SOLUTION  
 
    There are a number of ways to approach this problem and there is not one answer. The 
following is one approach to choosing a system.  
 
    The input function has the form,  
 
    F(t) = (5+2)/2   + [(5-2)/2]sin 170πt  mm  
       = 3.5 + 1.5 sin 170πt  mm  
 
Now in order to set the specifications, we need to examine how the system as a  
whole will respond to the input of frequency 170π rad/s. For coupled systems,  
 
           1 2( )

1 1 2 2 1 2 1 2( ) ( ) ( ) iKG s K G s K G s K K M M e Φ +Φ= =  
with  
 
           1 2( ) ( ) ( )systemM M Mω ω ω=  

           Ksystem = K1K2  
  
           1 2( ) ( )system ω ωΦ = Φ + Φ   

In general, for second order systems,  
 
           

( ) ( )
2 1/ 222 2

1( )

1 2

=
   − +     

n n

M ω

ω ω ζ ω ω

  

 

           
( )

1
2 2

2
( ) tan

1
−Φ = −

−

n

n

ζ ω ω
ω

ω ω
 

The dynamic error of the system is found from  
 
           

system system
( ) M( ) 1δ ω = ω −  



If we accept, ( )δ ω ≤ ± 0.05 as a maximum constraint, then this means 
           

1 2
0.95 M M 1.05≤ ≤  

So choose any value for M1 and M2 that is within this constraint.  
For example, we could take,  

 
M1 = 0.98 and M2 = 1.02  

 
as one possible design target. With these values selected, we examine each stage in the 
system.  
 
Input Stage Device  
 
   Suppose we fix 

1
ζ = 0.7, then for 

1
M (170 )π = 0.98, 

1
n

81ω = π rad/s. The  

phase shift then becomes, 
1
(170 )Φ π = -0.71 rad.   

 
Output Stage Device  
 
    Suppose we fix 

2
ζ = 0.6, then for 

2
M (170 )π = 1.02, 

2
n

48ω = π  rad/s. The  

phase shift then becomes, 
2
(170 )Φ π = -0.35 rad.   

 
COMMENT 
 
    The actual values for ζ  and 

n
ω may be limited due to availability from  

vendors. But the problem demonstrates one approach to dealing with such an  
open ended problem. Note also that the phase shift for the system selected is about 
 -0.61 rad, which is well tolerated for most purposes and is within the range in  
which phase is linear with frequency. 



 
 
 
 PROBLEM 3.36 

 
 
KNOWN:   ωR = 82.5 rad/s  
        ζ= 0.4  
        K = 2 V/N  
        F(t): Ao=3 N, C1=C2=1 N, ω1 =8 rad/s = 1.27 Hz, ω2 = 165 rad/s = 26.26 Hz  
 
FIND: y(t)  
 
SOLUTION  
 
  y(t) = yh + 3K + KC1M(8) sin[8t + φ(8)]  
            + KC2M(165) sin[165t + φ(165)]  
 
For this system the natural frequency is  
 
  ωn = ωR /(1 - 2ζ2 )1/2 = 82.5 r/s /(1 - 2(0.4)2)1/2 = 100 rad/s  
 
With ω1 /ωn = 0.08  and ω2 /ωn = 1.65 and ζ = 0.4, use of Figure 3.16 and 3.17 or equations 
3.21 and 3.19 give:  
 
       M(8 rad/s) = 1.004   (using equations)  
       M(165 rad/s) = 0.46  
       φ(8 rad/s) = -3.7o  
       φ(165 rad/s) = -142.5o  
 
The transient response yh is given by equation 3.14a and appropriate initial  
conditions.  
 
  y(t) = yh + 6 + 2 sin[8t - 3.7o] + 0.92 sin[165t - 142.5o]  
 
 
Program Sampling (companion disk) was used to generate the amplitude spectrum for y(t)



Problem 3.36 (cont) 
 
 



PROBLEM 3.37 
 
 
KNOWN: First stage:  

1
τ = 0.10 s,  K1= 1 V/V  

                 Second stage: K2 = 100 V/V,  fn= 15000 Hz,  ζ = 0.8  
                 Input signal: F(t) = 5 sin 2000 t  [mV]  
 
FIND: y(t), 

1
(f ),ζ β  

 
SOLUTION  
 
    y(t) = yh(t)+ 

1 2 1 2 1 2
K K M M *5sin(1000t )+ Φ + Φ   mV 

For ω  = 1000 rad/s:  

   
( ){ } ( ){ }1 1/ 2 1/ 22 2

1 1(1000rad/s)
1 1 1000*0.1

= =
+ +

M
ωτ

 = 0.995 

           1 1
2 ( ) tan tan (1000*0.100)− −Φ = − − =ω ωτ -5.7o 

 
For 

n
/ω ω = 0.42 and  Φ = 0.8:  

   

( ) ( )
2 1/ 222 2

1(1000)

1 2

=
   − +     

n n

M

ω ω ζ ω ω

 = 0.95 

           
( )

1
2 2

2
(1000) tan

1
−Φ = −

−

n

n

ζ ω ω

ω ω
= -39.2o 

 
so:  
 
  y(t) = yh(t) + 0.467 sin[1000t - 44.9o]  mV  
 
COMMENT  
 
This output is amplified by the second stage (K2 = 100V/V) .  
 
A second stage with a higher natural frequency would bring M2 closer to unity and decrease 
the phase shift.  



PROBLEM 3.38  
 
 
KNOWN:  frequency bandwidth 0 to 20,000 Hz 1d± β  
 
FIND:  Translate this specification into words  
 
SOLUTION  
 
 A typical audio amplifier increases the output amplitude relative to the input 
amplitude by some amount and that amount is called its gain. You may be more familiar with 
the term ‘power’ instead of gain, such as in the expression 100 Watts power. This power is 
simply another way to state the gain.  
 

Now in our equations, the gain is just the static sensitivity, K, for the amplifier at 
some reference frequency.  So the amplifier gain is stated at some reference frequency. In 
literature pertaining to amplifiers, the static sensitivity is called the static gain – but it all 
means the same thing. 
 
          This system specification states that for an input frequency within 0 to  
20,000 Hz the amplifier gain does not vary by more than 1dβ . Another way to write this is:  

1d KM(0 f 20000Hz) 1d− β ≤ ≤ ≤ ≤ β  where KM is the output amplitude.  So the product 
KM(f) is frequency dependent and therefore the amplifier gain is frequency dependent.   
 
Now, from the definition of decibel, +1dβ  is equivalent to M(f) = 1.12 or (f )δ  =  
+0.12 or a 12% increase over the reference amplifier gain. The -1dβ is equivalent to M(f) = 
0.89 or (f )δ = -0.11 or a 11% decrease over the reference amplifier gain. So between 0 and 
20,000 Hz, the signal amplitude is essentially constant to within 1d± β . A typical audio 
amplifier will have some spikes and troughs across its frequency response. But the 
specification is explicit that the amplitude never varies by more than the 1dB. 
 
        Music signals are a series of sinusoidal frequency terms. Even single  
notes, such as a middle C, consist of a fundamental frequency and harmonics.  
The harmonics give distinction to the source of the sound so that different  
instruments are recognizable. Under normal circumstances, we would want the  
reproduction electronics to neither add nor detract from the signal  
information (i.e. we want M(f) = 1 across the spectrum).  



PROBLEM 3.39 
 
KNOWN:   Input Stage Device  
              K1 = 10 mV/mm  
              

1
n

ω = 10000 rad/s  

              
1

ζ = 0.6  
         Output Stage Device  
              K2 = 1 mm/mV  

2
n

ω = 700 rad/s  

              
2

ζ = 0.7  

         ysteady(t) = 90 sin(4πt +
1

Φ ) + 50sin(80 π t +
2

Φ )  
 
FIND:  Determine if measurement system specifications are adequate for  
            the input signal.  
 
SOLUTION 
 
    Both devices are second order systems:  

( ) ( )
1/ 222 2

1( )

1 2

=
   − +     

n n

M ω

ω ω ζ ω ω

            
( )

1
2

2
( ) tan

1
−Φ = −

−

n

n

ζ ω ω
ω

ω ω
 

    For the output signal given, the input signal must have the form  
     F(t) = 90/KM(4) sin 4 π t +  50/KM(80 π ) sin 80 π t  
For coupled systems,  
 1 2( )

1 1 2 2 1 2 1 2( ) ( ) ( ) iKG s K G s K G s K K M M e Φ +Φ= =  
 Then for second order systems,  
    M1(4 π ) = 1           

1
(4 )Φ π  = 0  

    M1(80 π ) = 1          
1
(80 )Φ π = 0  

    M2(4 π ) = 1           
2
(4 )Φ π = -0.02 rad  

    M2(80 π ) = 0.99     
2
(80 )Φ π = - 0.52 rad  

Hence,  
    Msystem(4 π ) = 1              

system
(4 )Φ π = -0.02 rad  

    Msystem(80 π ) = 0.99       
system

(80 )Φ π = -0.52 rad  

    Ksystem = 10 mm/mm  
 
The excellent response characteristics of the measurement system make it a suitable choice 
for this measured signal.  
 



PROBLEM 3.40 
 
 
KNOWN:  F(t) =

1 2 3
A sin170 t A sin 254 t A sin 904 tπ + π + π  

          Input Stage Device Availability  
            

n
1000 2000π ≤ ω ≤ π  rad/s  

            ζ = 0.5  
         Output Stage Device  
            (0.1 f 250kHz)δ ≤ ≤ ≤ -3 dB  
 
FIND:   Select an acceptable value for 

n
ω  

 
SOLUTION  
 
    There are numerous approaches and solutions to this problem. We offer one possible 
solution to illustrate the design selection approach.  
 
    The second order displacement transducer will be most heavily tested at the highest input 
frequency. Suppose we impose the restriction on the transducer that 

1
( ) 0.1δ ω ≤ ±  where we 

let 
1
( )δ ω be the dynamic error due to the transducer. Then, for a second order device,  

 
    

n
ω       M(904 π )   M(254 π ) M(170 π )       

R
ω  

  [rad/s]                                                                 [rad/s]  
 
  1000 π       1.03            1.03             1.01            707 π  
  1500 π  1.14            1.01             1.00           1060 π  
  1750 π  1.12            1.01             1.00           1237 π             
  2000 π  1.09            1.01             1.00           1414 π  
 
        But lets check this performance out. A quick inspection of Figure 3.16 shows that the 
input transducer will experience some resonance behavior if 

n
ω is too close to the input 

frequencies. For example, with 
n

ω = 1000 π  rad/s, the 904 π  rad/s input frequency drives the 
transducer into the post peak resonance region of the graph. That is not good.  
 
So it would better to select a transducer where ω  <<

R
ω . To do this, raise the natural 

frequency. So we select 
n

ω  = 2000 π  rad/s. Now we should meet our criterion without 
resonance problems. The spectrum measurement device will not be a factor owing to its wide 
frequency response relative to these input frequencies.  
 
 



 
PROBLEM 3.41 

 
KNOWN: Three Amplitudes at three times 
  ωd = 10 rad/sec 
 
FIND:  ωn and ζ 
 
SOLUTION 
 
Three amplitudes of A1 = 17 mV, A16 = 9 mV, and A32 = 5 mV occur at times: 
 
t1 = Td/2 = 0.3142 s, t16 = 15Td+t1 = 9.739 sec, and t32 = 31Td + t1 = 19.792 s 
 
The amplitudes decay at the rate given by: 
 
ymax = e-ωnζt 

 
Taking the log of both sides: 
 
ln (ymax) = ln(e-ωnζt) = -ωnζt  
 
If plotted, the slope of this relation will be:  m = -ωnζ 
 
The data follow the relation: Y = -0.06X + 2.838. The slope is –0.06. 
 
ωnζ = 0.06 
 
ωn = ωd/(1 - ζ2) = 10/(1 - ζ2) 
 
Solving simultaneously gives: ωn = 10.01 rad/sec; ζ = 0.006 

P3.41
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PROBLEM 3.42 
 
 
This problem exercises the ability to articulate an understanding of the concepts of static 
sensitivity, natural frequency and damping ratio relative to a measurement system. The short 
essay should be written in the student’s own words rather than a restating of text material. 
Each student understands material in their own individual way. So this is an opportunity for 
written technical communication between instructor and student. 
 



PROBLEM 3.43 
 
KNOWN:  RL circuit (only one reactive element here, therefore first order) 
       R = 4 Ω 
                  L = 0.1H 
                  Ei (t) = 50 V  for t  > 0 
       t(0-) = 0 
 
FIND:        I(t) 
 
SOLUTION 
 
 At t = 0, the switch closes applying the 50V potential across the RL circuit. This is a 
step function input as the circuit sees it, i.e., Ei(t) = 50U(t) V where Ei(t) = 0 for t < 0- and 
Ei(t) = 50 V for t > 0+ . Around the loop: 
 

 
i

dIE (t) RL L 0
dt

− − =  t > 0 

or  

   
i

L 1I I E (t)
R R

+ =   t > 0 

This is of the form y y KF(t)τ + = , so by 
inspection: L / Rτ = ; K = 1/R, F(t) = Ei(t). 
 

i i tR / L t / 0.025
E (t) E (t)

I(t) (0 )e 12.5 12.5e
R R

− −= + − = −  for t > 0+ 

       t / 0.02512.5(1 e )−= −   amps     for t > 0+ 
 
 
COMMENT 
 
In practice, a halfwave rectifier D1 with a free-wheeling diode D2 would be added to the 
circuit to avoid an inductive voltage spike that can arise when applying a current surge to an 
inductor. 
 



PROBLEM 3.44 
 
 
KNOWN:  RC circuit (it is first order because there is only one reactive element) 
       R = 1 k ohm 
       C = 1000µ F 
       EB = 6 V  ( = Ei(t)   for t > 0+) 
       Ec(0) = 0  (this assumes capacitor is initially totally discharged) 
 
FIND:  t90  time for capacitor to reach 90% of its maximum energy level. 
 
SOLUTION 
 
For a flash circuit initially at zero potential, the closing of the switch is a step function 
change in voltage, i.e. Ei(t) = EBU(t)  and Ei(t < 0-) = 0 and Ei(t > 0+) = EB. 
 
Lets start by estimating the total energy that can be stored in the capacitor, 
 

 2 2
c B

1 1e CE CE
2 2

= = = (0.5)(1000x10-6F)(6 V)2 = 18 x 10-3J 

so, 90% of this amount is e90 = (0.9)(18 x 10-3J) = 16.2 x 10-3J. For the capacitor to reach this 

energy level, its voltage Ec is 2
90 c

1e CE
2

=  or Ec = 5.692 V. So we seek the time required to 

charge the capacitor to this voltage level.  
 
For the RC circuit for t > 0, we want to examine the capacitor voltage as a function of time as 
driven by the applied battery voltage: 
 

c c B
1 1E E E 0

RC RC
− − =  

or  
 

c c B
RCE E E− =  

But this is of first order form  
 

c c
E E KF(t)τ − =  

So, RCτ = = (1000 Ω)(1000 x 10-6 F) = 1 s, and K = 1 V/V, and F(t) = EB. 
 

 c t / t
E (t) 6V

(t) 0.1 e e
0 6V

− τ −
−

Γ = = = =
−

 

with Ec(t) = 5.692 V, then t90 = 2.97 s. 



PROBLEM 3.45 
 
 
Program Thermal Response plots the time response from a first order device. The input 
magnitude is controlled by the user and may be varied with time. The instrument time 
constant is set by the user and may be varied with time. The user should select a time 
constant and an amplitude, start the program, and then vary the amplitude – creating a step 
change in input. 
 
The system response slows down (relative to time) as the time constant is increased 
independent of the magnitude of the step change imposed. 
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PROBLEM 4.1 
 
 
KNOWN:   N > 1000;  x = 9.2 units ; Sx = 1.1 units  
 
FIND:    Range of x in which 50% of all measurements should fall.  
 
ASSUMPTIONS: Measurand follows a normal density function  

            Data set sufficiently large such that x ≈ x’ and  Sx ≈ σ 
 
SOLUTION  
 
By assuming that the data is sufficiently large such that its population behaves as an infinite 
population, we can find the interval defined by  
 
    x' - z1 σ ≤  xi ≤ x' + z1 σ  
 
as follows. We can find P(x' + z1 σ ) from the one-sided integral solution to  

 
 
This solution is given in Table 4.3 for p(z1) = 0.25  (one half of the 50% probability sought) 
as z1  = 0.674. Then, we should expect that 50% of the xi values lie in the interval given by  
 
9.2 – 0.7425 ≤ xi ≤  9.2 + 0.7425   (50%) 
 
COMMENT  
 
We can see from Table 4.4 that as N becomes large the value for t approaches a value given 
by z1.  

dβe
][2
1)P(z

1
2

Z

0

/2β
1/21 ∫ −

π
=
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PROBLEM 4.2 
 
KNOWN:  N > 10 000;  x = 204 units ; Sx= 18 units  
 
FIND:   x' - z1σ ≤ x ≤ x' + z1σ    at P = 90%  
 
ASSUMPTIONS Measurand follows a normal density function  

Data set sufficiently large such that x≈ x’ and  Sx ≈ σ 
 

 
SOLUTION  
  
 
Using the definition z1 = (x1 - x')/σ  we find the z1 value corresponding to the one-sided 
probability integral p(z1) = 0.45 from Table 4.3. This gives,  
 
    z1 = 1.65  
 
Then,  
 
    1.65 = (x1 -  x')/ σ 
 
or  
 
    1.65σ = x1- x'  
 
or  
 
    x1= x' + 1.65σ 
 
But a normal (Gaussian) distribution is symmetric about the mean value. Hence, for 90% 
probability (2)(0.45),  
 
    x' - 1.65σ ≤ x ≤ x' + 1.65σ      (90%)  
 
or  
 
    174.3 ≤ x ≤ 233.7 units  (90%)  
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PROBLEM 4.3 

                        
 
KNOWN:   x  = 121.6 psi  
           Sx = 14 psi  

            N is very large  
 
FIND:   P(x > 150 psi)  
 
ASSUMPTIONS:   Normal distribution  
                   Sx ≈ σ ;  x  ≈ x'  
 
SOLUTION  
 
    The z variable is defined by  
 
           z1 = -(x1 - x')/ σ = -(121.6 -150)/14 = 2.028  
 
We look up P(2.028) from Table 4.3. Interpolation gives  
 
           P(2.028) = 0.4786  
 
This expresses the probability that 121.6 ≤ x ≤ 150 psi. Then, the probability  
that x > 150 psi is  
 
           0.5 - 0.4786 = 0.0214  
 
or there is a 2.14% probability that any measurement will yield a value in excess of 150 psi.  
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PROBLEM 4.4 
 
KNOWN: Toss of four coins  
 
FIND:  Develop the histogram for the outcome of any toss.  
        State the probability of obtaining three heads on one toss.  
 
SOLUTION  
 
    A coin has two distinct sides, so each toss has two possible outcomes. With four coins, 
there will be 24 = 16 possible outcomes of any one toss of the four coins. The probability of 
three heads is 4 in 16 or 25%. The possible outcomes are:  
 
 Number         nj  
 of Heads  
 
 4  1  
 3  4  
 2  6  
 1  4  
 0  1  
 
The histogram is shown below. Because of the few number of tosses, the development of the 
histogram is primitive. But the symmetry is obvious. This type of distribution is best 

described as a Binomial distribution (see Table 4.2).  
 
COMMENT  
 
The binomial distribution shape is similar to the Gaussian (normal) distribution, except that it 
can lack the extended "tails" found with the Gaussian shape. As the number of possible 
outcomes (number of coins tossed) becomes large (say 30 or more), the two distributions 
become nearly identical over a wide interval about the mean and the Gaussian distribution 
can be used for ease. 
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PROBLEM 4.5 

 
 
 
SOLUTION  
 
In the matchbox game, the frequency distribution will more closely resemble a Gaussian 
(normal) distribution as N becomes larger. This is because each shot is independent of the 
other and each shot differs from the other by random variation. 
 
A 'better' player will have a mean distance in the outcome that is close to the target point and 
have a low variance. That is, the player will have a low systematic error (average distance 
from target point) and low random error (variations from the average point).  
 

This game and its interpretation are similar to the dart game discussed in Chapter 1 in the 
discussion of random and systematic error. In the US, a variation of this game is called 

'matchbook football' where the objective is to slide the matchbook across a table so that it 
just overhangs the table edge.
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  PROBLEM 4.6 
 
 
FIND: Histogram for Table 4.8, Column 1.  
 
SOLUTION  
 
     A distribution is not unique and we give one possible solution.  
For N = 20 values, K = 7 is selected. The interval (bin) values are 

 
Bin # 

Interval 
range 

1 <49  
2 49 - 49.6 
3 49.6 - 50.2 
4 50.2 - 50.8 
5 50.8 - 51.4 
6 51.4 - 52 
7 >52 
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 PROBLEM 4.7 
 
 
FIND: Frequency distribution for Table 4.8, Column 3.  
 
SOLUTION  
 
    A distribution is not unique and we give one possible solution.  
For N = 20 values, K = 7 is selected. The interval (bin) values are 

 
 

Bin # 
Interval 
range 

1 <49  
2 49 - 49.6 
3 49.6 - 50.2 
4 50.2 - 50.8 
5 50.8 - 51.4 
6 51.4 - 52 
7 >52 

 

Column 3

0
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PROBLEM 4.8 
 
 
FIND: Compare and discuss histograms for Table 4.8, Column 1,2 and 3.  
 
SOLUTION  
 
    A distribution is not unique and we give one possible solution.  
For N = 20 values, K = 7 is selected. The interval (bin) values are 

 
 

Bin # 
Interval 
range 

1 <49  
2 49 - 49.6 
3 49.6 - 50.2 
4 50.2 - 50.8 
5 50.8 - 51.4 
6 51.4 - 52 
7 >52 

 

 

 
 
The variations seen are likely a consequence of (1) normal variation due to finite data sets, (2) random errors in 
each measurement. Each histogram clearly shows a central tendency and in each case it is in bin 4. 
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PROBLEM 4.9 
 
 
KNOWN:  Three datasets from Table 4.8 Column 1,2, and 3 
          N = 20  
 
FIND:  F , SF, and 

F
S  

 
SOLUTION  
 
 The mean value for each dataset is  

1F = 50.5 N 2F =50.7 N 3F = 50.6 N 
 
The standard deviation for each dataset is 
 

  
with  ν = N - 1 = 19 for each individual dataset.  
 

1FS = 1.00 N 
2FS = 1.21 N 

3FS = 1.01 N 

 
The standard deviation of the means expected based on each individual dataset is 

1F
S = 0.22 N 

1F
S =0.27 N 

1F
S = 0.23 N 

 
The  standard deviation of the means value simply reflects the possible random error in the 
mean value of the dataset relative to the true mean value of the data population due to data 
scatter. 
  

N

i
i 1

1F
N

F
=

= ∑

2 1/ 2

1

1[ ( ) ]
1

N

F i
i

S F F
N =

= −
− ∑
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F

S
S
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PROBLEM 4.10 

 
 
KNOWN:  Data from Table 4.8 , Column 1,2, and 3 
          N = 20  
 
 
SOLUTION  
 
Dataset:      1          2        3 
Minimum:  48.9   48.7  48.9 N 
Maximum: 52.4   52.6   52.4  N 
Means:       50.5   50.7   50.6  N 
 
While each dataset shows a range (maximum – minimum) of possible values, the data clearly 
show a preference for a value in the range 50.2 to 50.8 N (or bin 4). This is what is meant by 
a central tendency in a population – a tendency for a data point to have or be close to one 
value over all others. 
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PROBLEM 4.11 
 
 
KNOWN:  Data of Table 4.8, Column 1 
          N = 20 
 
FIND:    F  ±  tSF  (95%)  
 
SOLUTION  
 
For this dataset in Column 1: 

 

 
with 1 19Nν = − = . Then from Table 4.4, t19,95 = 2.093.  The scatter of the measured data set 
can be expressed by  
 
   

1 19,95= ±i FF F t S   (95%) = 50.5 ±  (2.093)(1.00) = 50.5  ±  2.1 N  (95%)  

 
Here Fi denotes the value of any measurement of force, F.  
 
Column 2:  

2 19,95= ±i FF F t S   (95%) = 50.7  ±  2.53 N  (95%) 

 
Column 3:  

3 19,95= ±i FF F t S   (95%) = 50.6  ±  2.11 N  (95%) 

 
COMMENT  
 
The above probability statement reflects the scatter of the data set. In effect, it provides a 
range of values in which any measured value is expected to fall with 95% probability. A 95% 
probability with this statistical statement implies that at least 19 out of every 20 
measurements are expected to fall in the range defined for Fi. Indeed, inspection of the 
dataset shows that this is a true statement. 

N

i
i 1

1F 50.5
N

F N
=

= =∑

2 1/ 2

1

1[ ( ) ] 1.00
1

N
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PROBLEM 4.12 
 
 
KNOWN:  Data of Table 4.8, Column 1 
          N = 20  
 
FIND:   

 
SOLUTION  
 
   For this dataset in Column 1: 

 

 
with 1 19Nν = − = . Then from Table 4.4, t19,95 = 2.093.  Then, we can expect that the true 
mean value should lie within the interval defined by 
  
  
 
This gives the mean value for this data set and a statement of the range of mean values we 
would expect to find from any data set. A 95% probability indicates that at least 19 out of 
every 20 complete data sets should show a sample mean value within the range. Compare the 
meaning of this statement to that found in Problem 4.11. They are very different!  
 
Column 2:  

F
F tS        (95%)=50.7 0.57 (95%)± ± N  

 
Column 3:  

F
F tS        (95%)=50.6 0.47 (95%)± ± N  

In all three datasets, the mean values fall within an overlapping ring, as predicted. 
 
COMMENT 
 
The reasoning behind this confidence interval for the mean value lies within the limitations 
of finite statistics. While the sample mean value defines the mean value of the 20 data points 
exactly, it is not necessarily the true mean value of the measured variable (compare the 

F
F tS        (95%)±

F
1/2F

SS 1.0 / 20 0.22
N

N= = =

N

i
i 1

1F 50.5
N

F N
=

= =∑

2 1/ 2

1

1[ ( ) ] 1.00
1

N

F i
i

S F F N
N =

= − =
− ∑

F
F tS        (95%)=50.5 0.47 (95%)N± ±
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results for these three real data sets in columns 1,2, and 3 – each has a different sample 
mean). Different data sets of the same variable will give somewhat different mean values. As 
N becomes large, the sample mean will approach the true mean and the confidence interval 
will go to zero. Remember this assumes that there is no systematic error acting on the 
measurement.  
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PROBLEM 4.13 
 
 
KNOWN: Data of Table 4.8, Column 3 

        One additional measurement 
 
FIND:         

95 F 21 95 F
F t S F F t S− ≤ ≤ +  

 
 
SOLUTION  
 
We can show that  
 

3 19,95= ±i FF F t S   (95%) = 50.6  ±  2.11 N  (95%) 

 
where Fi denotes the value of any measurement of force, F. Hence, an additional 
measurement of F would be expected to fall within the range of  48.49 to 52.71 with 95% 
probability (likelihood). 
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 PROBLEM 4.14 
 
 
KNOWN:  Data of Table 4.8, Columns 1, 2 and 3.  

         N = 19  (repetitions)  
         M = 3   (replications)  

 

FIND:   
95 F

F t S±  

 
ASSUMPTIONS: Data sets in Columns 1,2 and 3 represent duplicate data sets of the  
                 same measured variable under similar operating conditions.  
 
SOLUTION  
 
We can find the pooled mean value of the combined data sets  

 
Where M = 3 and N = 20. The pooled standard deviation  

            
The pooled standard deviation of the means is  
 

 
with degrees of freedom, ν = M(N-1) = 57. From Table 4.4, t57,95 = 2.00. Then, the best 
estimate of the true value is given by  

 
COMMENT 
 
We can see that the confidence interval for the ensemble mean value is reduced over any one 
dataset. While column 3 predicts the ensemble mean value the closest, all three are well 
within the confidence band. We learn that the more information (measurements) we have 
about a dataset, the more confident we become in their true values. Yet, very reasonable 
estimates can be made from smaller datasets. The number of measurements, required 
confidence, and the cost of additional measurements all must be carefully weighted. 
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PROBLEM 4.15 

 
KNOWN:  Table 4.8, Column 1 dataset 
        x 50.5N=  
        Sx = 1 N 
         
FIND:  Test to determine if the dataset follows a normal (Gaussian) distribution 
 
SOLUTION 
 
With x ' x≈  and 

x x
Sσ ≈ , we test. The data lends itself to 7 intervals: 

 
j interval nj nj’ ' 2 '

j j j
(n n ) / n−  

1 0 - 49 1 1.34 0.0863 
2 49 - 49.6 3 2.35 0.1823 
3 49.6 – 50.2 4 3.96 0.0004 
4 50.2 – 50.8 5 4.71 0.0179 
5 50.8 – 51.4 4 3.96 0.0004 
6 51.4 – 52 2 2.34 0.0494 
7 52 – above 1 1.34 0.0863 
   Σ = 0.423 

 
As an example, consider j = 2, where the number of observations is n2 = 3. The expected 
number of outcomes for a normal distribution is estimated to be 2.346, as follows: 
 

i a b
P(49 x 50.5) P(49.6 x 50.5) P(z ) P(z )< < − < < = −   

a
x x ' 49 50.5z 1.5

1
− −

= = = −
σ

 
b

x x ' 49.6 50.5z 0.9
1

− −
= = = −

σ
 

so, 
a b

P(z ) P(z ) 0.4332 0.3159 0.1173− = − =  
 
for N = 20, nj’ = 20 * .1173 = 2.346. So we expect ~ 2.35 occurrences and we observe 3: 
 
Then, ' 2 '

2 2 2
(n n ) / n− = 0.182.  This is the deviation between expected and observed. 

 
For 7 intervals and using calculated values of the 2 statistical quantities, x  and Sx, we have 

7 2 5ν = − = degrees of freedom. 
 
For 2 (5) 0.423

α
χ = , α  ~ 0.995. So, P( 2χ ) = 0.005  < 0.05 So the test is unequivocal: the 

distribution is a normal distribution. 
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PROBLEM 4.16 
 
 
KNOWN: x’ = 100 N 
      2σ =400 N2  (so, σ= 20 N) 
       
FIND:   For N = 16, P(90 x 110) ?≤ ≤ =  
 
SOLUTION 
 
 Begin by finding the z value for a corresponding x  

 x x 'z
/ N
−

=
σ

 

For x  = 90 N,  90 100z
20 / 16

−
= = -2.0 

 

For x  = 110 N, 110 100z
20 / 16

−
=  = 2.0 

 
So, P(90 x 110) P( 2.0 z 2.0)≤ ≤ = − ≤ ≤ = 0.9544 
 

So, there is about a 95% chance.
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PROBLEM 4.17 
 
KNOWN: Large sample of grades (i.e. infinite statistics applies)  
 
FIND: Number of A, C, D grades awarded (per 100 students) 
 
SOLUTION  
 
     Referring to the probability graph below:  
 
A: P(1.6) = 0.4452  so that the area under the 'A' region is:  
  0.5 - P(1.6) = 0.0548. Hence, 5.48% (or between 5 and 6) are A's.  
 
C: P(0.4) + P(0.4) = 2P(0.4) = 0.3108  
  Hence, 31.08% (or about 31) are C's  
 
D: P(1.6) - P(0.4) = 0.4452 - 0.1554 = 0.2898  
  Hence, 28.98% (or about 30) are D's.  
 
Likewise, 5.48% are F's and 28.98% are B's.  
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PROBLEM 4.18 
 
KNOWN: x' = 20 µm; σ = 30 µm  
 
FIND: P(xi ≥ 80µm ); P(50 ≤ xi ≤ 80 µm ) 
 
SOLUTION 
 
P(xi ≥ 80µm) = P(z  ≥ z1) 
 
So computing z1:   z1 = (80 – 20)/30 = 2  
 
Then, P(z ≥ 2) = 0.0228 or  a 2.28% chance (1 in 44). 
 
 
P(50 ≤ xi ≤ 80 µm ) = P(za ≤ xi ≤ zb) 
 
So computing: za = (50 – 20)/30 = 1.0       zb = (80 – 20)/30 = 2.0 
 
P(za) = 0.1587 
 
P(zb) = 0.0228 
 
So: P(50 ≤ xi ≤ 80 µm ) = P(za ≤ xi ≤ zb) = 0.1587 – 0.0228 = 0.1359 or about a 14% chance 
(that’s about 1 in 7). 
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PROBLEM 4.19 
 
KNOWN: N = 10; xi  
 
FIND: x ; Sx

2 ; P(x ≤ 203 µm) 
 
ASSUMPTION: Data represents infinite population 
 
SOLUTION 
 
Based on the data given, we compute: 
 
x = 209.6 µm  
 
Sx

2 = 2753.1 µm2 
 
Sx = 52.5 µm  
 
Using these values as representative of an infinite population: 
 
P(xi ≤ 203µm) = P(z  ≤ z1) 
 
z1 = (203 – 209.6)/52.5 = 0.126 
 
P(z1) = 0.05  
 
Or about 5% of the data fall between the mean value and 203µm. Since 50% of the data lie 
above the mean value, then 
 
P(z  ≤ z1) = 0.5 – P(z1) = 0.45  or about 45% will fall below 203 µm. 
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PROBLEM 4.20 
 
KNOWN: p(x) where x is in hours  
 
FIND: mean value of x  
 
SOLUTION  
 
   The mean value can be found from the known probability  
density function:  
 
 

0.001xx xp(x)dx 0.001xe dx
∞ ∞

−

−∞ −∞

= =∫ ∫  

  = 1000 hrs. 
 
The average expected life of the bulb is 1000 hours (60,000 minutes).  
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PROBLEM 4.21 
 

 
SOLUTION  
 
     In the absence of systematic error, the sample mean value estimates the true mean value 
with a confidence interval  given by 

xx
tS t(S / N)± = ± . The value of 

x
S  represents the 

standard random error in the mean value.  
 
As the number of measurements, N, increases, the confidence improves, i.e. the interval gets 
smaller at a rate of 1/N1/2. There is some gain as the value of t drops as N becomes larger, but 
N is essentially 2 after 30 measurements and approaches an asymptotic value of 1.96 as N 
goes to infinity.  
 
     Hence, the indicator 

x
S  in N = 16 measurements improves to only twice that of N = 4 

measurements despite quadrupling the number of measurements:  
 
             

x
S / 16   versus   

x
S / 4  

 
Likewise, increasing N from 25 to 100 only halves the value of  

x
S .  

 
COMMENT  
 
     For small sample sizes, the gain in this random error is impressive for making  
some extra measurements. But as N increases, this gain requires considerably more 
measurements. Doubling N from 10 to 20 is more efficient than increasing N from 1000 to 
2000. This is the "diminishing returns" in using N to improve random error.  
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PROBLEM 4.22 
 
 
KNOWN: N = 270 with x = 6.92 MN/m2 and Sx

2 = 6.89 (MN/m2)2 
 
FIND: 

x
tS  at 95%  

 
SOLUTION  
 
     The true mean value of these bricks is given by  
 
       x' = 

x
x tS± (95%)  

 
With N = 270, 

269,95
t  = 1.96, so with Sx= [6.89 (MN/m2)2]1/2 = 2.62 MN/m2 

 
       2 2

x
tS (1.96)(2.62MN / m ) / 270 0.313MN / m± = ± =  

 
This is the estimate for the random error in the mean value due to variation in the dataset.  
 
We can state that  
 
       2x ' 6.92 0.313MN / m= ±    (95%)  
 
Based on the dataset (and in the absence of other errors), there is a 95% probability that x' 
lies between 6.61 and 7.23 MN/m2.  
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PROBLEM 4.23 
 
 
KNOWN:   N = 61  
           x  = 44.20 N  
           Sx

2 = 4 N2 
 
FIND:   P(45.56 x≤ ≤ 48.20 N)  
 
SOLUTION 
 
    The t value is defined by 

x
t (x x) / S≡ − where Sx = 2 N. With this  

 
           ta = (45.56 - 44.20)/2 = 0.68  
 
We use Table 4.4 but must recognize that it is a two sided t chart (includes equal area on both 
sides of the mean value) and so we must correct to a one-sided value. For ν  = N - 1 = 60, we 
find P ≈  50% or 0.50. So that P(44.20 x≤ ≤ 45.56 N) = 0.5/2 = 0.25. Similarly,  
 
           tb = (48.20 - 44.20)/2 = 2.0  
 
Again, from the two sided t chart (Table 4.4) at ν= N - 1 = 60, P  ≈  95% or 0.95. So  
that P(44.2 x≤ ≤ 48.2 N) = 0.95/2 = 0.475. Then,  
 
            P(45.56 x≤ ≤  48.20 N) =  0.475 - 0.25 = 0.225  
 
So there is a 22.5% chance that a measured value of x will fall within this  
interval.  
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                     PROBLEM 4.24 
 
KNOWN: x  = 924.2 MPa 
  

x
S = 18 MPa 

  N = 36 
 
FIND:  

x
x tS±  

 
SOLUTION 
 

x
S 18 / 36 3.0= =  

 
For ν  = 36 -1 = 35 degrees of freedom, . So in the absence of other errors,  the 

estimate of the mean shear strength is 
 

x
x tS 924.2 6MPa± = ±  (95%) 

 
The 95% confidence interval is 918.2 to 930.2 MPa for mean shear strength.
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                     PROBLEM 4.25 

 
KNOWN:  M = 3 pooled data sets  
 

FIND:   
x

, x ,and x tSν ±  (95%)  

 
ASSUMPTIONS:  The three data sets are replicate measurements of a variable under similar 
conditions.  
 
SOLUTION  
 
    For pooled statistics of a single variable with M = 3 replications,  
 

           
M M

j j
j 1 j 1

(N 1) 15 20 8 43
= =

ν = ν = − = + + =∑ ∑  

The weighted pooled mean value is  
 
           x (32 30 34) / 3 32units= + + =  

 
The pooled standard deviation is  
 
            2 2 2 1/ 2

x
S [(15*3 20*2 8*6 ) /(15 20 8)] 3.42units= + + + + =   

 
The standard deviation of the means is  
 

           
x

S 4 / (16 21 9) 0.59 0.6units= + + = ≈  

 
Then, t43,95 ~ 2.018 (interpolation) or just use 2.0 (as a general approximation for N >30).  
  
           x ' 32 (2.018)(0.59) 32 1.2units= ± = ±  (95%) 
 
COMMENT  
 
    In this problem we are faced with three somewhat different results  
obtained from measuring the same variable on three separate occasions. The  
variations in the statistics between each data set reflect (1) the ability to  
duplicate the operating conditions for each test exactly, and (2) the limitations  
of finite statistics. Please review "replication" discussed in Chapter 1.  
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PROBLEM 4.26 

 
 
KNOWN:   x  = 3027 psi  
           N = 11  
           Sx = 53 psi  
 
FIND:  Is x' ≥  3000 psi  at 95% probability  
 
SOLUTION  
 
    In the absence of other errors, we know that  
 
           

x
x ' x tS= ±    (95%)  

 
For N = 11, ν  = 10 and t10,95 = 2.228  . The standard deviation of the means for this data set 
is  
 
           

x
S 53/ 11= = 15.98 psi  

 
Then,  
 

x ' 3027 35.6psi= ±  (95%)  
 
or there is a 95% probability that the true mean strength of the footing is in the interval  
 
           2991 x '≤ ≤ 3063  
 
The data suggest the possibility that the footing does not meet the code with a  
95% probability. In particular, we know that the footings are prepared in  
sections as the concrete trucks arrive, unload, and depart. Therefore, portions  
of the footing likely do not meet the code for strength. Oops - Time to break up and  
repour!  
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PROBLEM 4.27 
 
 
KNOWN:   Data set of N = 10 values 
 
FIND:   Check for outliers.  
 
ASSUMPTIONS:  Fixed operating conditions.  
                 Measured variable has a normal distribution.  
 
SOLUTION  
 
    The statistics for this data set are found to be  
 

           
N

i
i 1

x x
=

= =∑  923.7 N  

 

           
1.2N

x i
i 1

1S (x x)
N 1 =

 
= − − 

∑ = 8.13 N  

 
The modified three sigma test introduces the modified z variable, zo 
 

o i x
z (x x) / S= −  

 
A visual survey of the data indicates that data point #3 could be suspect. Computing  
a value for zo with xi = 908 N gives, zo = 1.93. From Table 4.3, P(1.93) =  
0.4732. Then,  
 
          N[0.5 - P(1.93)] = 0.27  
 
Since this value exceeds 0.1, the value for data point #3 apparently falls within  
the bounds to be expected from normal scatter and is NOT an outlier. No  
outliers are detected in this data set.  
 
    Using t9,95 = 2.262, and 

x x
S S / N= = 2.57,  

 
           x' = 923.7 ± 5.8 N  (95%)  
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PROBLEM 4.28 

 
 
KNOWN: N = 20 measurements taken from a large batch  
       Sample statistics: x  = 47.5 mm     Sx = 8.4 mm   
       Claim: x' = 42.1 mm  (for batch)  
 
FIND: Is claim supported by the data set?  
 
ASSUMPTION: Sample is representative of the batch.  
 
SOLUTION  
 
    For N = 20, ν  = 19 so that at the 95% level, t19,95 = 2.093. The true  
mean based on the batch statistics is  
 
      x' = 47.5 ±  (2.093)(8.4)/201/2= 47.5 ± 3.93 mm     (95%)  
 
The claim is not supported by the sample.  
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PROBLEM 4.29 
 
KNOWN: x' = 37.84 mm ; σ = 0.13 mm 
 
FIND: P(37.58 ≤ x ≤ 38.1 mm) 
 
SOLUTION 
 

P(37.58 ≤ x ≤ 38.1 mm) = P(za  ≤ x ≤ zb) 
 
za = (38.1 – 37.84)/.13 = 2 
 
zb = (37.58 – 37.84)/0.13 = -2 
 
P(za) = 0.4772 
 
P(zb) = 0.4772 
 
Recognizing that za and zb are on opposite sides of the mean value, 
 
P(za  ≤ x ≤ zb) = P(za) + P(zb) = 0.9544  or about 95%. 
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PROBLEM 4.30 

 
 
KNOWN:   Data set provided.  
           N = 5  
 
FIND:   Best curve fit to the data set and 95% confidence interval.  
 
SOLUTION  
 The best curve fit is the one that best fits the physics of the problem. Not knowing 
that, we try several curve fits below. 
    The data can be fit to:  yc = ao + a1x + ... + amxm 

           m   ao        a1     a2      a3      ν           
,95

t
ν

    Syx     tSyx 

  
           1  1.90   1.37   ----     ----      3      3.182   0.648   2.06  
           2  2.70   0.44   0.17    ----     2      4.303    0.37    1.59  
           3  1.89   2.25  -0.71   0.11    1     12.706   0.09    1.14  
The best fit would depend on the problem physics. But a third order fit reduces tSyx to a 
minimum and appears to fit the data well. The data are plotted below.  
 
This first plot shows the curve fit 
and its uncertainty band based on 

yxtS± . For most engineering 

problems where the error in y is 
much greater than the error in the 
controlled variable x, this 
approach gives reasonable 
numbers and is quick and easy. 
 
This second plot shows the curve 
fit and its uncertainty band based 

on 
2

2

1

( )1

( )

i
yx N

i
i

x x
tS

N
x x

=

 
 − ± +
 

− 
 

∑
. Here 

the value of 2

1
( )

N

i
i

x x
=

−∑ = 25.29 

and x = 6.16. The differences 
between the two results are nearly 

indistinguishable (hence, we 
plotted them separately).
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PROBLEM 4.31 
 
 
KNOWN:   Data set provided.  
           N = 6  
 
FIND:   Best curve fit to the data set and 95% confidence interval.  
 
SOLUTION  
 
 Using a least squares regression, a third order polynomial fits the dataset 

y = 1.8245x3 - 10.12x2 + 44.097x 
better than the second order polynomial y = 17.219x2 - 54.826x + 46.779.  
(Incidentally, when using a spreadsheet, such as ExcelR , the polynomial can be estimated by 
plotting the data, clicking on the data on the plot, and setting the trendline option to the 
polynomial order desired - or you can attempt another transformation.) 

Looking at this data set, it is attractive to try a transformation of the form  
 log y = m logx + log b or  Y = mX + B  
where Y = log y; X = log  x and B = log b. This is equivalent to yc = bxm. 
    The data are plotted below on a log-log plot and fit to the curve yc = 5.05x2.3. For t4,95 = 
2.770 and Syx = 0.025, the confidence interval is shown on the log-log plot.  
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PROBLEM 4.32 

 
 
KNOWN:   Data set provided.  
           N = 4  
 
FIND:   Best curve fit to the data set and 95% confidence interval.  
 
SOLUTION  
 
    The data are plotted below and fit to the curve yc = 0.586x2.04.  
The t value is found to be t2,95 = 4.303 and Syx = 0.021 and shown on the log-log plot.  
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PROBLEM 4.33 
 
 
KNOWN: Fan test data for Q and h  
 
FIND: h = f(Q)  
 
SOLUTION  
 
     Linear regression is used to find h = f(Q) as an mth order polynomial of the form:  

      h = ao + a1Q + a2Q2 + ... + am Qm 

To keep the regression coefficients reasonable, the polynomial will be based on Q in 
thousands of cms, i.e. kcms. A first order fit does not appear reasonable, so it is not 
attempted.  
 
     m      ao            a1           a2           a3           r           Syx        t95Syx 
 
     2   4.9886   0.2906   -0.0211   -------     0.9987    0.1246   0.396  
     3   5.2991   0.1468   -0.0064  -0.0004   0.9999    0.0329   0.013  
 
While an inspection of tSy shows that the third order polynomial fits this data best, the 
problem physics require that we use the second order polynomial – that is the best fit based 
on known fan curves. Note how the r value is not very sensitive here and is generally not a 
good indicator of how 'well' data fits a curve.  

h = -0.0211Q2 + 0.2906Q + 4.9886
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PROBLEM 4.34 

 
 
 
KNOWN: Constraint: want 2 41.25 10xσ −≤  
       2 42.1 10xS x −= based on N = 30 for a large batch  
 
FIND: Is rejection of the batch based on 2

xS prudent?  
 
SOLUTION  
 
     With ν  = 29  
 
    2 2 2

x
( ) S /

α
χ ν = ν σ =(29)(2.1x10-4)/(1.25x10-4) = 48.7 

Inspection of Table 4.5 shows, 2
0.015

(29) 48.7χ ≈ , so 0.015α ≈ .  
 
    So there is about a 1.5% chance that this batch actually meets the  
constraint despite the 2

x
S  value of the sample. Rejecting this batch is  

prudent (or at least prudent with 98.5% confidence!).  
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PROBLEM 4.35 
 
KNOWN:  x  = 5.060 mm with Sx = 0.0025 mm based on N = 30 measurements  

       Constraint: want x' = 5.000 mm based on N = 10,000 units.  
 
FIND: Does the sample mean support the intention so that the constraint is met?  
 
SOLUTION  
 
     In bearing grinding operations, the tooling setup determines the mean diameter of the 
finished product.  
  
     For ν  = 29, t29,95 ~ 2.045. The confidence interval of the mean based on the variation in 
the dataset (and no other errors) is given by 

x x
tS / N tS± = ± ~ 0.001mm. This data set 

suggests  
 
       5.059 x '≤ ≤ 5.061 mm        (95%)  
 
No, the constraint is not being met for bearing diameter. Stop the machine and reset the 
tooling set-up.  
 
COMMENT 
 
Clearly there is a systematic error in the bearing grinding setup causing the bearing diameter 
mean value to be greater than the intended bearing diameter. The problem is not in the 
random error (random variations in diameter between bearings). The whole setup is shifted to 
making too large a bearing. 
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PROBLEM 4.36 
 
 
KNOWN: Constraint: CI = ±  0.010 mm  
       S1 = 0.0025 mm based on N1 = 30  
 
FIND: NT 
 
SOLUTION  
 
    When the confidence interval 

x x
tS / N tS± = ±  based on a reasonable number of  

measurements (such as 30 or more such that the t value does not change  
appreciably with increased N) is met, no further measurements are necessary.  
 
Here we want 

x
tS 0.01± ≤ mm and, in fact,  

x
tS 0.001± ≈ mm . So the criterion is met.  

So NT = N1.  
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PROBLEM 4.37 
 
KNOWN: Failure time for N = 6 pumps 
 
FIND: Mean and its 95% confidence interval 
  Number of specimens tested to reduce confidence in mean value to within 50 
hrs. 
 
ASSUMPTIONS:   σ is approximated by Sx 
 
SOLUTION 
 
i.) Based on the data set provided: 

 
Here t5,95 = 2.571. 
 
So the true mean value is estimated by 

x
x ' x tS= ± : 

 
x' = 1372.2 ± 131.8  hrs.   (95%) 

 
 
ii.) To reduce the interval of 131.8 hrs to an interval of 50 hrs at 95% confidence, 
 

 
So a first guess is that 167 additional measurements would need to be taken. This would be 
tested again following these measurements. 

hrs   1372.2xx
N

1i
i ==∑

=

hrs  125.6)
1N

)x(x
(S 1/2

2
N

1i
i

x =
−

−
=
∑
=

hrs   51.3/NSS 1/2
xx

==

167)
d

St
(N 2x1,95N

T == −
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PROBLEM 4.38 

 
 
FIND:

x
x,S  Test the hypothesis of a normal distribution.  

 
SOLUTION  
 
     Tons           xj      nj       n'j     (nj - n'j)2/ n'j 
  
  421-480   450.5     4       2.9         0.42  
  481-540   510.5     8       9.6         0.27   
  541-600   570.5    12      7.8         2.26  
  601-660   630.5     6       4.2         0.77  
 

4N

j ji j 1i 1

n xx
x

N N
=== =
∑∑

= 550.5 MPa  

 

       

1/ 24
2

j j
j 1

x

n x Nx
S

N 1
=

 
− 

 =  −
  
 

∑
= 57.53 MPa  

 
Do the data support the hypothesis of a normal distribution?  
 
The expected occurrences n'j are listed above. For example, for the first interval:  
 
   za = (421 - 550.5)/57.53 = 2.25       zb = (480 - 550.5)/57.53 = 1.23  
   P(421 

i
x≤ ≤ 480) = P(2.25) - P(1.23) = 0.4878 - 0.390 = 0.098  

So for N = 30:    n'1 = (30)(.098) = 2.9 whereas we observe n1 = 4.  
 
For all the intervals:  

  
K

2 ' 2 '
j j j

j 1
(n n ) / n

α
=

χ = −∑  = 3.72  

Then, for K = 4 here: ν= 2, and 2 (2)
α

χ =  3.72. Interpolation of Table 4.5 or using  
a more extensive math handbook table, we find that α ≈ 0.85. There is a 85% chance that the 
discrepancy between nj and n'j is due to random variation alone. Or we can look at this as P = 
1 - α  = 0.15, a 15% chance it is not due to random variation. This result is equivocal, that is 
the hypothesis is possible and is not disproved: the sample could follow a normal 
distribution.  
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PROBLEM 4.39 

                                   
 
KNOWN: For N1 = 30,  x  = 550.5 MPa, S1 = 57.53 MPa  
 
FIND: NT required to attain CI = ± 0.03 x   
 
SOLUTION  
 
    CI = ±  (0.03)(550.5 MPa) = ±  16.52 MPa  
 
For d = CI/2 = 16.52 MPa,  
 

    ( )2

T N 1 1
N t S / d

−
= = [(2.042)(57.53)/16.52]2 = 51  

 
An additional 21 measurements should be taken to meet the constraint. The statistics should 
then be recomputed to verify that the constraint is met.  
 
 
 
 

PROBLEM 4.40 
 
 
KNOWN: For N1 = 6, x = 71,327 psi and S1 = 8345 psi  
 
FIND: NT required to achieve CI within 0.05 x   (total range)  
 
SOLUTION  
 
    For a total range of (0.05)(71,327 psi) = 3566 psi, CI = ±  1783 psi. With  
d = CI/2 = 1783 psi:  
 
    NT = {(6)(8345)/(1783)]2 = 145  
 
An additional 139 measurements are required to reach this constraint level of random error. 
Because N1 is quite small relative to NT, it would be prudent to reevaluate the sample 
statistics after some intermediate number of measurements were taken.  
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PROBLEM 4.41 
 
 
KNOWN:   CI = 0.1 g  
           Sx = 2 g  
 
FIND:  N  
 
SOLUTION  
 
    Let d = CI/2 = 0.05 g. We are looking for the number of measurements required  
to keep 

x
tS ≤ 0.05g at 95%.  

 
           N = (

x
tS / d)2 

 
If we select a large number of measurements, such that tN,95 = 1.96, then  
 
           N ≈  6150  
 
For this value, the t value remains unchanged. Thus, a large number of measurements are 
required due to the close restriction on CI.  
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PROBLEM 4.42 
                      
 
KNOWN:  N1 = 60  
         Sx1 = 1.52 V  
         CI = 0.28  
 
FIND:  NT 
 
ASSUMPTIONS:  95% confidence required.  
              Sx1 is representative of σ .  
 
SOLUTION  
 
    With N1 = 60, ν= 59 and t59,95 = 2.00. Setting d = CI/2 = 0.14, then  
 

( )2

T x
N tS / d= = [(2)(1.52)/0.14]2 = 472  

 
As a first estimate, at least 472 total measurements will be needed to achieve  
the desired precision levels. Hence, another 412 measurements are needed. This CI is a tight 
constraint on random error given the large variations seen in the dataset (Sx1 value). 
 
 
 
 
 
 

PROBLEM 4.43 
 
 
FIND:  2P( (10) 19.0χ >   
 
SOLUTION  
 
    From Table 4.5:   20.05 (10) 0.025≤ χ ≤  
 
that is, the probability lies between 2.5 and 5%.  
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PROBLEM 4.44 
 
 
 
KNOWN:  Expect 0.07 breaks per meter.  
 
FIND:  p(x) for a wire of length L = 5 m.  
 
ASSUMPTION: Model using poisson distribution  
 
SOLUTION  
 
    From the given information, the most probable number of breaks to be  
expected over the 5 m length is:  
 
   λ  = x' = (0.07)L = (0.07)(5) = 0.35  
 
  x 0.35p(x) 0.035 e / x!−=  
 
 x      p(x)  
 
 1     0.247  
 2     0.043  
 3     0.005  
 4     0.0004  
10     0.0000  
 
For example, there is a 4.3% probability of finding 2 breaks over the stated length, L.  
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PROBLEM 4.45 
 
 
KNOWN:  2 out of every 100 screws are defective 

x is the number of defectives.  
FIND: p(x)  
 
SOLUTION  
 
    The binomial distribution models the number of occurrences x of a defective part in N = 
100 observations assuming the probability of finding either a defective part or a nondefective 
part with any observation remains the same (that is, removing a part does not alter the 
remaining population of defective parts). For N = 100, P(x) = 0.02. So pb will take the form:  
 

     x N x
b

N!p (x) P (1 P)
(N x)!x!

−
 

= − − 
= x 100 x100! 0.02 (1 0.02)

(100 x)!x!
−

 
− − 

 

     
The poisson distribution models the events occurring randomly over a number of 
observations. pp (x) refers to the probability of observing x defects in just 100 observations. 
Take λ= x' = 2 as the number of expected defects in each 100 parts over an infinite 
population:  
 
     x 2p(x) 2 e / x!−=  
 
(Hint: use a spreadsheet or programmable calculator to solve each – those factorials get 
large): For x defective parts in any 100 samples 
 
 x        pb           pp 
  
 0    0.1326   0.1353    
 1    0.2707   0.2707  
 2    0.2734   0.2707  
 4    0.0902   0.0902  
10    0.0000   0.0000  
 
Or there is about a 27% chance you will find 2 defective parts, a 13% chance of finding no 
defective parts, but it is unlikely that you will find 10 defective parts. 
 
COMMENT  
     Under certain circumstances the poisson distribution will approximate  
the binomial distribution. This is because the former is the limiting case of the  
latter, a case often proven in statistics texts. When N →∞ and P 0→ such that  
the product of N*P is constant, the two are exact. We see that the results above come close to  
this condition.  
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PROBLEM 4.46 

 
 
KNOWN:   Particle passage through a small volume 

Average particles passing in time period t1 is 4:  λ  = 4 
 
FIND:  p(x) using a poisson distribution model  
 
SOLUTION 
 
   Using λ= x' = 4 as the most probable expected value,  
 
        x 4p(x) 4 e / x!−=  
 
 x       p(x)  
 
 1       0.0733  
 2       0.1465  
 3       0.1954  
 4       0.1954  
 5       0.1563  
10       0.0053  
 
For example, there is a 15.63% chance of observing 5 particles in the defined time period, t1.  
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PROBLEM 4.47 
 

Finite Population estimates the histogram and finite statistics of an internally generated signal 
representing a random variable. The signal is continually measured and the statistics and 
histogram are constantly updated. 
 
The histogram tends towards a Gaussian distribution as N becomes larger. 
 
The values of the finite statistics change as new values are added to the data set. However, 
clearly there is a tendency towards a mean value of zero. The maximum and minimum values 
stay between +3 and -3 most (actually 95%) of the time.  
 
 

PROBLEM 4.48 
 
Running Histogram estimates the histogram of an internally generated signal. The user can 
vary the number of intervals K and the number of data points N used in each histogram. The 
program updates the histogram for each block of N data points. 
 
As interval number is increased, the number of observations (magnitude) of each interval 
decreases. But as the number of samples N is increased the signal increases (with time), the 
histogram evolves towards a Gaussian shape. With the appropriate number of intervals for 
the N samples, a very accurate portrayal of the sample tendency is found. 
 
Values “out of range” are the random and rare occurrences that have values outside of the 
limits of the histogram. In most cases, these could be considered as “outliers.” 
 
 

PROBLEM 4.49 
 
Probability Density estimates the probability density function of an internally generated 
signal. The user can vary the number of intervals K and the number of data points N used in 
each plot. The program creates a new pdf each time the program is rerun. 
 
The signal has its own statistics and pdf, but each sample is but a snapshot of finite length of 
the infinite signal. The pdf will change with each new data set because the finite statistics of 
the data set (finite population) do not exactly estimate the statistics of the infinite data set 
(infinite population). 
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“Learn by writing” methods are valuable for developing understanding of a new concept. 
Questions 5.1 – 5.4 provide some topics for “Learn to Write” exercises. 
 

PROBLEM 5.1 
 
SOLUTION  
 
 
Systematic error is a constant error that shifts all measured values of a variable by a fixed 
amount. In effect, the sample mean value will be offset from the true mean value by this 
fixed amount. Randomization methods break up some of the trends brought on by 
interference, a result of systematic errors, Randomization makes systematic errors behave as 
random errors, which are more easily quantified using statistics. Calibration is an excellent 
way to isolate, identify, quantify and thereby reduce systematic errors.  
 
Random error leads to scatter in the measured values obtained during the measurement of a 
variable under otherwise fixed operating conditions. Unlike systematic errors, random errors 
will change in magnitude between repeated measurements bringing on the noted scatter.  
 
Both systematic and random errors are present in any measurement to some degree. For the 
engineer, the difficult task is assigning the probable values of these errors. That’s where the 
test plan comes into importance. By incorporating repetition into a test plan, random errors 
can be statistically estimated with some amount of predictability. Incorporating replication 
strengthens the random error estimates and allows estimates of control to be made, which 
may include some of the systematic errors.  
 

 
 
 

PROBLEM 5.2 
 
 
SOLUTION  
 
Systematic errors are usually estimated by comparison methods. These methods include: (i) 
calibration, (ii) concomitant methods, (iii) interlaboratory or different facility comparisons, 
or (iv) experience.  
 
Random errors are manifested by measured data scatter and their effects on the estimate of 
the true value of the measured variable can be estimated statistically using the methods 
discussed previously in Chapter 4.  
 
ERRORS ARE NOUNS; UNCERTAINTIES ARE NUMBERS. An error refers to a 
difference between the measured value and the true value. Because this exact amount is 
unknown, a probable range of the error is estimated. This numerical estimate is the 
uncertainty.  



PROBLEM 5.3 
 
SOLUTION  
 
    TRUE VALUE: The actual value of the measured variable. The value  
sought by measurement. Most often refers to the true mean value of the  
variable which would result from an infinite sampling under perfect test  
control.  
 
    BEST ESTIMATE: The nearest approximation of the true value that  
can be made with the data set available. It is based on the data set and the  
precision and the bias errors involved in the measurement. It is usually offered  
by the sample mean value and qualified by its precision interval.  
 
    MEAN VALUE: Exact statement of the mean or central tendency of a  
measured data set. The mean value of a finite data set is given by its sample  
mean value.  
 
    UNCERTAINTY: Estimate of the precision and bias errors involved in  
estimating the value of a variable. It is the range of probable errors which  
affect the outcome of a measurement.  
 
    CONFIDENCE INTERVAL: The range (or interval) of values within  
which the true value is expected to lie with some probability. The confidence  
interval is in part based on the precision-based interval (

x
tS ) discussed in Chapter 4 due 

solely on the variations in the measured data set, but it will also include all other random 
errors and systematic errors involved in the measurement.  



PROBLEM 5.4 
 
 
KNOWN:   Tire pressure gauge; single sample uncertainty estimates 
 
FIND:  Difference between ud and uN 
 
SOLUTION  
 
 The design-stage uncertainty is a first estimate that is based on information immediately 
available. Generally, it does not include measurement control estimates, which makes it very 
different from an Nth order analysis. The simplest form for ud is an estimate by  

    2 2
d o c

u u u= +  

where uo is based on the expected instrument interpolation error and uc is based on the  
instrument error. It can also include other sources of error known at the time of analysis. This 
value provides a good guess of the uncertainty to be expected when minimal information is 
available. 
 
Nth order uncertainty is applied to those measurement situations where a number of repeated 
measurements cannot or will not be taken. The analysis focuses on the control of the test and 
how that would affect the outcome. The Nth order uncertainty includes all conceivable 
errors, but its most important distinguishing feature is that it estimates the effect of test 
process control on the measurement. It is estimated by  

    
N 1

2 2
N c i

i 1
u u u

−

=

= +∑  

where ui are uncertainties related to the measurement procedure controllability.  
 
Suppose we want to measure the pressure of a tire and make only one reading per tire during 
a normal tire installation or during a tire pressure check. This is the way we tend to do it – 
isn't it? How good might we expect that one value of pressure to be? To quantify our 
methodology, we conceive of a test where we try out our measurement technique with a 
surrogate set of measurements. So u1 might be estimated by a simple surrogate experiment 
whereby a fixed pressure is repeatedly measured (say 20 times) and the outcome stated as 

p
tS . Assuming that the pressure did not change, variations in measured pressure would be 

due to measurement procedure control, as well as instrument repeatability. This gives us an 
estimate for how the pressure might be affected during our normal single measurement. We 
bank this information for subsequent use. The values for ud and uN differ by the errors which 
enter during the conduct and control of the test.  
 



PROBLEM 5.5 
 
 
KNOWN:   Micrometer  
           Resolution: 0.001 inch  (0.025 mm)  
 
FIND:   ud at 95% confidence  
 
ASSUMPTIONS: Instrument error is negligible compared with error due to  
              resolution.  
 
SOLUTION  
 
    The interpolation error due to instrument resolution of an analog instrument is 
approximated by half its least increment:  
 
           uo = 0.0005 inch or 0.0125 mm  
 
It is not unusual for this type of instrument to have mostly negligible instrument errors. 
However, its zero set point can only be controlled to within the precision of the resolution, so 
we set uc ~ uo.  
    Then, the design-stage uncertainty becomes  
 
           2 2 1/ 2( )d o cu u u= ± + = ± 0.0007 inch (95%)  =  ± 0.0180 mm  (95%) 



PROBLEM 5.6 
 
 
KNOWN:     Analog Tachometer  

         Resolution: 5 rpm  
         Accuracy: within 1% reading  

 
FIND: ud at 10, 500, 5000 rpm  
 
SOLUTION 
 
    The design-stage uncertainty is  
 
           2 2 1/ 2( )d o cu u u= ± +   
 
where  
 
    uo = ±  2.5 rpm  
 
    uc = 1% of reading  
 
This yields  
     
           speed       uc        uo        ud 
           [rpm]     [rpm] [rpm]   [rpm]  
 
            10        0.1      2.5    ± 2.5  
 
           500        5         2.5    ± 5.6  
 
          5000       50        2.5    ± 50  
 
The uncertainty increases with rotational speed. At low speeds it is dominated by the ability 
to read the tachometer (resolution). At higher speeds the instrument errors dominate.  
 
COMMENT  
 
    The statement "accuracy" is a manufacturer catch-all term that is rarely clearly defined. 
The "accuracy" statement is presumed to mean that the overall errors do not exceed 1%. We 
suspect the term to describe the combined effects of all known elemental errors. This 
misnomer causes confusion. Insist on a detailed description. 



 
PROBLEM 5.7 

 
 
KNOWN:  Speedometer  
         Resolution: 5 mph  (8kph)  
         Accuracy: within ± 4% reading  
 
FIND:  ud at 60 mph  (90 kph)  
 
SOLUTION  
 
    The design-stage uncertainty is  
 
           2 2 1/ 2( )d o cu u u= ± +  
where  
 
    uo = ±  2.5 mph  (4 kph)  
 
    uc = ± 4% of reading = ± 2.4 mph  at 60 mph  = ± 3.6 kph  at 90 kph  
 
This yields  
 
    2 2 1/ 2(2.5 2.4 )du = ± +  = ± 3.5 mph   (95%)  = ± 5.4 kph   (95%)  
 
COMMENT  
 
    In the United States, automobile speedometers and their connected odometers have 
acceptability tolerance limits set by the government at u = ± 4% of the reading.  
 
During the tight fuel availability times in the western hemisphere of the 1970's, some 
automakers were known to misrepresent (legally) automobile performance by holding a 
tighter precision (lower random error) on their units while purposely building a 2 to 4% 
systematic error into their automobile odometers. This made the vehicle slightly more 
attractive to a fuel cost conscious consumer. Unless the consumer actually made a careful test 
of the speedometer and odometer performance, usually by some comparison means such as a 
road sign check, they never would have reason to disbelieve their car's indicated, but 
inaccurate, performance. Caveat emperor!  



 
PROBLEM 5.8 

 
KNOWN:    Temperature sensor  
             Error limit: ± 0.5oC  

         Readout Device  
            Resolution: 0.1oC  

             Accuracy: 0.6oC  
  
FIND:   ud 
 
SOLUTION  
 
    The design-stage uncertainty is for the combined system is  
           2 2 1/ 2[( ) ( ) ]d d R d Su u u= ± +  
where (ud)R is the design-stage uncertainty of the readout device and (ud)s is  
that of the sensor. In either case, the individual design-stage uncertainty is found from  
          2 2 1/ 2( )d o cu u u= ± +  
Sensor  
 
    uo = 0  (i.e. no output stage in the sensor; readout is separate)  
    uc = ± 0.5oC  
 
   ( ) 2 2 1/ 2(0 0.5 )d S

u = +  = 0.5oC  

 
Readout Device  
    uo = 0.05oC      and           uc = 0.6oC  
So that  
    ( ) 2 2 1/ 2(0.05 0.8 )d R

u = +  = 0.8 oC  

 
Then, the design-stage uncertainty for this combined system becomes  
    2 2 1/ 2(0.5 0.8 )du = ± + = ± 0.8 oC   (95%)  
 
COMMENT  
 
    Although the error limit on the sensor was given in this problem, similar information is 
available through various publications – an example of estimating error by using published 
values. For example, there are readily available ASTM and ASME standards (e.g., 
ASME/ANSI PTC 19.3; also given in the textbook as Table 8.5) governing the error limits 
on thermocouples, which are common temperature sensors, and to which a manufacturer's 
product must adhere.  



 
PROBLEM 5.9 

 
 
KNOWN:   Four resistors are available: two rated at R = 500± 50Ω  and two  

            rated at R = 2000± 5%Ω .  
 
FIND:   Best design combination to form RT = 1000 Ω  
 
SOLUTION  
 
We can combine the resistors in series or in parallel. Consider as Case 1, a series 
arrangement and as Case 2, a parallel arrangement.  
 
Case 1  
 
    RT = R1 + R2  
 
If we use the two 500Ω  resistors, then  
 
    

1Rdu = ± 50Ω  

    
2Rdu = ± 50Ω  

 
The propagation of uncertainty through to RT is estimated by  

    
1 2

2 2 1/ 2

1 2

( ) [( ) ( ) ]
T R R

T T
d R d d

R R
u u u

R R
∂ ∂

= ± +
∂ ∂

 =
1 2

2 2[(1* ) (1* )
R Rd du u± +   = 71± Ω    (95%)  

 
Case 2  

     1 2

1 2
T

R R
R

R R
=

+
  

If we use the two 2000 Ω  resistors, then  
 
   

1Rdu = ± 100Ω  

 
   

2Rdu = ± 100Ω  

 
The propagation of uncertainty through to RT is estimated by  
 



1 2

2 2 1/ 2

1 2

( ) [( ) ( ) ]
T R R

T T
d R d d

R R
u u u

R R
∂ ∂

= ± +
∂ ∂

 

=
1 2

2 2 1/ 22 1 2 1 1 2
2 2

1 2 1 21 2 1 2

[({ }* ) ({ }* ) ]
( ) ( )R Rd d

R R R R R R
u u

R R R RR R R R
± − + −

+ ++ +
 

            = 35± Ω  (95%) 
 
Case 2 provides the smaller uncertainty at the design-stage. We should proceed using this 
design.  
 
COMMENT  
 
This is a classic illustration of using uncertainty analysis to determine the better of differing 
approaches.  
 
Although each individual resistor in Case 2 has a larger absolute uncertainty than those in 
Case 1, we find that the weighted combination of the two resistors in Case 2 yields a 
substantially lower uncertainty. This is not obvious by inspection alone. Our design results 
from a close analysis of the sensitivity of the resultant to each contributing uncertainty. The 
combination in Case 2 is just less sensitive to the individual uncertainties.  



PROBLEM 5.10 
 
 
KNOWN: p = 20 kPa @ FSO (see Note below)  
       (uo)3 = 0.01 kPa  
       (uo)4 = 0.001 kPa        
 
FIND: Select 3 1/2 or 4 1/2 digit display based on uncertainty  
 
SOLUTION  
 
     A design-stage analysis is appropriate here as the selection pertains to identical 
instruments having only different output resolutions. At full-scale, the units will indicate 
19.99 (3½) or 19.999 (4½ ) 
 
The instrument uncertainty is given by:  
 
    e1 = 0.0015 x 20 kPa = 0.03 kPa  
    e2 = .002 x 20 kPa = 0.04 kPa  
    e3 = 0.0025 x 20 kPa = 0.05 kPa  
 
So that:  uc =  ( .032 + .042 + .052)1/2=  0.071 kPa  
 
At FSO, the readout will display 19.99 or 19.999:  
 
3 1/2 digit:  ud=  (.072 + .012)1/2 = 0.07 kPa  
 
4 1/2 digit:  ud =  (.072 + .0012)1/2 = 0.071 kPa  
 
The uncertainty is virtually identical regardless of the resolution in the readout. Meter 
resolution does not affect the uncertainty to any practical extent.  
 
Note: A true problem found several times in catalog of a major supplier of engineering 
sensors and readouts in US. 



PROBLEM 5.11 
 
KNOWN: G = f(L,T,R,θ )  
       uL/L = uT/T = uR/R = uθ /θ= 0.01  
 
FIND: (ud)G 
 
SOLUTION  
 
     The shear modulus is found by 4G 2LT / R= π θ  using the best estimates of L, T, R, and 
θ . Its uncertainty is evaluated by  
 

( ) ( ) ( ) ( )
1/ 222 2 2

G L T R
u / G u / L u / T 4u / R u /

θ
 = ± + + + θ  

= 0.04 4%± =  

Note that even if uL = uT = uθ= 0, the uncertainty uG/G is dominated by the uncertainty in R. 
The shear modulus uncertainty is most ‘sensitive’ to the radius uncertainty. 



PROBLEM 5.12 
 
KNOWN: η  = f(Tc , Th)  
       u /

η
η ≤0.01  

       Th = 40oC = 313 K  
       Tc = 20oC = 293 K  
 
FIND: uh, uc required  
 
SOLUTION  
 
     We will assume that the uncertainties in measuring either temperature are the same (i.e., 

T Tc Th
u u u )= = . Note that temperatures must be in absolute and that a 1 oC change equals a 
1 K change.  

     ( ) ( )
1/ 22 2

1/ 22 2
2

Tc Th Tc h Th c h
c h

u u u u / T u T / T
T Tη

    ∂η ∂η   = ± + = ± +        ∂ ∂     

 

Then, u /
η
η ≤0.01   requires:   

T Tc Th
u ( u u assumed)= = ≤0.1 K or 0.1 oC  

 
In a laboratory environment, this low magnitude of uncertainty value in a measured 
temperature would be attainable but with considerable care and calibration. In most 
engineering processing plant applications, this value would be very difficult to attain.  



 
PROBLEM 5.13 

 
 
KNOWN:  Heat transfer from a rod is to be determined.  
         Nu = hD/k  is the nondimensional heat transfer.  
         uh = 150 ± 7% W/m2-K (95%)  
         ud = 20 ± 0.5 mm  (95% assumed)  
         uk = 0.6 ±  2% W/m-K  (95% assumed)  
 
FIND: uNu 
 
SOLUTION  
 
    At the known level of uncertainty provided: Nu = f(h,D,k) then, 
  

1/ 22 2 2

Nu h D k
Nu Nu Nuu u u u
h D k

 ∂ ∂ ∂     = ± + +      ∂ ∂ ∂       
=

1/ 22 2 2

Nu h D k2

D h hDu u u u
k k k

 −     = ± + +      
       

=

1/ 22 2 2

Nu 2

0.02 150 150x0.02u 10.5 0.005 0.012 0.4
0.6 0.6 0.6

 −     = ± + + = ±      
       

 

 
where  
 
    uh = (0.07)(150) =  10.5 W/m2-K  
    uD =  0.0005 m  
    uk = (0.02)(0.6) = 0.012 W/m-K  
 
Then, we estimate the Nusselt number here to be  
 
    Nu = hD/k ±  uNu = 5 ±  0.4  (95%)  
 
So, Nusselt number can be determined within about 8% in this range of values. 
 
COMMENT 
 
The level of uncertainty analysis (design-stage, advanced design-stage, …) in the result 
depends on the level of uncertainty values given or available. This problem solution provides 
the propagation of uncertainty from the variables to the result. 
 



PROBLEM 5.14 
 
KNOWN:  R = 30 Ω  
         P = 500 W  
         Ohmmeter  
           Resolution: 1 Ω  
           Accuracy: within 5% of reading  
         Ammeter  
           Resolution: 100 mA  
           Accuracy: within 0.1% of reading  
 
FIND: (ud)E 
 
SOLUTION  
 
From Ohm's Law: E = IR  or in terms of power, P =I2R. For the nominal values of power and 
resistance given, expect a current, I = (P/R)1/2 = 4.08 A. Hence,  
    Ohmeter  
       (ud)R= (uo

2 + uc
2)1/2 

              =  ((0.005 x 30Ω )2+ (0.5Ω )2)1/2 

              =  0.52 Ω        (95%)  
 
    Ammeter  
       (ud)I = (uo

2 + uc
2)1/2 

              = ((50 x 10-3 A)2+ (0.001 x 4.08 A)2)1/2 

              =  50.2 x 10-3 A      (95%)  
 
Then, since voltage  E = f(I,R):  

       
1/ 22 2

d E d I d R
E E(u ) (u ) (u )
I R

 ∂ ∂   = ± +    ∂ ∂     
= ( ) ( )

1/ 22 2

d I d R
R(u ) I(u ) ± +  

 

            = ( ) ( )
1/ 22 230 0.0502A 4.08A 0.52 ± Ω× + × Ω 

 = ± 2.61 V  (95%)  

 
COMMENT  
    Compare the groups in the 

d E
(u ) term:  

Resistance: 
d R

E (u )
R
∂
∂

= 2.05V Current: 
d I

E (u )
I

∂
∂

 = 1.51 V 

Hence, the resistance measuring device contributes most to the uncertainty in voltage 
measurement at the design stage. Focusing on reducing the uncertainty in the resistance 
measurement would be a good starting place to reduce 

d E
(u ) .  

 
Note that the units in each of the working equations are consistent. The equations would not 
be logical otherwise.  



PROBLEM 5.15 
 
SOLUTION  
 
Design-Stage Analysis: Provides a quick (but not accurate) estimate in uncertainty based on a 
planned approach. In general, this analysis is performed at a time when only information 
about the uncertainies in measuring equipment and appropriate engineering constants 
required for analysis are known or estimated. The analysis assumes perfect control of the 
measurement process and its procedure.  
 
Advanced-Stage Analysis: Provides an accurate estimate of the uncertainty in a result based 
on a detailed knowledge of the measurement process. Used when only a single (or very few) 
measurement(s) is planned. Such an analysis builds on a design-stage analysis estimate to 
include estimates of uncertainty, such as procedural control, setability of operating 
conditions, and repeatability of the measured variable.  
 
 
 
 

PROBLEM 5.16 
 
 
SOLUTION  
 
Replication provides a measure of the control of the operating conditions and test procedure. 
It does this by permitting the test engineer to quantify the differences in test results obtained 
from distinctly duplicate tests conducted under nominally identical conditions. For example, 
in a typical university lab course, several groups might setup and perform the same lab 
exercise – but with different people at different times, etc. – these duplicate tests are 
replications. Note: Often, a special type of replication, one in which the same test is 
performed at a different test facility is referred to as a reproducibility test). 
 
Repetition provides a measure of repeatability during the same test, so that the subtle 
differences between test conduct (such as in a replication) are not included. For example, in a 
typical university lab course, a group might take multiple data points at the same operating 
condition from a test – these data points are repetitions. 
 
In an advanced-stage analysis, replication effects are included as a higher-order uncertainty 
based on estimates found by a trial of tests designed to measure such controllability. In a 
multiple-measurement analysis, replication effects are usually entered as a precision error 
evaluated from pooled statistics analysis.  



PROBLEM 5.17 
 
 
KNOWN:  Displacement Transducer Instrument specifications  
             Linearity:      e1 = ± 0.25% reading  
             Drift:          e2 = ± 0.05%/oC reading  
             Sensitivity:  e3 = ± 0.25% reading  
         Output Device specifications  
             Resolution:     10 µV  
             Accuracy:       within ± 0.1% reading  
         Expect a 10oC variation during measurements.  
         Expect a nominal displacement of x = 2 cm.  
 
FIND:  (ud)x 
 
SOLUTION  
 
 2 2 1/ 2[ ]= ± +

x T Ed d du u u   so find design-stage uncertainty in transducer and voltmeter: 

Displacement Transducer  
      From the instrument specifications, we can assume that the static sensitivity of the 
displacement transducer is K = 5 V/5 cm = 1 V/cm. Then combining the elemental errors for 
this transducer and expecting a displacement of x = 2 cm and a temperature variation of up to 
10C:  
    2 2 1/ 2[ ]= ± +

Td o c Tu u u  

where  
    

T
o

u  = 0    (not relevant)  

    
T

1/ 2
2 2 2

c 1 2 3
u e e e = + +   

          = [(0.0025x22 + (.005 x 10oC x 2)2 + (0.0025 x 2)2 ]1/2 

          = 0.01225 V  
 
    

T
d

u = 0.01225 V  

 
Voltmeter  
    2 2 1/ 2[ ]= ± +

Ed o c Eu u u  

where  
    

E
o

u = 5 x 10-6 V   

    
E

c
u

∂

= (2V x .001) = 0.002 V  

    
E

d
u =  0.002 V  

Then, the design-stage uncertainty in measurement system becomes:  



 
     2 2 1/ 2[ ]= ± +

x T Ed d du u u   = ±  0.0124 V  or (since K = 1 V/cm)  = ±  0.0124 cm   (95%)  

 
COMMENT  
 
    Comparing each term in 

xdu , we see that the transducer contributes most to the uncertainty 

in measured displacement at the design stage. Keep in mind that at this level of uncertainty 
only the intrinsic instrument errors and no procedural errors are considered.  



PROBLEM 5.18 
 
KNOWN:  Measurement system of Problem 5.17  
               N = 20          x = 17.2 mm = 1.72 cm            Sx = 1.7 mm = 0.17 cm    
 
FIND:  x'  
 
ASSUMPTIONS:  Measurement is sufficiently controlled such that all errors have been 
randomized and considered in the measured data.  
 
SOLUTION  
 
The measurements have provided additional information about the uncertainty involved in 
the using this measurement system and involved in measuring this particular variable. We 
will approach the problem as a multiple measurement uncertainty analysis problem. Using 
the procedure of problem 5.17 but with x  = 1.72 cm (recall Problem 5.17 used 2.0 cm),  
  

T
d

u  = ± 0.0105 cm (95%)  

 
           

E
d

u  = ± 0.0017 cm   (95%)  

Then, we can identify two elements of systematic error at the data acquisition source (see 
Table 5.2) error due to the transducer, B2 , and error due to the output device, B4 (Note: the 
subscripts used refer to the order in which these particular errors are listed in Table 5.2 – we 
could easily just list them as known error 1 and known error 2). 
 
           B2 = 

T
d

u  = ± 0.0105 cm  

           B4 =  
E

d
u = ± 0.0017 cm   

We can set the random error in both of these elements to zero (no data provided).  
 
           P2 = P4 = 0  
 
The twenty measurements are assumed to be made in a manner that best randomizes the 
extraneous effects on the measured variable. The measurements provide a set of finite 
statistics from which a precision interval in estimating the true mean value can be made. 
Begin by estimating the random error due to temporal variation in the measurand:  
 
          9 /x xP S S N= = = 0.038 cm  
 
with degrees of freedom, ν = 19.  
    The measurement systematic error can be expressed as:  
 

          
1/ 22 2

2 4B B B = +   = 0.0108 cm  

 



and the measurement standard random error is given by  
 
           P = 0.038 cm  
 
The uncertainty interval is found from  
 

           ( )
1/ 222

19,95xu B t P = ± +  
 

             = ±  0.08 cm    (95%)  
 
with  t19,95 = 2.093. The best estimate for mean mass displacement is  
 
           x' = 1.72 ± 0.08 cm      (95%)  
 
based on the information provided.  
 
COMMENT  
 
    Note that we could use this information as the basis for a single sample uncertainty 
estimate by using the test performance obtained at 17.2 mm as representative for the 
measurement system and procedure used and variable measured. This information could be 
used to update the design stage analysis in the previous Problem. 



PROBLEM 5.19 
 
 
KNOWN:  Nominal pressure value to be measured is 100 psi at 70oF  
         Pressure transducer  
           Accuracy: within 0.5% reading  
         Output device  
           Resolution:      0.1 psi  
           Sensitivity:   e1 = 0.1 psi  
           Linearity:         e2 = 0.1% reading  
           Drift:                e3 = 0.1 psi/6 months provided 32 < T < 90�o�F  
 
ASSUMPTIONS:  K = 1 V/psi for the transducer  
 
FIND:   

Pdu  

 
SOLUTION  
 
    For the transducer:  
 
    2 2 1/ 2[ ]

Td o c Tu u u= ± +  = uc = ± 0.005 x 100 psi = ±  0.5 psi  

 
    For the output device  
 
    2 2 1/ 2[ ]

Dd o c Du u u= ± +   = ± 0.18 psi  

 
where  
 
    u0 = ± 0.05 psi  
 

    uc = 
1/ 22 2 2

1 2 3( ) ( ) ( )e e e ± + +   = ±  (0.12 + .12 + 0.12)1/2  

      = ± 0.17 psi  
 
Note: we have assumed a value for drift equivalent to that expected over the first 6 months of 
operation following calibration. This value would be adjusted accordingly in an actual 
situation. Then,  
 

   
1/ 2

2 2
P T Dd d du u u = ± + 

 = ± 0.53 psi      (95%)  

We anticipate an uncertainty of 0.53% of the reading at 100 psi due to the instrument errors 
alone.  



 
PROBLEM 5.20 

 
 
KNOWN:  p = 8610 lb/ft2        D  = 6.1 in. = 0.508ft  t  = 0.22 in.= 0.018 ft  
              Sp = 273.1 lb/ft2       SD = 0.18 in.            St = 0.04 in.  

      Np = 10                    ND = 10                        Nt = 10   
              Bp = 1% rdg    BD = ± 1% rdg              Bt = ± 1% rdg 
 
FIND: 'σ   
 
SOLUTION  
 

( , , )p D tσ σ=  
 
Pp = /p pS N = 86.4 lb/ft2  

PD = /D DS N  = 0.06 in = 0.005 ft;  

Pt = /t tS N  = 0.01 in = 0.00105 ft.  
 

1/ 22 2 2

p D tP P P P
p D tσ
σ σ σ  ∂ ∂ ∂    = + +     ∂ ∂ ∂      

1/ 22 2 2

22 2 2p D t
D p pDP P P
t t t

 −     = + +      
       

 

1/ 22 2 21197 1127 7087 7275 = + + =   lb/ft2 

where p = p , D = D , t = t . 
 
The value of σν   is obtained from the Welch-Satterthwaite relation for a result that is a 
function of variables: 
 

( )
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ii

i

x

L

1i

4
xi

2L

1i

2
xi

R
νPθ

Pθ
ν

∑








∑

=

=

= =

22 2 2

2
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2
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2 2 2

p D t

p D t

p D t

D p pDP P P
t t t

D p DpP P P
t t t
ν ν ν

      + +      
       

     
     
     + +

= 10 

 
1/ 22 2 2

p D tB B B B
p D tσ
σ σ σ  ∂ ∂ ∂    = + +     ∂ ∂ ∂      

1/ 22 2 2

22 2 2p D t
D p pDB B B
t t t

 −     = + +      
       

 

 
With Bp = 0.01 x 8610 = 86.1 lb/ft2 ,  



BD = 0.01 x 6.1 = 0.061 in = 0.005 ft ,  
Bt = 0.01 x 0.22 = 0.0022 in = 0.0002 ft, 
and p = p , D = D , t = t  
 

1/ 22 2 21194 1174 1349 2150Bσ
 = + + =   lb/ft2 

Then, with t10,95 = 2.228 and / 2 :pD tσ =  
 

1/ 2 1/ 22 2 2 2' ( ) 121,497 2150 (2.238 7275)B tPσ σ    = ± + = ± + ×     

121,500 16,425= ±  lb/ft2 (95%) 
5.82 0.786= ± MPa   (95%) 



 
PROBLEM 5.21 

 
 
KNOWN:  Calibration source elemental errors, K = 3  
 
FIND:   Random uncertainty due to calibration errors 
 
SOLUTION  
 
    For three known random errors   
 

           
1/ 22 2 2

1 2 3P P P P = + +  = [0.92  +  1.12  +  0.092]1/2 

             = 1.424 N/m2  
 
with degrees of freedom,  
 

           

23
2
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1

4 4 4 43

1
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PROBLEM 5.22 
 
 
KNOWN:  Systematic and random source errors in a measurement of force.  
                F  = 200 N  
 
FIND:   Estimate F'  
 
SOLUTION  
 
    The source errors can be combined to find the measurement systematic and random 
uncertainties. The measurement systematic uncertainty is given by  
 

   
1/ 2 1/ 22 2 2 2 2 2

1 2 3 2 4.5 3.6B B B B   = + + = + +     = 6.1 N  

 
Likewise, the measurement standard random uncertainty is given by  
 

    
1/ 22 2 2

1 2 3P P P P = + +  = 
1/ 22 2 20 6.1 4.2 + +   = 7.41 N  

 
The degrees of freedom in the measurement standard random uncertainty is,  
 

          

23
2

2 2 2 2
1

4 4 43

1

(0 6.1 4.2 ) 32
6.1 4.2
17 19

k
k

k

kk

P

P
ν

ν

=

=

 
 

+ + = = ≈
+

∑

∑
 

 
            
Then, using t32,95 = 2.042 (note: for 30ν ≥  a value of t95 = 2 is commonly used as an 
engineering approximation) 

1/ 2 1/ 22 2 2 2' ( ) 200 6.1 (2 7.4)F F B tP   = ± + = ± + ×     N 

      
F' = 200± 16 N    (95%)  



PROBLEM 5.23 
 
 
KNOWN:  A = XY  
                  X and Y Instrument Accuracy:  within 0.5% reading  
 
FIND:  Estimate the uncertainty in land area  
 
SOLUTION  
 
    The land area is found by A = XY. Then, the most probable estimate of the mean area is:  
           A = XY = 556 x 222 = 123,432 m2 
In the measurement of length X (note: the subscripts refer to the order in which the particular 
errors are listed in Table 5.2 – otherwise, they offer no special meaning):  
           Bx = B2 = 0.005 x 556 = 2.8 m  
           Px = P9 = Sx/N1/2  = 1.9 m 
In the measurement of length Y:  
           By = B2 = 0.005 x 222 = 1.1 m  
           Py = P9 = Sx/N1/2 = 0.8 m  
The propagation of these errors to the resultant area is found by  

         ( ) ( )
1/ 22 2 1/ 222

A x y x y X X
Y Y

A AB B B YB XB
X Y =

=

 ∂ ∂     = ± + = ± +      ∂ ∂       
  = 873 m2 

          ( ) ( )
1/ 22 2 1/ 222

A x y x y X X
Y Y

A AP B B YP XP
X Y =

=

 ∂ ∂     = ± + = ± +      ∂ ∂       
= 606 m2 

The degrees of freedom in PA is found using a Welch-Sattertwaite relation 

           
( )

( )
i

2L 2
i i

i 1
R L 4

i i x
i 1

θ P
ν

θ P ν

=

=

 
 
 =
∑

∑
=

( ) ( )
( ) ( )

222

44

x y

yx

x y

YP XP

XPYP

ν ν

 +  

+

14≈  

Then, with t14,95 = 2.145,  

           
1/ 2 1/ 22 2 2 2' ( ) 123,432 873 (2.145 569)A A B tP   = ± + = ± + ×     

                = 123,432 ± 1500 m2  (95%)  
 
COMMENT  
 
This uncertainty is about 1.75% of the measured area. The contribution from the instrument 
itself is barely 0.7% of area. If we assume that the measurand does not change during 
measurement (so barring seismic activity somewhat safely), the rest is due to lack of control 
in procedure.  



PROBLEM 5.24 
 
 
KNOWN: σ  = 1061 kPa  
                 Sσ = 22 kPa    
                  N = 23  
 
FIND:  P  (listed as P due to temporal variation in Table 5.2) 
 
ASSUMPTIONS:  Scatter is due to temporal variations  
 
SOLUTION  
 
    The standard random uncertainty, P, in the mean value of stress, σ , due to random error 
by data scatter, Sσ , is  
 
    / 22 / 23P S Nσ= =   = 4.6 kPa  
 
with ν = N-1 = 22 degrees of freedom.  



PROBLEM 5.25 
 
 
KNOWN: N = 6 with Sx = 1.23 MPa  
                 Bx= 1.48 MPa  
 
FIND: ux 
 
SOLUTION  
 
     The uncertainty in the mean value of strength is given by  
 

      
1/ 22 2( )x x xu B tP = ± +    

 
where /x x xP S S N= =  is the standard random uncertainty. 
 
For t5,95 = 2.571 and xS = 1.23 MPa/61/2 = 0.50 MPa  
 

     
1/ 22 21.48 (2.571 0.5)xu  = ± + × = ±  1.96 MPa    (95%)  

 
Both systematic and random errors contribute about the same.  
 



PROBLEM 5.26 
 
 
KNOWN: Standard: B1 = ±  0.5 psi    P1 = 0  
                 Voltmeter: B2 = ±  10 Vµ      P2 = 0  
                 Measurement: B3 = ± .5 psi  
                 Calibration Curve fit: P4 = Syx = 0.746 based on ν  = 4  
 
FIND: up 
 
SOLUTION 
 
    From the calibration data, a least squares fit yields:  
 
      1o yxy a a x tS= + ±   or   p [psi] =0.54 + 24.03E [mV] ±   (2.776)(.746)      

 
so that,   

P4 = Syx = 0.746  
 
based on ν  = 4. Because P4 is the only random error involved, the measurement standard 
random uncertainty is P = P4 = 0.746. 
 
Also, from the curve we find that /K p E= ∂ ∂  = 24.03 psi/mV. We use this sensitivity to 
convert between psi and mV. 
 

   

1/ 2 1/ 22 2 2 2 2 2
1 2 3 (0.5 ) (0.01 24.03 / ) (0.5 )

   
   = 0.707

B B B B psi mV psi mV psi

psi

   = ± + + = ± + × +   

±
 

Then, with t4,95 = 2.776, the combined uncertainty is 

   
1/ 2 1/ 22 2 2 2( ) 0.707 (2.776 0.746) 2.19p p pu B tP   = ± + = ± + × = ±     psi    (95%)  

 
  



PROBLEM 5.27 
 
 
KNOWN:  Density of metal composite is determined by mass estimation.  
               Sample ingot is cylindrical in shape.  
        Nominal* values for typical ingot:  
           m ≈  4.5 lbm       om

u = 0.1 lbm 

           L ≈6 in.            oL
u = 0.05 in.  

           D ≈  4 in.           oD
u = 0.0005 in.  

 /cm
u m = 1% reading; /cL

u L = 1% reading; /cDu D = 1% reading 
* "nominal" means 'approximate' or 'typical' values for a given situation 
 
FIND:  du

ρ
 

 
SOLUTION 
 
    2 / 4D Lπ∀ =   and 2/ 4 /m m D Lρ π= ∀ =  
 

    

1/ 22 2 2

1/ 22 2 2

2 3 2
4 8 4

m D L

m D L

u u u u
m D L

m mu u u
D L D L D L

ρ
ρ ρ ρ

π π π

 ∂ ∂ ∂     = ± + +      ∂ ∂ ∂       
 −     = ± + +      
       

 

     

  
1/ 22 2 2 2 1/ 2[0.1 (0.01 4.5) ]m o cu u u = + = + ×  = 0.11 lbm 

  
1/ 22 2 2 2 1/ 2[0.005 (0.01 4) ]D o cu u u = + = + ×   = 0.04 in = 0.0034 ft 

  
1/ 22 2 2 2 1/ 2[0.05 (0.01 6) ]L o cu u u = + = + ×   = 0.078 in = 0.0065 ft 

         

( ) ( ) ( )
1/ 22 2 20.0133 0.11 0.0298 0.04 0.0597 0.078uρ

 = ± × + × + × 
 

        = ± 0.0050 lbm /in3 = ±  8.680  lbm/ft3 
 
The mass measurement contributes most to the uncertainty at the design stage (= 0.0133 x 
0.11), although just more than the diameter measurement, and deserves first attention to 
reducing the uncertainty in density. The uncertainty contribution due to length ( = 0.005 x 
0.078) is one order of magnitude smaller than mass or diameter. 



PROBLEM 5.28 
 
KNOWN:  M = 3 replications with N = 10 repetitions each.  
                  Sample mean and sample standard deviation values.  
 
FIND:   

d
d u±  

 
SOLUTION  
 
We will assume that errors enter only at the data acquisition stage. Elemental errors from 
data acquisition sources will consist at least as a systematic error due to instrument error (B1), 
a random error due to the variation in readings measured at each cross-section (P2), and 
spatial-dependent random errors along the ingot length (P3).   
 
    The pooled mean diameter is found by  

           1 (3.992 3.9892 3.9961) 3.9924
3

d = + + =  inches 

and provides the most probable estimate in the true mean diameter. The variation in readings 
taken at each cross-section location is estimated by the pooled standard deviation relative to 
the pooled mean. For N = 10 at M =3,  
 

 /dd
S S MN= 2 2 21 (0.005 0.001 0.0009 ) / 3 10

3
= + + ×    = 0.00055 inches 

 
with ( 1) 3 (10 1)M Nν = − = × −  = 27. This yields a measure of the standard random error 
due to data scatter P2.      
    The spatial variation in mean values is estimated by the standard deviation  
 

    

1/ 2
2

1
( )

1

M

m
m

d

d d
S

M
=

 
− 

 =
 −
 
 

∑
= 0.0034 inches 

 
with ν = M - 1 = 2. The standard random error due to spatial errors P3 is then 
 
         3 /dP S M= = 0.0017 in.  
 
    Then,  



           
From the previous problem, the instrument error in diameter measurement is 1% of the 
reading. So 
 
          B = B2 = cD

B = 0.040 in.  

          P = 
1/ 2 1/ 22 2 2 2

2 3 0.00055 0.0017P P   + = +     = 0.0018 in.  

 
with  
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so t2,95 = 4.303 (note: ν  gets rounded down).  
 

           
1/ 22 2( )du B tP = ± +  = ±  0.041 in.  

 
           B = 0.040 in.    P = 0.0018 in.   ν = 2  
 
           d' = 3.9924 ±  0.041          in.   (95%)  
 
COMMENT  
 
The large systematic error in the diameter measuring device dominates this problem. Even 
though all the readings appear to be well behaved with some variations in position and 
between positions, the systematic error implies these readings may all have an offset. 
 
This problem also provides a nice example of how the statement of a value of a variable such 
as the diameter of an ingot or of a shaft is actually a statistical statement. We often think of 
such non-temporal variables as being fixed and absolute.  Because they are statistical 
statements, there is an associated uncertainty in their values.  



PROBLEM 5.29 
 
KNOWN:  Measurements of mass and length and results of Problem 5.28  
 
FIND:   Estimate 'ρ  
 
SOLUTION  
 
We will assume that errors enter only at the data acquisition stage.  
Elemental errors from data acquisition sources will consist at least as a systematic error  
due to instrument error (B1), a random error due to the scatter in data (P2). We will also use 
the systematic and random error estimates from the diameter measurement information in 
Problem 5.28. These give:  
 
          Bd  = 0.040 inch, Pd = 0.0018 inch, ν = 2  
 
The instrument error is estimated at 1% of the reading for each variable.  
  
           Bm = B2m = 0.045 lbm      BL = B2L = 0.06 inch  
 
The scatter in the data creates a random error in estimating the mean value. The random error 
estimates in the mean values are assumed as  
 
         Pm = P2m = Sm/N1/2 = 0.1/211/2 = 0.022 lbm    mν  = 20  
          PL = P2L = SL/N1/2 = 0.1/111/2 = 0.0302 in.   Lν = 10  
 
With 24 /m D Lρ π= ,  

1/ 22 2 2

1/ 22 2 2

2 3 2
4 8 4

m D L

m D L

B B B B
m D L

m mB B B
D L D L D L

ρ
ρ ρ ρ

π π π

 ∂ ∂ ∂     = ± + +      ∂ ∂ ∂       
 −     = ± + +      
       

 

1/ 22 2 2

1/ 22 2 2

2 3 2
4 8 4

m D L

m D L

P P P P
m D L

m mP P P
D L D L D L

ρ
ρ ρ ρ

π π π

 ∂ ∂ ∂     = ± + +      ∂ ∂ ∂       
 −     = ± + +      
       

 

Subbing:  



   
1/ 22 2 2

2 3 2
4 8 4.4 4 4.40.045 0.040 0.06

3.9924 5.85 3.9924 5.85 3.9924 5.85
Bρ π π π

 − × ×     = ± + +      × × × × × ×       
Bρ = ±  = 0.00385 lbm/in3 
 
   

1/ 22 2 2

2 3 2
4 8 4.4 4 4.40.022 0.0018 0.032

3.9924 5.85 3.9924 5.85 3.9924 5.85
Pρ π π π

 − × ×     = ± + +      × × × × × ×       
Pρ = ± 0.00194lbm/in3 
 
where each term is evaluated at the mean values for m, L and d.  
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so that with 
1/ 22 2( )u B tPρ

 = ± +    with t22,95 = 2.07 
1/ 22 20.00385 (2.07 0.00194) 0.0056uρ

 = ± + × = ±   lbm/in3  (95%) 

 
 24 /m D Lρ π=     =   0.0596 lbm/in3 
 
Then, 
 

'ρ =  0.0596 ±  0.0056 lbm/in3 (95%)  
 
The updated value here contains additional information relative to a design stage analysis. In 
this updated analysis, the random errors are based on actual measured data scatter and are 
larger than the previous estimate that was based on resolution error (uo) alone. The 
systematic errors are the same as the uc values used previously. 



PROBLEM 5.30 
 
 
KNOWN:  Calibration against a standard.  

               Calibration data are provided.  
         
FIND:   a.) Calibration curve fit. b.) Uncertainty in any estimated T.  
 
SOLUTION  
 
a.) To compute a calibration curve fit, the data are fit to a polynomial using a least squares 
analysis (spreadsheet programs have this capability). An acceptable first order curve fit of the 
form 

o 1 yx
y a a x tS= + ± is found to be:  

 
E [mV] = -0.0219 + 0.0416T[oC] ±  0.086 mV  (95%) with t4,95 = 2.770 and Syx = 0.031mV 
 
This curve has a static sensitivity of  0.0416mV/oC. It corresponds to the curve:  
 
T[oC] = 0.540 + 24.03E[mV] ±  2.08oC (95%) with Syx = 0.75oC 
 
which has a static sensitivity of 24.03oC/mV. We see that a very small change in voltage 
corresponds to a large change in temperature! This is typical of thermocouples.   
 
b.) From the problem statement, we can identify two errors from the calibration source:  
             B1 = 0.05oC  
             B2 = 5oC/m x 0.010m = 0.05oC  
Each value of independent variable is measured once and the results combined to form the  
curve fit in part a. Voltage measurement system systematic errors are not indicated  
but will be present in the measured data. Lacking other information, we will make the 
assumption that these errors are of the magnitude of the resolution of the instrument, so that 
we set:  
            B3 = 0.001mV = 0.024oC 
 (Note: from experience or manufacturer specifications, we might change this value up or 
down – but we leave as is here).  
 
Random errors in the measurement system are presumed included in the calibration curve.  
The random error in the calibration curve is estimated as  

P4 = Syx = 0.75oC  with ν= 4.  
So,  

[ ]
1/ 2 1/ 22 2 2 2 2 2 o

1 2 3
B B B B 0.05 0.05 0.024 0.075 C = + + = + + =     

 P = 0.75OC     ν = 4  

 
1/ 22 2( ) = ± + Tu B tP = [ ]1/ 22 2 o0.075 (2.77*0.75) 2.08 C± + = ±  (95%)  

Here the data scatter on the curve fit has the greatest effect on the uncertainty. In practice, 
systematic errors can be more than an order of magnitude higher than used here. 



PROBLEM 5.31 
 
 
KNOWN:  P = E2/R  

      R 100≈ Ω         P ≈ 100 W   (nominal values) 
         Ohmmeter  
           Resolution:  1 Ω  
           Error:       1% reading  
         Voltmeter  
           Resolution:  1V  
           Error:       1% reading  
 
FIND:   uo and ud for power  
 
SOLUTION 
 
For a nominal power of 100 W, we get a nominal value for voltage: 

E PR (100 )(100W)= = Ω = 100 V 
 
Uncertainty in power is due to uncertainties in E and R: 

1/ 2 1/ 22 2 2 22

P E R E R2

P P 2E Eu u u u u
E R R R

   ∂ ∂ −       = ± + = ± +          ∂ ∂             
      (1) 

To find uncertainty at any order (e.g., uo or ud) , use the uncertainties at that order and 
evaluate (1) using E = 100 V and R 100= Ω .  
 
 Zero-order uncertainty  
       

E
o

u = ± 0.5V      
R

o
u 0.5= ± Ω  

so substituting these values into (1), 
op

u = ± 1.12 W       (95%) .  

 
Design-stage uncertainty  

            
1/ 2

2 2
d o c

u u u = +   

The estimates for uo are given above. The estimates for uc are  

E
d

u (100V)(.01)= ± = ±1V           
R

d
u (100 )(0.01) 1= ± Ω = ± Ω  

so, 
            

E
d

u = ± 1.12V  

            
R

d
u 1.12= ± Ω  

Substituting these values into (1):  
             

P
d

u 2.5W= ±    (95%)  

The uncertainty estimate becomes more accurate as each new piece of information is added. 



PROBLEM 5.32 
 
KNOWN:  P = 10, 1000, 10000 W  
                P = E2/R   or  P = IE  
                  Instrument specifications in Table  
 
FIND:   Design (select) a best method using uncertainty analysis  
 
SOLUTION  
 
This problem is open-ended and this solution is offered as a guide.  
Suppose we fix E = 100V. This determines R and I for analysis. With the information 
available, a design-stage analysis is possible.  
 
For P=f(E,R): 

1/ 2 1/ 22 2 2 22

P E R E R2

P P 2E Eu u u u u
E R R R

   ∂ ∂ −       = ± + = ± +          ∂ ∂             
 

or in terms of fractional percent, the relative uncertainty is (divide through by  P=E2/R ) 

( ) ( )
1/ 22 2

P E R
u / P 2u / E u / R = ± +  

   (1) 

For P=f(I,E) 

( ) ( )
1/ 22 2 1/ 22 2

P E I E I
P Pu u u Iu Eu
E I

 ∂ ∂     = ± + = ± +      ∂ ∂       
 

or, the relative uncertainty (divide through by P = EI) 

( ) ( )
1/ 22 2

P E I
u / P u / E u / I = ± +  

   (2) 

At the design stage: 
1/ 2

2 2
d o c

u u u = +   

    
dE

u = [0.52 + (0.005 x E)2]1/2  voltage 

    
dA

u = [0.252 + (0.01 x A)2]1/2  current  (3) 

    
dR

u = [0.52 + (0.005 x R)2]1/2  resistance 

 
    Method 1:   Solve for P = E2/R , equation (3)  and then equation (1)  
                P          E            R         uP /P  
      [W]        [V]         [Ω ]        [%]  
      10         100         1000        1.5  
     100       100           10          2.9  
    1000      100            1          50.0  
 
     
 



Method 2:   Solve for P = EI , equation (3) and then equation (2) 
      P          E             I            uP/P  
     [W]        [V]         [A]        [%]  
     10         100           0.1        250  
    100        100         10            2.8  
   1000       100        100           1.3  
 
Method 1 is better at low power levels while method 2 is better at high levels.  
 
COMMENT  
 
Different values of E will produce different results. A broader look of this problem would 
vary E and optimize to determine a basis for preferred operating conditions (in E, R, and I).  



PROBLEM 5.33 
 
KNOWN:  Composite material is function of cure temperature, σ  = f(T).  
                  Possible cure temperature range: 20oC to 60oC  
               Oven controllability to be tested at 30oC:  
                     Oven divided into quadrants: j = 1 to J  
                     N measurements taken in each quadrant: i = 1 to N  
                     M replications to be made of entire test: m = 1 to M  
                        Method 1: N = 5,  M = 5,  J = 4    i.e.  JxNxM = 100  
                        Method 2: N = 25, M = 1,  J = 4    i.e.  JxNxM = 100  
 
FIND:   If uncertainty in the oven test temperature is to be estimated, discuss  
             information obtained by the two different methods.  
 
ASSUMPTIONS:  In order to simplify the solution we assume that sensor installation effects 
and measurement system operating conditions are properly controlled. We also neglect data 
reduction errors. In both cases the effects will be the same for either method.  
 
SOLUTION 
 
Open-ended problem. This is an excellent problem for an instructor-directed group 
discussion. 
 
Our goal is to estimate the uncertainty associated with the σ  (T) test due to controllability of 
the independent variable, T. This test is really one of oven performance. By setting the oven 
to one representative condition, we can estimate typical oven performance at other 
temperatures through a single measurement analysis.  
    At any set temperature:  
    (i) By dividing the oven into quadrants and determining the mean quadrant temperature, 
we obtain information concerning the typical oven spatial variation in temperature.  
   (ii) By repetition, we obtain information about the typical oven temporal variation in 
temperature.  
  (iii) By replication, we obtain information about our ability to repeat the exact conditions on 
subsequent attempts (obviously, variations in the actual achieved oven temperature, despite 
the fact that the oven controls are seemingly reset exactly the same on each replication, 
affects strength).  
    Define:  
    u1: temporal variation effect on mean oven temperature  
    u2: spatial variation effect on mean oven temperature  
    u3: set controllability (repeatability) of the mean oven temperature  
    uc: instrument error associated with the measuring equipment  
 
Mean temperature of any quadrant on any replication:  

 
N

jm ijm
i 1

1T T
N =

= ∑  

Grand pooled mean temperature:  



 
M

m
m 1

1T T
M =

= ∑  

 
Pooled mean oven temperature on any replication:  

 
J

m jm
j 1

1T T
J =

= ∑  

Spatial temperature variation on any replication:  

 ( )
1/ 2

J 4 2

T jm mm j 1

1S T T
J 1

=

=

 
= − 

−  
∑  

Temporal temperature variation on any replication:  

 ( )
1/ 2

J 4 N 2

T ijm mm j 1 i 1

1S T T
J(N 1)

=

= =

 
= − 

−  
∑∑  

Set controllability of mean temperature:  

 ( )
1/ 22M

mT m 1

1S T T
M 1 =

 
= − − 

∑  

The Nth order uncertainty is found from 

    
1/ 2

2 2 2 2
N 1 2 3 c

u u u u u = ± + + +          (P%)  

 
Method 1:                        Method 2:  
 

1 Tm
u t S / JN=    

1 Tm
u t S / JN=  

 

2 Tm
u tS / J=                           

2 Tm
u tS / J=  

3 T
u t S / M=                       u3 = information not available without replication  

 
Without replication we will have no information on our ability to control the oven set 
temperature. This will be an important omission if we intend to use the oven for batch 
production.  
 
COMMENT  
There may be other options as to how to approach this problem and the above analysis 
presents but one approach. One alternative performs a multiple measurement analysis to 
estimate our ability to control the oven at 30oC. Using,  

    P1 = 
Tm

S / JN  ;   P2 = 
Tm

S / J  ;   P3 = 
T

S / M  ;   B4 = uc    

we obtain a similar result.  



PROBLEM 5.34 
 
 
KNOWN:  N1 = 50  
                  x = 2.112 V  
                   S1= 0.387  
                   CI ≤ 0.10  at 95%  
 
FIND:   NT  
 
SOLUTION  
 
The confidence interval is a two sided interval given by 
 
           CI = 1/ 2tS / N±  
 
For a CI = 0.10, if  d = CI/2 = 1/ 2tS / N , then d = 0.05. Evaluate an NT based on the 
available S1. Then,  
 

2 2
T N 1,95 1

N (t S / d) 0.387 / 0.05)
−

≈ ×  = 242  



PROBLEM 5.35 
 
 
KNOWN:  N = 10 measurements made at M = 4 locations  
                 Micrometer:  Resolution:  0.001 in.; Accuracy: < 0.001 in.  
 
FIND:   D'  
 
ASSUMPTIONS:  We will restrict the solution to errors due to data acquisition sources.  
 
SOLUTION  
 
    A pooled estimate of the diameter of the shaft is given by  
 

         4.494 4.499 4.511 4.522D '
4

+ + +
= =  4.506 in. 

 
with standard deviation  
 

          
2 2 2 2

D
0.006 0.009 0.01 0.003S

4
+ + +

=  = 0.0075 in.  

 
We can recognize elemental errors due to instrument error and due to spatial variations 
effects on the computed mean value and procedural variation errors which bring about data 
scatter at each cross section. Instrument errors will be treated as a systematic error,  
 
           B1 = uc = 0.001 in.  
 
This value reflects the manufacturer accuracy statement. The procedural variations bring on a 
random error in each measured mean value as estimated by  
 
            P2 = 

D
S = <SD>/(MN)1/2= 0.0012 in.  

 
with degrees of freedom, ν  = M(Nj - 1). The spatial error arises because the diameter is not 
uniform along its length such that the mean values vary. This spatial error affects the pooled 
mean value and is estimated by  

            

1/ 2
M 4

j
D

m 1

(D D
S

M 1

=

=

 −
 =

− 
 
∑ = 0.0126 in. 

 
            P3 = 

D
S = SD/M1/2 = 0.006 in.  

 



Collecting random errors,  
 
            P = [P2

2 + P3
2]1/2 = 0.006 in.  

 
with degrees of freedom from the Welch-Sattertwaite approach 
 

            
2 2 2

4 4D
(0.001 0.006 ) 30.001 0.006

36 3

+
ν = ≈

+
  

 
The uncertainty estimate can be given by  
 
     uD = [B2 + (t3,95P)2]1/2= [.0012 + (3.182 x 0.006)2]1/2 
 
           D' = 4.506 ±  0.019 in.  (95%)  
 
 
COMMENT 
 
Some observations on how the Welch-Sattertwaite formula weights the degrees of freedom: 

- in cases where one degree of freedom is substantially less than another while the 
random errors are of the same order of magnitude, that smaller degree of freedom 
dominates  

in cases where one random error is substantially greater than the other while the degrees of 
freedom are either small but not too different or all are large ( >30), the larger random error 

value dominates.



PROBLEM 5.36 
 
KNOWN:  Pressure is measured using a dial gauge.  
         p = 50 psi    Sp = 2 psi   M = 30   N = 1  
         Dial gauge:  
            Resolution:  0.1 psi  
            Accuracy:    within 0.5 psi  
 
FIND:   Estimate the uncertainty in vessel pressure.  
 
SOLUTION  
 
During a process the pressure is known to vary due to the set point of the compressor. 
Pressure will be set at p and readings are to be taken. We are asked to estimate the 
uncertainty in the set pressure at any measurement. We do this by running a trial set of data 
for pressure set point versus actual process pressure: 
 
Single measurement analysis:  From the manufacturer statement, we set  
        uc = 0.5 psi  
The variations in vessel pressure upon each replication are estimated by  
        Sp = 2 psi  
such that,  
         u1 = t29,95Sp=  (2.047)(2) = 4.1 psi   
So if during a test we set the vessel pressure, then the uncertainty in the process pressure 
during any one measurement is  

 uN = [ ]1/ 22 20.5 4.1± + = ± 4.1 psi  (95%) 
 
COMMENT 
 
On 30 trials, we found a standard deviation in the set point to be 2 psi. The uncertainty in the 
set point during any one trial should be about twice this number for 95% probability. Notice 
how this is quite different then trying to determine the average set point over 30 trials (which 
works out to be only 0.9 psi at 95% - see below). This is an example of the advanced stage 
analysis applied to access uncertainty in a single trial (sample). 
 
The uncertainty in the actual mean set point is: 
 
 u1 = t29,95Sp/M1/2 =  (2.047)(2)/301/2 = 0.75 psi   
 
            uN = [ ]1/ 22 20.5 0.75± + = 0.91  psi   (95%)  
 
 



PROBLEM 5.37 
 
 
KNOWN: Transducer, readout specifications.  
                 M = 4 replications with N = 10 repetitions each.  
 
FIND:  xx u±  
SOLUTION  
 
   From the data, the pooled mean: x = (4.3 + 3.8 + 4.2 + 4.0)/4 = 4.08  
 
   At the design-stage, only information known prior to the test are included:  
 
For the transducer, we estimate the instrument error from the elemental errors:  
    eL = ±  (0.0025)(4m) = 0.01 m  
    eR = ±  (0.0025)(4m) = 0.01 m  
    eK = ±  (0.001)(5m) = 0.005 m  
    ez = ±  (0.005/oC)(3oC)(5m) = 0.0075 m  
so that,  
    ct

u = (.012 + .012 + .0052 + .00752)1/2 = 0.0167 m  

 
The transducer has a sensitivity Kt = 1V/m so that the voltmeter output can be restated in 
terms of displacement [m].  
 
For the voltmeter:  
  cE

u = {[(0.001)(4m)(1m/V)]2 + [(5µ V)(1m/V)]2}1/2 =  0.004 m  

 
For the transducer-voltmeter system, the design-stage uncertainty is:  
 du = ±  (.0042 + .01672)1/2 = ± 0.017 m    (95%)  
 
We can use this information for the multiple-measurement analysis where we assign 
instrument errors:  
     B1 = ct

u =0.0167 m          B2 =  cE
u =  0.004 m  

The uncertainty in the applied input estimates the control of the input forcing function. 
Assuming F = kx, then K = (2000 N)/(4 m) = 500 N/m. Hence, we assign:  

    B3 = 
1/ 22

F
x u
F

 ∂ 
  ∂   

 =  0.2 m  

The temporal or repetition error in the mean values is estimated from the given deviations:  
 



   P4 = [(S1
2 + S2

2 + S3
2 + S4

2)/4]1/2/(MN)1/2 = 0.04 m  with 4ν  = 36  
 
The temporal error or replication error in the overall pooled mean is:  
 

  
1/ 24

2
5

1
( ) /( 1)j

m
P x x M

=

 
= − − 
 
∑ 0.11 m  with  5ν  = 4  

 
22 2

4 4

0.04 0.11

0.04 0.11
36 4

ν
 + =

+
= 4  

with t4,95 = 2.770. Then, for the measurement:  
 
    B =  (.01672 + .0042 + .22)1/2 = 0.2 m  
 
So, the ability to control the applied force dominates the systematic error.  
 
   P = (.112 + .042)1/2 = 0.12 m  
 
Then,   ux = ±  (.22 + [(2.770)(.12)]2)1/2 = ±  0.39 m  (95%)  
 
Hence,    x' = xx u±  = 4.08 ±  0.39 m  (95%)  
 



PROBLEM 5.38 
 
 
KNOWN: First-order system:  
                uΓ/Γ = ±  0.02  (95%)  
                ut/t = ±  0.01 (95%)  
 
FIND: /uτ τ  
ASSUMPTION: ( , )f tτ = Γ with no other influences.  
 
SOLUTION  
 
    /te τ−Γ =  
Rearranging,  / lntτ = − Γ  

   
1/ 21/ 2

2 2 2 2
2( ) ( ) ( ) ( )

ln (ln )
t

t

u u
u u u

tτ
τ τ Γ

Γ

 ∂ ∂ = ± + = ± +  ∂ ∂Γ Γ Γ Γ   
 

  in relative terms, 

   
1/ 2

2 2/ ( ) ( )
(ln )

tu u
u

tτ τ Γ 
= ± + Γ Γ 

 

 
 Γ            /uτ τ  
  .1          0.013  
  .5          0.031  
  .8          0.090  
  .9          0.190  
 1.0          ∞    
 



PROBLEM 5.39 
 
 
KNOWN: Transducer, readout specifications.  
                 M = 3 replications with N = 20 repetitions each.  
 
FIND:  

T
T u±  

SOLUTION  
 
   From the data, T = (181.0 + 183.1 + 182.1)/3 = 182.1 oC  
 
From the problem statement, we can assign  
    B1 = e1 = 1 oC   measuring system error  
    B2 = e2 =  1.2 oC installation error  
 
The temporal or repetition error in the mean values is estimated from the variations in the 
data sets:  
 
   P3 = [(S1

2+ S1
2 + S3

2)/3]1/2 /(MN)1/2 = 0.38 oC  with 
3
ν = M(Nm-1) = 57  

 
The temporal error or replication error in the overall pooled mean is:  
 

  P4 = 
1/ 23

2 1/ 2
m

m 1
(T T ) / M

=

 
− 

 
∑  = 0.61 m  with  

4
ν = (M-1) = 2  

Then, for the measurement:  
 
   B = (12 + 1.22)1/2= 1.56 oC  
 
   P =  (.382+ .612)1/2= 0.72 oC  
with, using the Welch-Satterthwate estimate, 

3 4
f ( , )ν = ν ν = 3.8 ≈  4  

and t4,95 = 2.770. Then,    
uT = ± (1.562 + [(2.770)(.72)]2)1/2 = ±  2.5 oC  (95%)  

 
Hence,    T' = o

T
T u 182.1 2.5 C± = ±   (95%)  



PROBLEM 5.40 
 
 
SOLUTION  
 
Exact answers will depend on user experience and specific instruments user has experience 
with. As a class exercise, it would be interesting to discuss why different people chose their 
numbers.  
 
As a guide:  
 
bathroom scale:  
    spring scale: ± 5 to 10 N  
    balance beam scale: ± 1 N  
 
plastic ruler: to within its resolution  
 
micrometer: to within its resolution  
 
kitchen thermometer: ±  1 oC  
 
speedometer: ±  4% reading   (in USA this is by law)  



PROBLEM 5.41 
 
 
KNOWN: Air @ T = 25±  2 oC   (95%)  
                 up/p = 0.01   (95%)  
 
FIND:  /uρ ρ  
ASSUMPTIONS: Ideal gas  p = ρ RT. Neglect uncertainty in gas constant R.  
 
SOLUTION  
 
     ( , )f p Tρ =  
 

 
1/ 22 2/ ( / ) ( / )p Tu u p u Tρ ρ  = +   

A change in 1 oC equals a change of 1 K. So we can rewrite temperature as 
 
   T = (25 + 273) ±  2 K = 298 ±  2 K    (95%) 
 

   
1/ 22 2/ (0.01) (2 / 298 ) 0.012u K Kρ ρ  = + = ±    or  ± 1.2%  (95%)  



PROBLEM 5.42 
 
 
KNOWN: Air at T = 25oC with uT =± 1 oC (95%) 
                 /uρ ρ = ±  0.005  
FIND: up/p  
 
ASSUMPTIONS: Ideal gas p = ρ RT. Neglect uncertainty in gas constant, R.  
 
SOLUTION  
 

    
1/ 22 2/ ( / ) ( / )p Tu p u u Tρ ρ = ± +   

 
 
A change in 1 oC equals a change of 1 K. So, T = 298 ± 1 K (95%). Subbing terms, 
 

  
1/ 22 2/ (0.005) (1 / 298 ) 0.0037pu p K K = ± + = ±   or ± 3.7%   (95%)  



PROBLEM 4.43 
 
 
KNOWN: T = e-KEW   and 0 1T≤ ≤  
                 E = 2 ±  0.04 (95%)   
                 uT/T = ± 0.01  (95%)  
                 uW/W = ± 0.01  (95%)  
 
FIND:  Is / 0.05?Ku K ≤  0.10? 
 
SOLUTION  
 
The solids density is found by  
 
    K = - (ln T)/EW  
 
so that,  
 

   
1/ 22 2 2/ ( / ln ) ( / ) ( / )K T E Wu K u T T u E u W = ± + +   

 

 
1/ 22 2 2(0.01/ ln ) (0.04 / 2) (0.01)T = ± + +   

Then for values of transmission factor, T : 
 
 T       uK/K  
 
 .5     0.027  
 .8     0.05  
 .9     0.0975  
 1.       ∞  
 
So uK/K 
approaches 5% at 
T = 0.8 and 10% 
at T = 0.9.  
 
 
 
We see that 

/Ku K →∞  as 1T → . 

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

T

u K
/K



PROBLEM 5.44 
 
 
KNOWN: First-order system:  
                uΓ/Γ = ±  0.02  (95%)  
                ut/t = ±  0.005 (95%)  
 
FIND: /uτ τ  
ASSUMPTION: ( , )f tτ = Γ with no other influences.  
 
SOLUTION  
 
    /te τ−Γ =  
Rearranging,  / lntτ = − Γ  

   
1/ 21/ 2

2 2 2 2
2( ) ( ) ( ) ( )

ln (ln )
t

t

u u
u u u

tτ
τ τ Γ

Γ

 ∂ ∂ = ± + = ± +  ∂ ∂Γ Γ Γ Γ   
 

  in relative terms, 

   
1/ 2

2 2/ ( ) ( )
(ln )

tu u
u

tτ τ Γ 
= ± + Γ Γ 

 

1/ 2
2 20.02(0.005) ( )

ln
 = ± + Γ 

 

 
  Γ            /uτ τ  
  .1          0.010  
  .5          0.029  
  .8          0.090  
  .9          0.190  
 1.0          ∞    
 
Because τ  approaches steady state asymptotically as Γ  goes to 1, this behavior  
is to be expected.  
 
 
 



PROBLEM 5.45 
 
KNOWN: acceleration, a = f(L,s,t1,t2) 

      L = 5.0± 0.5 cm  s = 100.0 ±  0.2 cm 
       t1 = 0.054 ± 0.001s t2 = 0.031± 0.001s 
       all uncertainties stated at 95% confidence 
 
FIND: ua 
 
SOLUTION 
 
We know that 

2

2 2
2 1

1 1( )
2
La

s t t
= −  

Applying the nominal values into the equation gives,  
2

2 2
2 1

5 1 1( )
2 100 0.031 0.054

a = − =
×

87.21 cm/s2 

And 
1 2

( , , , )a L s t tu f u u u u= . Expanding, 

1 2

1/ 2
2 2 2 2

1 2

( ) ( ) ( ) ( )a L s t t
a a a au u u u u
L s t t

 ∂ ∂ ∂ ∂
= ± + + + 

∂ ∂ ∂ ∂  
 

where 

2 2
2 1

2 1 1( )
2

a L
L s t t
∂

= −
∂

  
2

2 2 2
2 1

1 1( )a L
s s t t
∂

= −
∂

 

2

3
2 2

2( )
2

a L
t s t
∂

=
∂

   
2

3
1 1

2( )
2

a L
t s t
∂

= −
∂

 

 

2 2
5 1 1( )(0.05)

100 0.031 0.054L
a u
L
∂

= −
∂

  
1

2

3
1

5 2( )(0.001)
200 0.054t

a u
t
∂

= −
∂

 

2

2 2 2
5 1 1( )(0.2)

100 0.031 0.054s
a u
s
∂

= −
∂

  
2

2

3
2

5 2( )(0.001)
200 0.031t

a u
t
∂

=
∂

 

 
2 2 2 2 1/ 2(1.744 1.744 1.587 8.392 ) 8.89au = ± + + + = ± cm/s2 

 
and so the acceleration is best estimated as  
 

a = 87.21± 8.89 cm/s2    (95%)    or   ua/a is about 10.2% 
 
 
 



As a concomitant check, we can estimate acceleration from a = gsinα . Note that if α  is 
measured, then acceleration a is easily anticipated. Of course, such an estimate neglects 
errors due to systematic effects, such as friction. But friction effects are built into the first 
estimate and the differences will reflect the magnitude of this systematic error. With  
g = 9.806 m/s2 = 980.6 cm/s2

, we assign an uncertainty of ug = ± 0.1 cm/s2 to this 
gravitational constant (equal to its roundoff error).  
 
For example, for an angle α =30. Then with,  

1/ 22 2( sin ) ( cos )a gu u guαα α = +   

For ua≤   8.89 cm/s2 , we need  0.6ouα ≤ (=0.01047 rad).  
 
As α  increases, the uncertainty becomes less sensitive to the angle measurement and more 
sensitive to gravity. Note that as 90oα → , 

 
1/ 22 2( sin ) (0)a g gu u uα = + →   

and the uncertainty in acceleration becomes independent of the uncertainty in α . 
 



PROBLEM 5.46 
 
KNOWN:   

Measured data relating golf ball carry distance to launch angle and initial 
velocity 

 
FIND:   

Uncertainty in carry distance, D, as determined from initial velocity, Vo and 
launch angle, φ 

 
SOLUTION: 

 
The uncertainty in distance is determined from 
 

22









∂
∂

+







∂
∂

= φφ
uDu

V
Du

oV
o

D  

with the partial derivatives approximated numerically from measured data. The units of angle 
used are in the equations is radians. 
   
Initial 
Velocity 
(MPH) 

Launch Angle 
(degrees) 

Carry Distance 
(yds) 

oV
D

∂
∂

 
φ∂
∂D

 uD 

165.5 8 254.6 1.48 1.8 1.49 
167.8 8 258.0 1.55 1.8 1.55 
170 8 261.4 1.55 1.7 1.56 

172.2 8 264.8 1.55 1.6 1.56 
165.5 10 258.2 1.48 1.2 1.49 
167.8 10 261.6 1.41 1.0 1.42 
170 10 264.7 1.45 1.0 1.45 

172.2 10 267.9 1.45 1.0 1.45 
165.5 12 260.6 1.48 1.0 1.48 
167.8 12 263.7 1.41 1.0 1.41 
170 12 266.8 1.45 1.0 1.45 

172.2 12 269.8 1.45 1.0 1.45 
 

So a single value of uncertainty, approximately 1.5 yds (1.37 m), can be used to quantify the 
effects of errors in the measurement of Vo and φ .  Note that the only significant contribution 
to uncertainty results from uncertainty in the initial velocity. 



PROBLEM 5.47 
 
KNOWN:   

Measured data relating pressure drop and volumetric flow rate 
 
FIND:   

Required uncertainty in pressure drop to yield a 0.25% uncertainty in 
volumetric flow rate  

 
ASSUMPTION:  

For this problem, assume that the only errors enter in the measurement of 
pressure drop. In practice, errors related to dimensions and hydraulic 
coefficients will add additional errors. 

 
SOLUTION: 
 
The uncertainty in flow rate is 
 

2/12

PQ u
P

Qu


















∆∂
∂

= ∆   or  in relative terms we can reduce this to 
P

u

Q

u
PQ

∆
= ∆  

 
Q (m3/min) ∆P (Pa) 310×

∆∂
∂

P
Q  

Required  
Pu∆  (Pa) 

10 1000 3.06 ± 2.5 
20 4271 2.16 ± 10.7 
30 8900 1.4 ± 22.3 
40 16023 1.2 ± 40.0 

 
Note that the required value of uncertainty in pressure drop is 0.25%. 
 
COMMENT:  The accuracy of pressure transducers is often reported as a percentage 
of the full scale reading.  To achieve the requirement of ± 2.5 Pa for a transducer 
having a full scale reading of 20,000 Pa (3 psi) would require an uncertainty of ± 
2.5/20,000 or 0.0125%.  It is not likely that a single transducer could yield the desired 
accuracy over the range of pressures required in the present problem. 



PROBLEM 5.48 
 

This problem is open-ended and developed by the user. Classroom/lab instructors will want 
to use this problem as a basis for round-table discussions. 
 
 
 
 
 
 

PROBLEM 5.49 
 

This problem is open-ended and developed by the user. Classroom/lab instructors will want 
to use this problem as a basis for round-table discussions. 



 
PROBLEM 5.50 

 
KNOWN:  3( / 2) / ( / 2) /( /12)FL t I FL t wtσ = =  
        L = 100 mm = 0.1 m F = 980N 
        t = 0.01m   w = 0.03 m 
 
FIND: maximum stress 
 
SOLUTION 
 

The best estimate for maximum stress is determined using the working values for each 
variable. Plugging in the known values, 
 

3 6( / 2) /( /12) 196 10 196FL t wt Pa MPaσ σ= = = × =  
 
where I = 3 9 4 4/12 2.5 10 2500wt m mm−= × =  
 
All uncertainties can be treated as systematic errors. There are no statistics to compute 
random errors (so Pσ =0). Then, the systematic errors in length are taken as ½ the ruler 
increment: 
 
BL = uL =  0.5 mm = 0.0005m 
Bt = ut = 0.5 mm = 0.0005 m 
Bw = uw = 0.5 mm = 0.0005 m 
BF = uF = 10N 
 

1/ 21/ 2 2 22 2 3 2
11 4 45.89 10 58.9

12 36I w t w t
I I t wtB B B B B m mm
w t

−
      ∂ ∂     = + = + = × =        ∂ ∂             

 

1/ 22 2 2 2

F L t IB B B B B
F L t Iσ
σ σ σ σ ∂ ∂ ∂ ∂       = + + +        ∂ ∂ ∂ ∂         

 

      
1/ 22 2 2 2

2 14,739,060
2 2 2 2F L t I
Lt Ft FL FLtB B B B Pa
I I I I

 −       = + + + =        
         

 

so, 
1/ 22 2( )u B tP Bσ σ σ σ

 = + =  = 14.74 MPa 

 
196.0 14.74σ = ± MPa     (95%)      or the uncertainty is about 7.5% of the maximum stress. 



PROBLEM 5.51 
 
KNOWN: 

1 2
Q f (T ,T )=  

        o
1

T 180 C=  o
2

T 90 C=   

        o
T T1 2

B B 0.2 C= =  

        o
T T1 2

S S 0.1 C= =  

 
FIND: 

Q
u


assuming (1) totally correlated and (2) totally uncorrelated errors 

ASSUMPTION: Large sample size 
 
SOLUTION 
 
Based on the measured mean values, the mean value of the result in heat transfer rate is 

 
1 2

Q 5(T T ) 5(180 90C) 450kJ / s= − = − =  

Now, 
T TQ 1 2

u f (u ,u )=


 

where 
1/ 2

2 2
Q Q Q

u B (tP ) = +    
with t95 ~ 2 (value is consistent with large sample size and 

engineering practice – e.g., see PTC 19.1). 
 
The standard random uncertainty is estimated by 
 

 

1/ 22 2 1/ 22 2

T T T TQ 1 2 1 2
1 2

Q QP P P 5P 5P 0.71kJ / s
T T

      ∂ ∂        = + = + − =        ∂ ∂           


 
 

where 
T T1 1

P S= and 
T T2 2

P S= . 

For totally uncorrelated systematic errors, the systematic errors are independent of each 
other: 

 

1/ 22 2 1/ 22 2

T T T TQ 1 2 1 2uncor 1 2

Q QB B B 5B 5B 1.41kJ / s
T T

      ∂ ∂        = + = + − =        ∂ ∂           


 
 

 
For correlated errors, the errors will move in the same direction (high or low) and are 
corrected from the uncorrelated estimate, 



 

1/ 22 2

T T T TQ 1 2 1 2cor 1 2 1 2

Q Q Q QB B B 2 B B
T T T T

       ∂ ∂ ∂ ∂       = + +       ∂ ∂ ∂ ∂        


   

 

           ( ) ( )
1/ 22 2

5 0.2 5 0.2 2(5)( 5)(.2)(.2) = × + − × + − =  
 0 kJ/s 

 
So, 
 

 
1/ 2

2 2
Q Q Q

u B (tP ) = +    
=

1/ 2
2 2

Q Q
B (2P ) +   

 

 
 

Quncor
u


= 2 kJ/s such that  Q 450 2kJ / s= ±   (95%) 

 
 

Qcor
u


= 1.4 kJ/s such that  Q 450 1.4kJ / s= ±  (95%) 

 
COMMENT 
 
The errors could be uncorrelated if (1) the different thermocouples came from different 
batches or manufacturers, or (2) the thermocouples were calibrated against different 
standards or methods. A portion of the uncorrelated error could come the use of different 
measuring devices, which themselves were calibrated against different standards. If so, it is 
possible to assign an uncorrelated portion and a correlated portion of the systematic error and 
proceed as above. 
 
On the other hand, if the thermocouples came from the same spool of wire (fairly common) 
and/or were calibrated against the same standard, the errors are correlated. 



PROBLEM 5.52 
 
KNOWN: R = p2/p1 
  

2
p  = 54.7 MPa 

1
p = 42.0 MPa 

  
p p2 1

B B= =0.50 MPa 

FIND:  Compare results if errors are (1) uncorrelated and (2) correlated 
 
SOLUTION 
 
For values given: 
 

2 1
R p / p= = 54.7/42.0 = 1.30 

 
1/ 22 2 1/ 22 2

R p p p p p puncor 1 2 1 1 2 2
1 2

R RB B B B B
p p

      ∂ ∂        = + = θ + θ        ∂ ∂           

 

where 2
p 21

1

p
p
−

θ =  = 0.031 and 
p2

1

1
p

θ =  = 0.025, and 

1/ 22 2

R p p p pcor 1 2 1 2
1 2 1 2

R R R RB B B 2 B B
p p p p

       ∂ ∂ ∂ ∂       = + +       ∂ ∂ ∂ ∂        
 

=
1/ 22 2

p p p p p p p p1 1 2 2 1 2 1 2
B B 2 B B

       θ + θ + θ θ       
        

 

So,  
 
R = 1.30 ± B   (95%)   where 
 

if B = ( ) ( )
1/ 22 2

Runcor
B 0.031 0.5MPa 0.024 0.5MPa = × + ×  

= 0.020 MPa 

but 

if B = ( ) ( )
1/ 22 2

Rcor
B 0.031 0.5MPa 0.024 0.5MPa 2( 0.031)(0.024)(0.5)(0.5) = × + × + −  

 

          = 0.0035 MPa 
 
The effect of having correlated errors nearly cancels out the effects of the individual 
systematic errors.  
 
The functional relationship can have an impact on whether correlated errors have an effect on 
the uncertainty. Here R = p2/p1 allows for a decrease. 



PROBLEM 5.53 
 
KNOWN:  m = 22kg Bm = 0.001 kg 
  V = 8 m/s BV = 0.27 m/s 
  KE 717= N-m SKE = 60.7 N-m with N = 24 
 
FIND:  uKE @ 68%  and uKE @ 95% 
 
SOLUTION 
 
The confidence level in the uncertainty affects the value reported but not the fundamental 
methods used to assess uncertainty. The “expanded” uncertainty (term used in PTC 19.1 – 
2005) is the uncertainty at 95%, 

1/ 2
2 2

KE 95
u B (t P) = +    (95%) 

 
while the combined standard uncertainty is the uncertainty at 68%. 
 

1/ 22 2
KE

u (B / 2) (P) = +     (68%) 
 
So find B and P: 
 
Beginning with KE = ½ mV2

,  

 
1/ 22 2

KE m V
KE KEB B B
m V

    ∂ ∂ = +   ∂ ∂     
= ( ) ( )

1/ 222
2

m V
V B / 2 mVB 

+ 
 

 

        1/ 22 20.0032 47.5 = +  = 47.5 N-m 
 
 

KE KEKE
P S S / N 60.7N m / 24= = = − =12.4 N-m   

with 23ν = . Then, t23,95 = 2.06 ~ 2 
 
So, we can correctly state at either confidence level: 
 

 
1/ 22 2

KE
u 47.5 (2 12.4) = + ×  = 53.5 N-m   (95%) 

 

 
1/ 22 2

KE
u (47.5 / 2) (12.4) = +   = 26.8 N-m (68%) 



PROBLEM 5.54 
 

 
KNOWN: σmax = Ktσo ; σo = F/A ; A = (w – d)t 
 
FIND: Uncertainty in σmax 

 
ASSUMPTION: Uncertainty in Kt is negligible 
 
SOLUTION:   
 
 

Develop an expression for σmax in terms of its known variables: 

 

 
where d = 0.5w ;  Kt = 2.2 ; F = 10,000 N;  w = 1.5 cm = 0.15 m ; t = 0.5 cm = 0.005 m 
and uw = 0.02 cm = 0.0002 m ; uF = 500 N; ud = 0.5uw 

 
so putting it all together,  
 

uσmax = 26.7 x 107 ± 44.3 x 106 N/m2     (95%) 
 
 
 
 
 

d)t(w
FKσ tmax −

=

2/12max2max2max2max
max ])()()()[( Ftdw u
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u
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u
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∂
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∂
+

∂

∂
+

∂

∂
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9
2
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d)t(w

K
F

σ

117.3x10
d)t(w
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σ
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d)t(w
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d
σ

7.82x10
d)t(w
FK

w
σ

=
−

=
∂

∂

=
−

−=
∂

∂

=
−

=
∂

∂

=
−

−=
∂

∂

2626262626
σmax N/m 44.3x10])(29.3x10)(23.5x10)(17.6x10)[(15.6x10u =+++±=



PROBLEM 6.1 
 
 
KNOWN:  A current loop having  
 N = 20 
 A = 1 in2 = 0.000645 m2 

 I = 0.02 A 
B = 0.4 Wb/m2  

 
FIND:  Torque on the current loop, Tµ. 
 
ASSUMPTIONS:  The magnetic field is oriented at an angle of 90o to the current flow direction.  
 
SOLUTION: 
 
From (6.3)  

T NIABµ α= sin  
The maximum torque occurs when sin α = 1, which yields 
 

( ) ( ) ( )
max

2 220 0.02 A 0.000645 m 0.4 Wb/m

T NIABµ =

=
 

 
max 41.03 10  N-mTµ

−= ×  
 



PROBLEM 6.2 
 
 
KNOWN:  A voltage dividing circuit with R

T
 = 5000 Ω (as shown in Figure 6.16) 

  
FIND:  R

m
 such that the loading error is less than 12% of the full scale value. 

 
SOLUTION: Since the full-scale output is Ei (with e as the error) 
 

( )e
E

R R R R R
R

R R
R R R

R
i

T T
m

T
T

T
m

=
− + − +


 




+ −






 +

 




1 1
1

2

1

1

1

1
 

 
 
A plot of the error as a function of meter resistance and 1R  is shown below 

 

 
 
 
 

 

Rm/RT = 1 

Rm/RT = 2 

Rm/RT = 4 



PROBLEM 6.3 
 
 
KNOWN: 1 2 500 TR R R= + = Ω     10,000 mR = Ω  

        1        0.5       10 VT iR kR k E= = =   
FIND:   
a)  Loading error as a percentage of the output 
b)  Loading error as a percentage of the full scale output 
 
SOLUTION:   
The loading error may be defined as  
 

e E Eo o= ′ −  
 
and in terms of a percentage of the output 
 

′ −
=

′
−

E E
E

E
E

o o

o

o

o
1 

 
 
which yields, in terms of k 
 

( )
k

k
k

k
R
R

T

m
1

1
1 1+

−
+



















 −  

 
The loading error for this condition is 0.0125 or 1.25%. 
As a percentage of full-scale output, iE , 
 
 

( )

′ −
= −

+ − +










E E
E

k
k

k k
kR
R

o o

i T

m
1 1

 

 
 
which produces a value for loading error of 0.62%.  Since Eo is one-half of E

i
, the loading errors are each 0.062 

Volts. 

 



PROBLEM 6.4 
 
 
KNOWN:   
 R

3
 = R

4
 = 200 Ω 

 R
2
 = variable resistor 

 1 40 100 R x= + Ω  

FIND:   
a)  R

2
 to balance the bridge with x = 0 

b)  Find a general expression for 2( )x f R=  

 
ASSUMPTIONS: Zero Galvanometer error 

 
SOLUTION: At balanced conditions 

       
R
R

R
R

2

1

4

3
=     

 
Thus ( ) ( )2 21 100     and   100 R R= = Ω  
 
and in general   2 40 100 R x= + Ω . 
 

 



PROBLEM 6.5 
 
 
KNOWN:   
A Wheatstone bridge with 2

1 20R x=  (x is a measured variable)  

3 4 100 R R= = Ω  2 46 R = Ω   at balanced conditions 

 
FIND:  x 
 
SOLUTION: Since at balanced conditions 
 

 
R
R

R
R

2

1

4

3
1= =  

Thus 
46

20
1

46
20

1522x
x= = =            .  



PROBLEM 6.6 
 
 
KNOWN:  A sensor has a resistance of 500 Ω under conditions of no load, and a static sensitivity of 0.5 
Ω/N.  The bridge circuit has 
  

1 2 3 4 500 R R R R= = = = Ω      (initially) 

 
FIND:   a)  E

o
 for applied loads of 100, 200, and 350 N. 

         b)  I1 

c) Repeat parts (a) and (b) with  
 

 
10 k
500 

m

s

R
R

= Ω
= Ω

 

 
SOLUTION: For a bridge in which all resistances are initally equal 
 

( )
E
E

R
R
R

R

o

i
=

+

δ

δ4 2
 

and with a load of magnitude FL  

δR FL= 05.  
 

E
E

F
F

o

i

L

L
=

+








05 500

4 2
05
500

. /
.

 

 
 
This yields 
  FL [N]   δR [Ω]   Eo [V] 
      

  100   50   0.238 
  200   100   0.455 

  350   150   0.652 
 



The current flow through the sensor is I1 and for an infinite meter resistance is 

I
E

R R
i

1
1 2

=
+

 

which yields 
   FL[N]        R

1
+R

2
[ Ω  ]  I

1
 [Amps] 

   100   1050   0.00952 
   200   1100   0.00909 
   350   1150   0.00870 
c) Consider the circuit shown below, with values of  δR equal to those for part (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A circuit analysis of this bridge yields the following simultaneous equations governing the currents and 
potentials: 
 

 
( )1 1 2 2

1 1 3 3 4 4 2 20                0
i s s m

m m m m

E I R I R R I R
I R I R I R I R I R I R

= + + −

+ − = + − =
 

 
 3 4 1 30           m sI I I I I I+ − = = +  
 3 3 4 4         i s s o m mE I R I R I R E I R= + + =  
 
Solving these equations simultaneously yields 
  R1 [Ω]  Eo [V]   I1 [A]  

  550  0.104  0.0044 

  600  0.201  0.0042 

  650  0.291  0.0041 

Ei =10 V  600 Ω 

i2 i1 

i3 i4 

R1 R2 

R3 

Eo 

is 

 10 kΩ 

im 



PROBLEM 6.7 
 
 
KNOWN:  Bridge circuit of Figure 6.36 
  
FIND:  Show that 
 

( )1
2 1

2

RC C R=  

is the requirement for a balanced bridge. 
 
SOLUTION:  With impedances (for an AC circuit) 
 

1 1 2 2 3 4
1 2

1 1            Z     ZZ R Z R
j C j Cω ω

= = = =  

 
from  
 

3 1

3 4 1 2
o i

Z ZE E
Z Z Z Z
 

= − + + 
 

 
 
For this case 
 

1 1

2 2

1 1

1 1
o iE E C R

C R

 
 = − 
+ +  

 

 
which yields for 0oE =  

 

C C
R
R1 2

1

2
=









 



PROBLEM 6.8 
 
KNOWN:  A bridge circuit is to be used to calibrate a 500 Hz frequency source.  The bridge resonance 

frequency is f
LC

=
1

2π
 

  
FIND:  Bridge components L and C to yield a resonance frequency of 500 Hz. 
 
SOLUTION:  The product LC must be (1000π)2 and  

500
1

2
=

π LC
 

 which yields  
LC = ×9 87 106.  sec2  

 
Combinations of L and C which yield the appropriate resonance frequency are shown below.  
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PROBLEM 6.9 
 
KNOWN:  A Wheatstone bridge wth 
   R1 = 200 Ω  R2 = 400 Ω 

   R3 = 500 Ω  R4  = 600 Ω Ei = 5 V 
 
FIND:   a) Eo   
  b) Eo  for R1 = 250 Ω. 
 
ASSUMPTIONS:  The meter resistance Rg is infinite. 
 
SOLUTION: 
 
From (6.14) 

31

1 2 3 4

200 5005 0.606 V
200 400 500 600o i

RRE E
R R R R
   = − = − = −   + + + +  

 

 
or with R1 = 250 Ω 
 

250 5005 0 .35 V
250 400 500 600oE  = − =− + + 

 

 
COMMENT: Clearly the bridge output is non-linear with R1 over this range of values for R1. 
 



PROBLEM 6.10 
 
KNOWN:  A Wheatstone bridge having all resistances 500 Ω. 
 
FIND:  Plot the output voltage for : 
 a) R1 varies from 500 to 1000 Ω 
 b) R1 and R2 change equally and in opposite directions between 500 and 600 Ω 
 c) R1 and R3 change equally over the range 500 to 600 Ω  
 
SOLUTION:  The bridge output is given by 

 31

1 2 3 4
o i

RRE E
R R R R

 
= − + + 
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b) 

 
 
c)  Identically Zero! 
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PROBLEM 6.11 
 
KNOWN:  Potentiometer as shown in Figures 6.10 and 6.11.  
  
  

 
10 0.1 V       100 1 
100              reading 2%

i T

g x

E R
R R

= ± = ± Ω
= Ω = ±

 

Null condition has negligible error. 
 
FIND:   
 
Design stage uncertainty in a measured value of voltage at nominal values of 2 and 8 V. 
 
ASSUMPTIONS:   Loading errors should be included in the analysis. 
 
SOLUTION:  From 6.35  (see Figure 6.16) 
 

E
E R

R
R
R

o

i

g

=

+ +








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1

1 12
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Then at the design stage 
 

1
2 2

o i

o
E x

i

Eu u
x

∂
∂

  
 =  
   
∑  

 
For this case Eo = f(Ei, Rx, Rg, RT)  and RT = R1 + R2.  At 
 
 Eo = 2 V R1 = 23.6 Ω  R2 = 76.4 Ω 
 Eo = 8 V R1 = 88.3 Ω  R2 = 11.7 Ω 
 
The sensitivity indices may be evaluated as  
 

∂
∂
E
E

E
R
R

R
R

o

i

i

g

=

+ +








1 12

1

1

 

 

at 2 V 2o

i

E
E

∂
∂

= ,   and at 8 V 8o

i

E
E

∂
∂

=  



 

 

1
1

2
2 2 2

2 1

1

1
       at 2 V  0.021       at 8 V  0.137

1 1

i
go o o

g

RE R RE E E
R R RR R

R R

 − + ∂ ∂ ∂ = = =
∂ ∂ ∂  

+ +      

 

2 1 2
2

1 1

2
1 1 1

2 1

1

11

       at 2 V  0.055       at 8 V  0.00096

1 1

i
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2 1

1
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i
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R ERE E E
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The uncertainty in R2 is estimated as  

 
2 1 2 2

2 1
1

2 2 2      at 2 V 1.11      at 8 V  2.03 
T

T

R R R R R

R R R

u u u u u

= −

 = + = Ω = Ω 
 

 
At 2 V the uncertainty is estimated as  

 ( ) ( ) ( )
1

2 2 2 22 0.1 0.021 1.11 0.055 0.47

    0.203 V
oEu  = × + × + − × 
= ±

 

And at 8 V as 

( ) ( ) ( )
1

2 2 2 28 0.1 0.137 2.03 0.00096 1.8

    0.847 V
oEu  = × + × + × 
= ±

 

 



PROBLEM 6.12 
 
KNOWN:  Sinusoidal inputs having specific phase relations  
 
FIND:  Lissajous diagrams for the specific phase relations 
 
SOLUTION:  See Figures below.  

(a)  In Phase
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PROBLEM 6.13 
 

KNOWN:  sin i

a

y
y

φ =  

 
 
FIND:  Show that the phase relationships can be determined from a Lissajous diagram using the equation 
above. 
 
SOLUTION: 
 
Assume that the two sine waves with a phase delay of φ are the input to the x and y terminals of an oscilloscope.  
Referring to Fig. 6.38, the figure below shows ya and yi. 
When ay y= then the y signal is a maximum, with sin 1tω = and with siny A tω= and ay A= .  At the y-

intercept where x=0 siniy A φ= .  Eliminating the amplitude A between these equations, 

 sin sini

a

y A
y A

φ φ= =  
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PROBLEM 6.14 
 
KNOWN:  Phase lag occurs in electronic circuits 
 
FIND:  Design an arrangement which uses Lissajous diagrams to determine phase lag 
 
SOLUTION:  
 
The arrangement shown below will allow measurement of phase lag in an electronic circuit.  
See Problem 6.15 for representative Lissajous diagrams.   
 
 
 

 
Reference 
Source 

X input 

Electronic Circuit 

Y input 

To Oscilloscope 



PROBLEM 6.15 
 
KNOWN:  Two sinusoidal signals are to be compared using a dual trace oscilloscope.  The frequency ratios 
are  
 
a) 1:1   b) 1:2   c) 2:1    d) 1:3   e) 2:3    f)5:2 
 
FIND:  Construct appropriate Lissajous diagrams 
 
SOLUTION:  
a)  

b) 
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c) 
d) 

Frequency Ratio 2:1
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e) 
 
f) 

 
 
 
 
 
 
 

Frequency Ratio 2:3
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PROBLEM 6.16 
 
KNOWN:  RC filter:  1;   100  Hzck f= =  
 
FIND:  Attenuation at 10, 50, 75, and 200 Hz 
 
ASSUMPTIONS:  Filter is of the low-pass, Butterworth type 
 
SOLUTION:   
 
 For a low-pass RC Butterworth filter, 

 ( ) ( )
0.521 1 k

cM f f f = +   
Recall that “attenuation” means reduction.  In the context of a filter, a device that reduces  the output amplitude 
of targeted frequencies ( ) 1M f <  it must correspond to a negative value of the dynamic error.  Dynamic 
error is given by 
 ( ) ( ) 1f M fδ = −  
Recall also that a “gain” refers to a positive value of dynamic error. 
 
 For a low-pass RC Butterworth filter, ( ) 1M f < always which is consistent with first-order system 
behavior. 
 

f (Hz) ( )M f  ( )fδ  Atttenuation % 

10 0.995 -0.005 0.5 
50 0.894 -0.105 10.5 
75 0.800 -0.200 20.0 
200 0.447 -0.553 55.3 

 
  



PROBLEM 6.18 
 
 
KNOWN:  LC low-pass Butterworth filter 
             -3 dB ≤ M(0 ≤ f ≤ 5 kHz) 

             M(f ≥ 10 kHz) < -30 dB 
 
FIND:      Values for L, C  and k 
 
SOLUTION 
 
This problem is an open-ended design and one possible solution follows. For a low-pass, 
Butterworth filter such as shown in Figure 6.31, we begin by fixing the cut-off frequency and 
then estimating the order (number of reactive stages) k. We end by specifying the C and L 
values. For the filter: 
 
           M(f) = 1/[1 + (f/fc)2k]1/2 

 
We set fc = 5 kHz, such that M(5 kHz) = 0.707 = -3 dB, and meet one constraint of the 
design.   
 
The next step in the design is to determine the number of filter stages required to meet the 
attenuation constraint at 10 kHz. For at least 30 dB attenuation 
 
           -30 dB = 20 log M(10 kHz)  or want M(10 kHz) ≤ 0.0316 
 
then, 
 
           M(10 kHz) ≤ 0.0316 = 1/[1 + (10 kHz/5 kHz)2k]1/2  
 
This gives k = 4.98 ≈ 5. Note: k can be found by trial and error or by direct estimate as 
follows. 
By trial and error: 
 
           k      M(10 kHz) 
 
           1        0.45 
           3        0.12 

5 0.0312 
By direct estimate, with f/fc = 10000/5000 = 2 and M = 0.0316: 

98.4
)2log(f/f

)
M

M1log(
k

c

2

2

=

−

=



A five-order filter has five reactive elements. To specify the capacitors and inductors, we 
refer to Table 6.1 with its scaling equations (6.60) 

 
Hence, for a normalized value of R = 1Ω and fc = 5,000 Hz values for C and L yield: 
 
C1 = 20µf    C3 = 64µf   C5 =  20µf 
 
L2 = 52 µh    L4 = 52 µh 
 

Rf
CC

c
i π2

1
=

c
i f

RLL
π2

=



PROBLEM 6.19 
 
 
KNOWN:  Circuit of Figure 6.39. 
 
FIND:  Thevenin equivalent. 
 
In open-circuit operation, 
 
      Eo = InRn 
 
In short-circuit operation, 
 
      In = Eth/Rth 
or,   
      Eth = InRn 
and  
      Rth = Eth/In 
 



PROBLEM 6.20 
 
 
KNOWN:  Z1 = 500Ω Zm = 100,000Ω 
 
FIND:  E1/Em 
 
SOLUTION 
 
From Figure 6.17 and corresponding equation (6.38) 
 
Em/E1 = 1/(1 + Z1/Zm) = 1/(1 + 500/100,000) = 0.995 
 
So, 
 
E1/Em = 1.005 
 
eI = 0.005E1 
 

Loading error is about 0.5% of E1.



PROBLEM 6.21 
 
 
FIND:  Em/E1 versus Z1/Zm 
 
SOLUTION 
 
From Figure 6.17 and corresponding equation (6.38) 
 
Em/E1 = 1/(1 + Z1/Zm)  
 
The results for a range of independent values of Z1/Zm is plotted below.  
 
 

 
 
As the loading error goes to 0 as Em/E1 goes to 1, Z1 should be much less than Zm to 
minimize loading error. To reduce error to 1% (which is still a significant error), the ratio 
must be at least 1:100; to 0.01% (a good goal), the ratio must be at least 1:10,000 and so 
forth.  
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PROBLEM 6.22 
 
KNOWN:  9

1 1 10  Z = × Ω  
 
FIND:  mZ required to keep 0.1%IE E ≤  
 
SOLUTION:  
 
For the circuit in Figure 6.40, Equation 6.38 can be written 
 ( )1 1m m mE E Z Z Z= +  

where 1E  is the Thevenin equivalent voltage.  For 9
1 10  Z = Ω  

 ( )9
1 10m m mE E Z Z= +  

Then the relative loading error or signal attenuation is 
 1 11                           (6.39)I me E E E= −  
 

 mZ Ω  ( )11 %mE E−  
106 99.9% 
109 50% 
1012 0.1% 

 

mZ must be at least 1012 Ω to meet the constraint.  This requires 12 9
1 10 /10 1000mZ Z = ≥  

 
COMMENT:  Loading error is only a problem if it goes undetected.  It can be prevented by proper design 
as it is easily predicted. 



PROBLEM 6.23 
 
KNOWN:  Circuit of Figure 6.41 
 
FIND:  o iE E for the circuit  
 
SOLUTION:   Across the divider, (6.8) gives 
 
 ( ) ( )60 160 0.375   or  0.375o i i o i divider

E E E E E= = =  
 
This is equivalent to a gain of  
 
 [ ] ( ) dB 20log 8.5 dBo iG E E= = −  
 
The overall circuit gain based on 32 dB  12 dBamp filterG G= + = − , and the divider circuit is 

 ( )32 12 8.5  dB 11.5 dB = 3.76o iE E = − − =  
 
 
 



PROBLEM 6.24 
 
KNOWN:  Temperature measurement system employing a resistance temperature detector 
and a Wheatstone bridge circuit having the following characteristics 
 
 ( ) 3 41      100  at 0 C  500 o o oR R T T R R Rα= + − = Ω = = Ω  

  
 There are two error sources, the sensitivity of the galvanometer, and the accuracy of the 
fixed resistors. 
 
FIND:  Design a combination of uncertainty in the fixed resistors and the current flow 
through the galvanometer to provide an uncertainty in temperature of ±1°C 
 
SOLUTION: 
The sensitivity indices are needed to determine the required accuracy of the detector 
resistance measurement to yield an uncertainty of ±1°C, and the uncertainty of the 
measurement of R1 in the bridge.  The required level of uncertainty in the resistance 
measurement can be determined from  

 ( )1o o o
R R T T R
T T

α α∂ ∂  = + − =   ∂ ∂
 

Knowing that 1 CTu = ±  the required uncertainty in R1 is found from 

 ( ) ( ) ( )0.00395 100 1 0.395 R T o T
Ru u R u
T

α∂
= = = = Ω
∂

 

Then to evaluate the sensitivity of R1 to the uncertainty in Ig sequential perturbation can be 
employed with equation 6.22 to yield a value of 0.000045 A/Ω or 22.2  Ω/mA.  The 
uncertainty in R1 may be expressed  
 

 
1 2 3 4

2 22 2

1 1 1 1

2 3 4
gR I R R R

g

R R R Ru u u u u
I R R R

      ∂ ∂ ∂ ∂
= + + +       ∂ ∂ ∂ ∂     

 

where 

 3 2 31 1 2 1
2

2 4 3 4 4 4

       R R RR R R R
R R R R R R

−∂ ∂ ∂
= = =

∂ ∂ ∂
 

With appropriate assumptions of uncertainties in the values of the R’s and Ig the value of uT 
can be evaluated, and an iterative process used to satisfy the constraint. 
 



 PROBLEM 6.25 
 
 
FIND:  Design low pass filter with fc = 100 Hz 
  Want M(50 Hz) ≥ 0.95; M(200 Hz) ≤ 0.01 
 
KNOWN: RL = RS = 10 Ω 
 
SOLUTION 
 
For a Butterworth filter having k reactive elements, the frequency response is given by 
 
M(f) = 1/[1 + (f/fc)2k]1/2 

 
rearranging and solving for k:  
 

 
In terms of f/fc, where fc = 100 Hz, we want M(50/100 = 0.5) ≥ 0.95; M(200/100 =2 ) ≤ 0.01. 
The highest value of k will satisfy both conditions. Solving yields k(f/fc = 0.5)  ≥ 2 and k(f/fc 
= 2)  ≥ 4. Choose k  ≥ 4. 
 
If we select a k = 5 order filter, there will be 5 reactive elements. To specify the capacitors 
and inductors, we refer to Table 6.1 with its scaling equations (6.60) 

 
Hence, for a normalized value of R = Rs/1Ω = RL/1Ω = 10Ω and fc = 100 Hz values for C and 
L yield: 
 
C1 = 98µf    C3 = 318 µf   C5 =  98µf 
 
L2 = 26 mh    L4 = 26 mh 
 

)2log(f/f

)
M

M1log(
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c
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c
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PROBLEM 6.26 
 
 
FIND:  Design high pass filter with fc = 5000 Hz 
  Want M(2500 Hz) ≥ -20dB; M(8000 Hz) ≤ -0.45 dB 
 
KNOWN: RL = RS = 10 Ω 
 
SOLUTION 
 
For a high pass Butterworth filter having k reactive elements, the frequency response is given 
by equation (6.61): 
 
M(f) = 1/[1 + (fc/f)2k]1/2 

 
rearranging and solving for k:  
 

 
Since dB = 20 log M(f), then: M(8000) ≥ 0.95 and M(2500) ≤ 0.1. 
 
In terms of f/fc, where fc = 5000 Hz, we want M(8000/5000 = 1.6) ≥ 0.95; M(2500/5000 = 
0.5 ) ≤ 0.1. The highest value of k will satisfy both conditions. Solving yields k(f/fc = 0.5)  ≥ 
3.3 and k(f/fc = 1.6)  ≥ 2.36. Choose k  ≥ 4. 
 
If we select a k = 5 order high pass filter, there will be 5 reactive elements. To specify the 
capacitors and inductors, we refer to Table 6.1 with its scaling equations (6.60) 

 
Hence, for a normalized value of R = Rs/1Ω = RL/1Ω = 10Ω and fc = 5000 Hz values for C 
and L yield: 
 
C1 = 2µf    C3 = 6.4 µf   C5 =  2µf 
 
L2 = 515 mh   L4 = 515 mh 
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PROBLEM 6.27 
 
 
FIND:  Design low pass filter with fc = 10,000 Hz using 741 op-amp 
   
KNOWN: C2 = 0.1µF K = 20  
  first-order (only one reactive element) 
 
SOLUTION 
 
This design problem has an open-ended solution. One possible solution follows. 
 
Use the design of Figure 6.33a. 
 

The cut-off frequency is  
2 2

1
2

=cf R Cπ
= 10,000 Hz 

With C2 = 0.1µF = 100 nF,   R2 =
2

1
2 cf Cπ

 = 159 Ω  

The gain is K = R2/R1 = 20, so  R1 = R2/20 = 8 Ω  
  
Program Low Pass Butterworth Active Filter can also be used to complete this problem. An 
advantage with the software is that it provides a ready visual on the effects of changing the R 
and C values on the gain and cut-off frequency. Output for this problem is shown. 

   



PROBLEM 6.28 
 
 
FIND:  Design high pass filter with fc = 10,000 Hz using 741 op-amp 
   
KNOWN: C1 = 0.1µF K = 10  
  first-order (only one reactive element) 
 
SOLUTION 
 
Use the design of Figure 6.33b. 
 
The cut-off frequency is 
 

 
1 1

1
2cf R Cπ

= = 10,000 Hz 

 
With C1 = 0.1µF,  
 

 1
1

1
2 c

R
f Cπ

= =   160 Ω 

 
The gain is K = R2/R1 = 10, so 
 
 R1 = R2/10 = 16 Ω 



PROBLEM 6.29 
 
 
Program Oscilloscope offers the user a very simple but functionally correct two-channel 
oscilloscope. Two input signals are provided. The user can vary the time sweep and the 
amplifier gains. A trigger is available off of Channel B and the effect of changing trigger 
levels can be explored. 
 

 
 
 



PROBLEM 6.30 
 
 
Program Butterworth Filters Overall can be used to examine the effect of using a low pass, a 
high pass or a bandpass Butterworth filter on a signal of variable frequency. The output 
signal and output amplitude spectra are displayed.  
 
For example, with a signal frequency of 400 Hz, the lowpass (fc = 300 Hz) and highpass (fc = 
500 Hz) filters show a definite attenuation (~ 0.8V amplitude for lowpass and ~ 1V for high 
pass) whereas the bandpass filter (300 < fc < 500 Hz), passes the full signal amplitude (~ 2V 
or 0dB). 

 



PROBLEM 6.31 
 
Program Bessel Filters Overall can be used to examine the effect of using a low pass, a high 
pass or a bandpass Bessel filter on a signal of variable frequency. The output signal and 
output amplitude spectra are displayed.  
 
For example, with a signal frequency of 400 Hz, the lowpass (fc = 300 Hz) and highpass (fc = 
500 Hz) filters show a definite attenuation (~ 0.6V amplitude or -6 dB) whereas the bandpass 
filter (300 < fc < 500 Hz), passes the full signal amplitude (~ 2V or 0dB). 
 

 
 
 
 



PROBLEM 6.32 
 
 
Program LP Butterworth Noise can be used to study the effect of using a low pass 
Butterworth filter on a sinusoidal signal of variable frequency and filter order number. A 
high frequency noise signal is superimposed on the sine wave. The output signal and output 
amplitude spectra are displayed.  
 
The signal becomes cleaner as the number of stages is increased. k= 4 or 5 work well. 
Observe how the signal is shifted in time as k is increased (watch the value near t = 0 shift). 
Increasing the stages, increases the phase shift. This may or may not be important in an 
application. 



PROBLEM 6.33 
 
Program Monostable simulates an operating monostable integrated circuit. It is called a one-
shot for the reason seen in its output signal: when activated, it produces a single square 
waveform of time duration t. 
 
The three output charts are: 

- trigger value: the trigger is HIGH until engaged (LOW). Internally, transistor T2 is on 
until the trigger is engaged whereby T2 goes off momentarily allowing a jump in the 
output voltage.  

- capacitor output value: on trigger, the capacitor fires. Note the width of the output 
signal is coincident with the capacitor value. 

- circuit output signal: the monostable provides a single square wave having a duration 
determined by the R and C values. 

Different values will create a 1 s duration wave. For example, 500Ωand 1.82µF work. 

 



PROBLEM 6.34 
 
Program 741 Opamp simulates an inverting operating amplifier integrated circuit. The user 
can vary the gain characteristics. 
 
The opamp is inverting. A negative value of Vin produces a positive value of Vout. 
 
The opamp has a gain given by K = R2/R1. Any combination of R2 = 5R1 will yield a gain of 
5. Likewise, any combination of R2 = 0.5R1 yields a gain of 0.5 (an amplifier is called an 
attenuator when 0 < G < 1).  
 
The opamp’s output is governed by its operating voltage, +/- 15V here. This unit shows a +/- 
14V maximum output. 

 
 



 

 PROBLEM 7.1 
 
 
KNOWN:     E(t) = 5sin 2πt mV  
 
FIND:           Convert to a discrete time series and plot  
 
SOLUTION  
 
    The signal is converted to a discrete time series for using N = 8 and sample time  
increments of 0.125, 0.30, and 0.75 s and plotted below. The time increments of 0.125 and 
0.30 s produce discrete series with a period of 1s or frequency of 1 Hz. The series created 
with a time increment of 0.75 s, which fails the Sampling Theorem criterion, portrays a  
signal with a different frequency content; this frequency is the alias frequency.  
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PROBLEM 7.2 

 
 
KNOWN:     Repeat Problem 7.1 using N = 128 points.  
 
FIND:      The discrete Fourier transform for each series.  
 
SOLUTION  
 
The DFT for the time series representations of E(t) using N = 128 and tδ   
= 0.125, 0.30, and 0.75 s, respectively was executed using a DFT algorithm  
(any such algorithm on the companion software or using the approach described in Chapter 2 
will work) and shown below. The DFT returns an exact Fourier transform of the discrete time 
series but not necessarily the time signal from which it is based. Whether this DFT exactly 
represents E(t) depends on the criteria:  
 
    (1)       fs = 1/ tδ  > 2f  
    (2)       m/f1 = N tδ        m = 1,2,3, ...  
 
With f = 1 Hz and f1 = f: (a)     tδ  = 0.125 s and N = 128:  
 
           fs = 1/0.125s = 8 Hz > 2 Hz  
 
           m/1 Hz = 128/0.125   or  m = 16 an exact integer value.  
 
Another way to look at this second criterion: the DFT resolution fδ  = 1/N tδ  =  
0.0625 Hz, to which 1 Hz is an exact multiple.  
 
     Both criteria are met. Therefore, this DFT will exactly represent E(t) in  
both frequency and amplitude, as shown below.  
 
(b)     tδ  = 0.3 s   and N = 128  
 
           fs = 1/0.3s = 3.3 Hz > 2 Hz  
 
           m/1 Hz = 128/0.3   or  m = 38.4  not an exact integer value.  
 
     Criterion (1) is met but Criterion  (2) is not met. Therefore, an alias frequency will not 
appear. But this DFT will not exactly represent E(t) in amplitude and spectral leakage will 
occur, as seen below. So we find an amplitude less than 5 at a frequency centered at 1 Hz. 
 
  



 
(c)     tδ = 0.75 s   and N = 128  
 
           fs = 1/0.75s = 1.33 Hz < 2 Hz  
 
           m/1 Hz = 128/0.75   or  m = 96  an exact integer value.  
 
     Criterion (1) is not met but Criterion (2) is met. Therefore, this DFT will not exactly 
represent E(t) in frequency. However, it does represent the signal amplitude exactly. An alias 
frequency at 0.33Hz appears in the DFT.  
 
Note how the frequency resolution scale changes between plots.  
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PROBLEM 7.3 
 
 
KNOWN:     T(t) = 2 sin 4πt   oC  
          fs = 4 and 8 Hz; N = 128  
 
FIND:      Compute the Fourier transform from the resulting series.  
 
SOLUTION  
 
    The fundamental frequency of this signal is f1 = 2 Hz. From the  
Sampling theorem, an appropriate sample rate is  
           fs > 2f1       or        fs > 4Hz  
 
At fs = 4 Hz the Sampling Theorem is not upheld whereas at fs = 8 Hz the Sampling theorem 
is upheld. For fs = 4 Hz, see the COMMENT below.  
 
    For amplitude fidelity, mT1 = N tδ   which can be written as   m/f1 = N/fs    m = 1,2, ... 
With fs = 8 Hz and N = 128,  m = Nf1/fs = N tδ /T1 = 8  an exact integer. We can expect that 
the resulting DFT will be an exact representation of T(t), as seen below.  
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COMMENT 
    The result of sampling at fs = 2f is somewhat interesting. A non-unique  
reconstruction of T(t) can result which will depend wholly on the initial condition of T(t) at 
the time sampling commences. Because of this, we can not write the Sampling Theorem 
criterion as fs ≥ 2f as is sometimes found in texts. Try this. 



PROBLEM 7.4 
 
 
KNOWN:  Signal frequency, f1, and the sample rate, fs 
 
FIND:       Any alias frequency, fa arising 
 
SOLUTION  
 
The Nyquist or folding frequency is defined as fN = fs/2. All frequencies in the sampled 
signal that are above fN will be folded back to lower frequencies below fN, a process depicted 
by the folding diagram (Figure 7.3).  
 
(a) f1 = 60 Hz  fs = 90 Hz 
 
    fN = fs/2 = 45 Hz.  
 
The ratio, f/fN = 1.33, that is  f = 1.33fN. Referring to The folding diagram, a frequency of 
1.33fN will be folded back to a frequency of 0.67fN. So f1 = 60 Hz but in the sampled signal it 
behaves as fa = 0.67fN = 30 Hz and out-of-phase with the original signal.  
 
(b) f1 = 1200 Hz  fs = 2000 Hz 
 
    fN = fs/2 = 1000 Hz.  
 
The ratio, f/fN = 1.2, that is  f = 1.2fN. Referring to The folding diagram, a frequency of 1.2fN 
will be folded back to a frequency of 0.8fN. So f1 = 1200 Hz but in the sampled signal it 
behaves as  fa = 0.8fN = 960 Hz and out-of-phase with the original signal.  
 
(c) f1 = 10 Hz  fs = 6 Hz 
 
    fN = fs/2 = 3 Hz.  
 
The ratio, f/fN = 3.3, that is  f = 3.3fN. Referring to The folding diagram, a frequency of 3.3fN 
will be folded back to a frequency of 0.7fN. So f1 = 10 Hz but in the sampled signal it 
behaves as  fa = 0.7fN = 7 Hz and in-phase with the original signal.  
 
(d) f1 = 16 Hz  fs = 8 Hz 
 
    fN = fs/2 = 4 Hz.  
 
The ratio, f/fN = 4, that is  f = 4fN. Referring to The folding diagram (and projecting its 
behavior beyond the values shown), a frequency of 4fN will be folded back to a frequency of 
0. So f1 = 16 Hz but in the sampled signal it behaves as fa = 0 Hz. It will be seen as a constant 
(dc) signal. 



PROBLEM 7.5 
 
 
KNOWN:     E(t) = sin 2πt + 2 sin 8πt  
                     fs = 16 Hz  
 
FIND:     DFT (amplitude spectrum) of a discrete time series representation of E(t).  
                Reconstruct E(t) from the Fourier transform.  
 
SOLUTION  
 
    Begin by generating a discrete time series. We can rewrite E(t) as  
 
           E(t) = sin 2πf1t + 2 sin 2πf2t  
 
with f1 = 1 Hz and f2 = 4f1 = 4 Hz. An exact DFT representation of the E(t) will  
result if the discrete time series is created using  
 
        (1)   fs > 2f2 
        (2)   mT1 = N tδ    or  m/f1 = N/fs    m = 1,2,...  
 
For (1) to be true, fs > 8 Hz. This constraint is met, so frequency will be correctly 
represented. For (2) to be true, we need  
 
           N = mT1/ tδ  = mfs/f1 = m(16 Hz)/1 Hz = 16m  
 
That is for amplitude to be correctly represented, N must be an exact multiple of 16  (e.g. 16, 
32, ...). We use N = 32 to construct the discrete time series. The time series and its DFT are 
computed using a DFT algorithm. The time signal is then reconstructed from the spectral 
information by  
 

          
/ 2

1

1
( ) sin(2 tan )

N
k

k k
kk

AE t C f t Bπ −

=

= +∑  

The DFT and the respective reconstructed time signal are shown below. The reconstructed 
signal is exact as expected. 
 
Try this problem at different sample rates. 
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PROBLEM 7.6 
 
KNOWN:     ( ) (4 /(2 1) )sin[2 (2 1) /10]y t n n tπ π= − −∑  
FIND:      Appropriate values for fs and N tδ  with mf ≤2 Hz and N = 2M.  
 
SOLUTION  
 
Filtering the signal at and below 2 Hz limits this series representation of y(t) to 5 terms. Each 
nth term of the series has the frequency fn = (2n-1)/10. The fundamental frequency (n=1) is f1 
= 0.1 Hz.  
 
In order to properly construct a discrete time series, the following criteria should be met:  
 
    (1)    fs > 2fm     Sampling Theorem criterion for frequency content  
 
    (2)    mT1 = N tδ   m = 1,2,...    Criterion for amplitude content  
 
where T1 = 1/f1. Because fm = 2 Hz, criterion (1) is met by setting fs > 4 Hz.  
 
There are many different correct solutions to this problem. One such solution is to set fs = 8 
Hz. Then this requires,  
 
           m(10 s) = N(1/8 Hz)      m = 1,2,...  
 
Also, we must set N = 2M where M is an integer. Criterion (2) is met with N  
= 210 = 1024. Hence,  
 
    fs = 8 Hz      N = 1024      and      N tδ = N/fs = 1024/8 = 128 s  
 
COMMENT  
 
We stress that there can be different combinations of fs and N tδ that will meet the criteria of 
(1) and (2) in a given problem. In a practical problem, additional restrictions, such as the 
maximum sample rate available, the maximum data set size that can be stored, or the 
available range of anti-alias filters will limit the number of possible combinations.   



PROBLEM 7.7 
 
 
KNOWN:     Straight Binary Number  
 
FIND:      Equivalent base 10 representation  
 
SOLUTION  
 
(a)  1010 = 1*23 + 0*22 + 1*21 + 0*20 = 1010 
 
(b) 11111 = 1*24 + 1*23 + 1*22 + 1*21 + 1*20 = 3110 
 
(c) 10111011 = 1*27 + 0*26 + 1*25 + 1*24 + 1*23 + 0*22  
               + 1*21 + 1*20 = 18710  
 
(d) 1100001 = 1*26 + 1*25 + 0*24 + 0*23 + 0*22 + 0*21 + 1*20 = 9710 



PROBLEM 7.8 
 
 
 
SOLUTION  
 
     
(a)  1100111.1101 into decimal 
 
        1100111 = 1*26 + 1*25 + 0*24 + 0*23

 +  1*22 + 1*21 + 1*20 = +10310 

               .1101 = 1*2-1
 + 1*2-2 + 0*2-3 + 1*2-4 = 0.812510 

 
So 1100111.1101 = 103.812510 
 
(b) 4B2F into binary 
 

 4B2F = 0100 1011 0010 1111 = 0100101100101111 
 
(c)  278.63210 into binary 
 

 278 = 100010110 
 
        .632 = .101000011 
 
So 278.63210 = 100010110.101000011 
 
 



PROBLEM 7.9 
 
 
FIND:      Equivalent two's complement representation  
 
SOLUTION  
 
For example, assuming a 12 bit binary number, two's complement assigns a 0 to the MSB is 
(+) with succesive bits in straight binary (0 HIGH, 1 LOW), or a 1 if (-) with successive bits 
complementary (1 HIGH, 0 LOW). Because two's complement has only a single zero add 1 
to its count (negative number).  
 
(a)   1010 =  0000 0000 1010   
 
(b)  -1010 =  1111 1111 0110   
 
(c) -24710 =  1111 0000 1000  
 
(d) 101310 =  0011 1111 0101  
 
 

PROBLEM 7.10 
 
 
KNOWN: Two's complement code; M = 8  
 
SOLUTION  
 
    Two's complement code uses the MSB as the sign bit, with a 0 for a  
positive number (+), and then straight binary. The largest positive number is:  
 
      0111 1111 = (+)  26 +  25 + 24 + 23 + 22 + 21 + 20 
 

= (+)  64 + 32 + 16 + 8  + 4 +  2 +  1 = 12710 
 
Adding a one to this binary number yields a negative number. Negative  
numbers use complementary binary (0 = HIGH, 1 = LOW). Note: Because  
two's complement has only a single zero add 1 to a negative count.  
 
      1000 0000 = (-)27 = (-)128 = -12810 



PROBLEM 7.11 
 
 
KNOWN: Two's complement code with M = 8  
 
SOLUTION  
 
    Two's complement code uses the MSB as the sign bit, with a 1 for a  
negative number, and complementary binary (0 = HIGH, 1 = LOW). Note:  
Because two's complement has only a single zero, you add 1 to its negative count. The  
largest negative number is:  
 
      1000 0000 = (-1) + 26 +  25 + 24 + 23 + 22 + 21 + 20 
 

= (-1) + 64 + 32 + 16 + 8 + 4 + 2 + 1 = -12810 
 
Subtracting one from this (the binary not the decimal) number:  
 
      0111 1111 = (+)  26 +  25 + 24 + 23 + 22 + 21 + 20 
 

= (+1)127= +12710 
 



 
PROBLEM 7.12 

 
 
KNOWN: Dual-slope integration A/D  
 
FIND:  List error sources. Derive a relationship between the uncertainty in the  
digital result and the slope of the integration process.  
 
SOLUTION  
 
    Possible error sources include (see Figure 7.11): 1. errors in controlling t1 ; 2. errors in 
measuring tm ; 3. errors in applied Eref 
    
    Since the slope is proportional to Eref

, then Ei = Eref(tm/t1). The uncertainty in the measured 
voltage can be expressed as:  
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The ratio tm/t1 could be treated as a single entity but we separate the two variables here.  
 
The value of Eref, which determines the slope, then contributes to the uncertainty in two 
ways: 1. The uncertainty in Eref will vary linearly with tm. 2. Because the sensitivity index for 
the uncertainty in tm/t1 equals Eref, the slope directly affects the sensitivity of the measured 
voltage through the uncertainty in time determination.  
 
The devices that contribute to these uncertainties are associated with the frequency source 
and the counter.  



PROBLEM 7.13 
 
KNOWN:      A/D Converter  
          M = 4, 8, 12, 16  

            -5 to 5 V  bipolar  
              
FIND:      Q, dynamic range  
 
SOLUTION  
 
The resolution of an M-bit A/D converter is expressed as  
 
           Q = EFSR/2M         
 
For this problem, EFSR= 10 V  (i.e. -5 to 5 V)  
     
The dynamic range can be expressed in terms of the signal-to-noise ratio (SNR),  
 
           SNR [dB] =  20 log 2M        
 
    M      Q [V]           SNR [dB]  
 
    4      0.62500            -24  
    8      0.03906            -48  
   12     0.00244            -72  
   16     0.00015            -96  
 



PROBLEM 7.14 
 
 
KNOWN: A/D Converter: M = 12; EFSR = 5V; e1/EFSR = 0.0003  
 
FIND: eQ, emax, uE/E  
 
SOLUTION  
 
      Q = 5V/212= 1.2 mV  
 
      eQ= ± Q/2 = ±  0.6 mV  
 
The maximum error that could be present in any measurement is found by  
summing all known errors:  
 
   umax =  eQ + (EFSR)(e1/EFSR) = 0.6 + 1.5 = 2.1 mV  
 
However, the probable error provides a reasonable estimate:  
 
   uE= ±  (eQ

2 + e1
2)0.5 =±  (.62 + 1.22)1/2= 1.6 mV      (95%)  

 
or  uE/E = 0.032%.  
 
COMMENT  
 
A maximum error assumes that all possible errors are at their maximum value during a 
measurement. It is different from a probable error. 



PROBLEM 7.15 
 
 
KNOWN: Single ramp A/D converter: M = 8; EFSR = 10 V; fclock = 2.5 MHz  
             Comparator: Eth = 1 mV  
             (i) Ei = 6.000 V  (ii) Ei = 6.035 V.  
 
FIND: Resolution. Binary output. Conversion times.  
 
SOLUTION  
 
(i) Resolution:    Q = 10 V/28 = 39 mV   (or 0.4% FSO) for a ramp slope equivalent to  
0.039 V/time step.  
 
For Ei = 6.000 V, the number of steps required is:  
 
    Ei/Q = 153.6 ≈154 steps  
 
With a single count for each step, 15410 = 1001 1010  in straight binary.  
 
(ii) Repeating for Ei = 6.035 V: Q = 39 mV. 
 
    Ei/Q = 155 steps  or  15510 = 1001 1011  in straight binary.  
 
For either case: 
 
With fclock = 2.5 MHz, each step requires 0.4 sµ  . So the conversion times are:  
 
   Ei = 6.000 V:    t = (0.4 sµ )(154) = 61.1 sµ  
 
The maximum conversion time required for a given input occurs at its maximum count or 28:   
tmax = (0.4 sµ )(256) = 102.4 sµ .   
 

The average conversion time is:     tavr = (0.4 sµ )(128) = 51.2 sµ



                      PROBLEM 7.16 
 
 
KNOWN: A/D converter: M = 10; EFSR = 10 V. fclock= 1 MHz.  
 
FIND: Compare conversion times for successive approximation versus dual- 
            ramp operation.  
 
SOLUTION  
 
Successive approximation Method: A maximum conversion time would result after M trials. 
For M = 10,  
 
     tmax = M/fclock= 10/1 MHz = 10 sµ  
 
Dual-ramp methods: A maximum conversion time results after (2)(2M) = (2M+1) trials.  
For M = 10,  
 
     tmax = 2M+1/fclock = 211/1 MHz = 2048 sµ .     



 
PROBLEM 7.17 

 
 
KNOWN: D/A converter: M = 8  
             Eo = 3.58 V if register = 10110011  
 
FIND: Eo if register = 01100100.  
 
ASSUMPTION: Straight binary code.  
 
SOLUTION  
 
    10110011 = 17910 or 179 counts. For a known Eo this is equivalent to:  
 
         Q = 3.58 V/179 = 0.020 V  
 
Then, for 01100100 = 10010 or 100 counts:   
 

 Eo = (0.020 V)(100) = 2.000 V.  



PROBLEM 7.18 
 
 
KNOWN:  Successive approximation converter: M = 4; EFSR = 10 V;  
             Ei = 4.9 V  
 
FIND:  E*. Required M for Q ≤  2.5 mV.  
 
SOLUTION  
 
(i)  Resolution:      Q = 10 V/24 = 0.625 V So with Ei = 4.9 V, the number of register counts 
is 4.9 V/0.625 V = 7.8. Referring to Figure 7.7, if we assume the A/D uses a straight 
encoding scheme whereby eQ = 1 bit = 0.625 V, the register will show 7.8 ⇒  7 counts, or 710 
= 0111. Hence, E* = (7)(.625 V) = 4.375 V. Note that Ei- E*< eQ.  
 
On the other hand: If the A/D used a bias shift (offset) encoding whereby eQ = ± 1/2 bit = ± 
0.3125 V, the register will show 7.8 ⇒  8 counts, or 810 = 1000. Hence, E* = 5.000 V. Again,  
Ei – E* < eQ.  
 
(ii) For |Ei – E*| = eQ < 2.5 mV:  requires either M = 12 (for a straight encoding scheme) or M 
= 11 (for a bias shifted scheme).  



 
PROBLEM 7.19 

 
 
SOLUTION  
 
     Resolution:  Q = EFSR/2M   regardless of the conversion method.  
 
     Maximum Conversion time: For a given clock speed, fclock,  
 
        Successive Approximation:  t = M/fclcok 
 
        Ramp:  t = 2M/fclock 
  
        Parallel:  t = 1/fclock 
 
For any converter, resolution improves with bit number equally. The trade-off is  
seen in the required conversion times. Ramp times increase exponentially with  
bit number. Parallel method conversion times are essentially independent of bit  
number, but their component costs increase exponentially with bit number.  



PROBLEM 7.20 
 
 
KNOWN: A/D converter: M = 10; EFSR = 10 V; register = 1010 1101 11  
 
FIND: Ei 
 
SOLUTION  
 
     For a straight binary code, 1010 1101 11 = 69510 which is equivalent to  
 
             E*= (695)Q = (695)(10/210) = 6.787 V  
 
Assuming that eQ= Q = 1 LSB,  
 
        Ei = E* + 1 LSB = 6.787 + 1 LSB  or 6.787 iE≤ ≤  6.796 V  
 
Assuming that eQ = ±Q/2 = ±1/2 LSB,  
 
        Ei = E* ± 1/2 LSB  or  6.782 iE≤ ≤  6.792 V  



 
PROBLEM 7.21 

 
KNOWN: A/D converter: M = 8; EFSR = 10 V; register = 1010 1011  
 
FIND: Ei 
 
SOLUTION  
 
For two's complement code, 1010 1011 = -8510   [i.e. -(128 - 43)] which  
is equivalent to  
 
             E* = (-85)Q = (-85)(10/28) = -3.320 V  
 
Assuming that eQ = Q = 1 LSB,  
 
        Ei = E* + 1 LSB = -3.320 + 1 LSB  or -3.320 iE≥ ≥  -3.359 V  
 
Assuming that eQ= ± Q/2 = ± 1/2 LSB,  
 
        Ei = E*± 1/2 LSB  or  -3.339 iE≤ ≤  -3.300 V  



PROBLEM 7.22 
 
 
KNOWN: Dual slope A/D converter: M = 12; fclock = 10 kHz;  
              register = 201110 
 
FIND  tc 
 
SOLUTION  
 
     The actual conversion time based on the register value of 2011 counts is  
 
          tc = (2)(2011)/10 kHz = 0.4022 s  
 
 
 
 

PROBLEM 7.23 
 
 
KNOWN: Single ramp A/D converter: M = 8; fclock = 1 MHz;  
              register = 17310 
 
FIND  tc 
 
SOLUTION  
 
     The actual conversion time based on the register value of 173 counts is  
 
          tc = (173)/1 MHz = 173 sµ  



 
PROBLEM 7.24 

 
 
KNOWN: Successive approximation A/D converter: M = 8; EFSR = 10 V  
            Ei = 6.2 V  
 
FIND: Register value  
 
SOLUTION  
 
The resolution is:  Q = 10 V/28 = 0.039 V  
 
So each register bit value counts as 39 mV.  
 
For an input of 6.2V, the register count would be 6.2 V/0.039 V = 158.9.  
 
If we account for register threshold errors, we take 158.9 ⇒  15910 = 10011111 (straight 
binary).  
 
The comparator will see E* = 6.162 V after 7 steps and 6.201 V after 8 steps.  
 



PROBLEM 7.25 
 
 
KNOWN: Balance scale:  
          input range: 0 to 5 kg  

output range: 0 to 3.50 mV  
     Recorder:  
            M = 12; EFSR = 10 V  

 
FIND: Appropriate amplifier gain, G.  
 
SOLUTION  
 
    The balance scale has a sensitivity:  K = 3.5 mV/5 kg = 0.7 mV/kg  
 
    The recorder has a resolution:  Q = 10 V/212 = 2.44 mV  
 
It is clear that the recorder resolution is large compared to the balance output.  
Amplification of the balance output prior to recording is in order. To improve  
the recorder resolution to within, say, 1% of the scale full scale output we will  
need, Q = (0.01)(3.5 mV) = 35 µ V. To achieve this,  
 
    G = 2.44 mV/35 µ V = 70  
 
So, a minimum gain of about G = 70 is required. A higher gain will further improve 
resolution.  
 
 
COMMENT 
 
Note that when an amplifier is used the resolution would be estimated as:  
 

Q = EFSR/(G)(2M)   
 
where G accounts for the gain.  



PROBLEM 7.26 
 
 
KNOWN:  f ≈  2 Hz  
              N tδ  = 10s  
              Recorder: M = 12; EFSR = 10 V  
 
FIND: fs, y(t), fδ , fN 
 
SOLUTION 
 
This problem is an open-ended design. One possible solution follows.  
 
(i) To meet the Sampling Theorem, fs > 2fm. If we set fm = f = 2Hz, this gives fs > 4 Hz. But 
because fm is not known exactly, we should set fs away from 4 Hz.  
 
The minimum sample rate will also depend on N and the extent of spectral leakage (see 
amplitude ambiguity). We should make some trial runs until we achieve acceptable results.  
 
For a 10 s block of data, i.e. N tδ = N/fs = 10 s, so that with we have N = 10fs. As an 
example, let fs = 20 Hz and N = 200.  
 
(ii) y(t) = C1sin 2πft = 2 sin 4πt    [V]  
 
(iii) From (i): δf = 1/Nδt = fs/N = 0.1 Hz;  fN= fs/2 = 10 Hz. A 10 Hz low pass filter should be 
used in front of the A/D converter.  
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PROBLEM 7.27 
 
 
KNOWN: DAS: fs = 20 kHz; M = 12; Nδt = N/fs = 5 s  
             Computer: M = 16  
 
FIND: Memory requirement  
 
SOLUTION  
 
Given that 5 s of data are acquired: N = (5s)(20,000/s) = 100,000  
So 100,000 12-bit data points are acquired.  
 
A 16-bit computer stores each integer number as a 16-bit word comprised  
of 2  8-bit bytes. This requires that each 12-bit integer data point be stored as 2  
bytes. So it takes 200,000 bytes to store the data. Now 1 kbyte = 1 kB = 1024  
bytes.  
 
So 200,000 bytes requires 195.3 kB of memory.  



 
PROBLEM 7.28 

                       
 
KNOWN: DAS: M = 12; fs = 100 MHz  
             Computer: 8 MB of 32-bit memory  
 
FIND: (Nδt)max 
 
SOLUTION  
 
Direct Memory Access (DMA) writes data directly from the acquisition process into 
memory. If each 12-bit data point is stored as a 32-bit (4 8-bit bytes) word, then the 
maximum storage is N = 8 MB = 8,192,000 bytes.  
 
If fs = 100 MHz, then (Nδt)max= 0.08192 s.  
 
If fs = 100 kHz, then (Nδt)max = 81.92 s.  
 
COMMENT  
 
When multiple channels are sampled, the number of data points acquired per unit time is 
increased by the number of channels. The sample duration available is decreased by roughly 
the number of channels (the amount is not exact because some time is required to flip 
between channels). For example, a race car test might involve some 64 different sensors. 
Even at 100 Hz, that is 6400 data points per second to acquire and then to analyze.  



 
PROBLEM 7.29 

 
 
KNOWN: Square wave: T1 = 1 s (Example 2.3)  
 
FIND: N, fs for the sampling process. fc for the filter. 
 
SOLUTION  
 
This problem is an open-ended design. One possible solution follows.  
 
We need to meet the criteria for Sampling Theorem and to minimize leakage (Amplitude 
Ambiguity). 
 
For the square wave of example 2.3,  
 

( ) (4 / )sin(0.2 ) (4 / 3 )sin(0.6 ) (4 / 5 )sin( ) (4 / 7 )sin(1.4 )
(4 / 9 )sin(1.8 )

y t t t t t
t

π π π π π π π π
π π

= + + +
+  

 
The first five non-zero terms show a frequency of fn = 2nπt/T1 for n = 1, 3, 5, 7, 9 with T1 = 
10 s. So at n = 9, fm = 0.9 Hz. Hence:  fs > 1.8 Hz.  
 
The amplitudes are: Cn = 4/nπ   for n = 1, 3, ..., 9. 
 
To minimize leakage, we want mT1 = N/fs. This gives: N = 10mfs. Any combination of N and 
fs will do provided fs> 1.8 Hz.  
 
For example:  fs = 3.2 Hz and N = 32m  where m is a positive number. If we let m = 2 (i.e., 
sample for 2 periods of the signal), then we want N = 64. 
 
For the ideal filter setting: set fc = fN = fs/2 = 1.6 Hz.  
 



PROBLEM 7.30 
 
 
KNOWN: Triangle wave: T1 = 2 s  
 
 
FIND: Sampling process: fs, N. Filter: fc 
 
SOLUTION  
 
This problem is an open-ended design. One possible solution follows.  
 
The first seven non-zero terms have the form:  
 
 1 1 1( ) (4 / ) cos (4 / 3 )cos3 ... (4 /13 )cos13y t D t D t D tπ π π π π π≈ + + +  
 
To meet the Sampling Theorem: For this series, fm = 13/2 = 6.5 Hz. So that fs > 2fm >13 Hz.  
 
To minimize spectral leakage (amplitude ambiguity): We want mT1 = N/fs to minimize 
leakage or N = 2fsm.  
 
Any combination will work provided fs > 13 Hz. For example, fs = 16 Hz, N = 256.  
 
An ideal filter is set at the Nyquist frequency:  fc = fs/2 = 8 Hz.  



 
PROBLEM 7.31 

 
 
SOLUTION 
 
This problem is an open-ended design. One possible solution follows.  
 
One approach: let fs = 3.2 Hz, N = 64 (developed in Problem 7.29). The discrete Fourier 
transform will return N/2 = 32 amplitudes corresponding to the N/2 frequencies spaced δf = 
fs/N = 0.05 Hz apart and up to and including fN = fs/2 = 1.6 Hz. The time series is 
 

( ) (4 / )sin(0.2 ) (4 / 3 )sin(0.6 ) (4 / 5 )sin( ) (4 / 7 )sin(1.4 )
(4 / 9 )sin(1.8 )

y t t t t t
t

π π π π π π π π
π π

= + + +
+  

 
To generate a plot, we estimate the DFT using a spreadsheet or the accompanying software. 
 
The 5- term series provides an 
approximate square wave as 
expected (see Chapter 2) of 
the appropriate amplitude and 
period. 
 
The amplitude spectrum 
returns 32 amplitude – 
frequency pairings. 
Amplitudes are zero, except at 
the harmonic frequencies. It 
shows the correct amplitude 
Cn at each corresponding 
harmonic frequency fn for n = 
1,2,3,4,5. For example, C1 = 
4/π at f1 = 0.1 Hz. 
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PROBLEM 7.32 
 
 
SOLUTION  
 
This problem is an open-ended design. One possible solution follows.  
 
Using the example from  Problem 7.30: fs = 16 Hz, N = 256. The discrete Fourier transform 
will return N/2 = 128 amplitudes corresponding to the N/2 frequencies spaced δf = fs/N = 
0.0625 Hz apart up to and including fN = fs/2 = 8 Hz. D1 = 1 V. 
 

1 1 1( ) (4 / ) cos (4 / 3 )cos3 ... (4 /13 )cos13y t D t D t D tπ π π π π π≈ + + +  
 
To generate a plot, we estimate the DFT using a spreadsheet or the accompanying software. 
 
The 7- term series provides 
an approximate triangle 
wave (see Chapter 2)with 
the appropriate amplitude 
and period. The tips of the 
triangle are somewhat 
skewed with this short 
series. 
 
The amplitude spectrum 
returns 128 amplitude – 
frequency pairs. Amplitudes 
are zero, except at the 
harmonic frequencies. It 
shows the correct amplitude 
Cn at each corresponding 
harmonic frequency fn for n 
= 1,2,3,4,5,6,7. For 
example, C1 = 4/π at f1 = 0.5 
Hz. 
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PROBLEM 7.33 

 
 
KNOWN:      RC filter  
            k = 1  

            fc = 100 Hz  
 
FIND:      Attenuation at 10, 50, 75, and 200 Hz  
 
SOLUTION  
 
For a low pass RC Butterworth filter,  
 
           M(f) = 1/[1 + (f/fc)2k]1/2 

 
where k = 1 for a single-stage filter. Note that with k = 1, the filter takes on the first-order 
system form discussed in Chapter 3. 
 
Recall that "attenuation" means reduction (Chapter 3). In the context of a filter, a device that 
reduces  the output amplitude (M(f) < 1) of targeted frequencies corresponds to a device with 
a negative value of dynamic error at those frequencies. Dynamic error is given by  
 
           δ(f) = M(f) - 1  
 
Note: Recall also that "gain" refers to a positive value of dynamic error.  
     
  f [Hz]        M(f)        δ(f)        attenuation  [%]  
 
   10          0.995      -0.005            0.5  
   50          0.894      -0.105           10.5  
   75          0.800      -0.200           20.0  
  200         0.447      -0.553           55.3  



 
PROBLEM 7.34 

 
 
KNOWN:    Low-pass LC Bessel filter with k = 3; fc = 100 Hz  
 
FIND:     Attenuation at 10, 50, 75, 200 Hz  
 
SOLUTION  
 
A three-stage, low-pass Bessel filter will have the transfer function (Chapter 6) 

          ( )
( )
o

k

a
G s

D s
=   

where 2
1 2( ) (2 1) ( ) ( )k k kD s k D s s D s− −= − + , ( ) 1oD s =  and 1( ) 1D s s= + . For unit cut-off 

frequency and with k = 3, D3(s) has the form  
 
          Dk(s) = D3(s) = (2k - 1)D2(s) + s2D1(s)  
 
with  D1(s) = s + 1   and   D2(s) = s2+ 3s + 3. The three stage, unit cut-off  
frequency transfer function is  
 
          G(s) = 15/[s3 + 6s2 + 15s + 15]  
 
With fc = 100 Hz, let 2c cfω π=  = 628 rad/s. We substitute / cs ω for s and solve for s = jω  
to obtain  
    ( )3 3 2 2 3( ) 15 / 6 15 15c c c cG j j jω ω ω ω ω ωω ω = − − + +   

     ( )( ) jM e ωω Φ=  
From which, the magnitude is 

 ( )
1/ 223 2 3 2 3 2( ) 15 / (15 ) (15 6c c c cM ω ω ωω ω ω ω ω = − + −  

 

     
      f    ω M(f)      %Attenuation (= |M(f) – 1|*100) 
                       
     10   62.8 1              0%  
     50   314 0.98         2%  
     75   471 0.94         6%  
    200  1256  0.63       37%  
     



 
PROBLEM 7.35 

 
 
KNOWN:      LC low-pass Butterworth filter  
            -3 dB ≤ M(0 ≤  f ≤  5 kHz)  and  M(f ≥ 10 kHz) ≤ -30 dB  
 
FIND:      Values for R, C and k  
 
SOLUTION  
 
This problem is an open-ended design. One possible solution follows.  
 
For a k-stage, low-pass Butterworth filter,  

           
( )

1/ 22

1( )
1 k

c

M f
f f

=
 +  

 

If we set cf  = 5,000 Hz, then we meet the constraint  -3 dB ≤ M(0 ≤  f ≤  5 kHz) 
immediately. To meet M(f ≥ 10 kHz) ≤ -30 dB, set the attenuation at10,000 Hz to be-30 dB.  
 
Find the number of stages as 

( )2Attenuation( ) 10 log 1 k
cdB f f = +  

 or    ( )230 10 log 1 10000 5000 kdb  − = +  
 

or solving to get k≈  5.     
 
A 5-stage filter has 5 reactive elements. To specify the capacitors and inductors, we refer to 
Table 6.1 and its corresponding Figure. For a normalized value of Rs = 1Ω and a fc = 5000 
Hz: 

/ 2i s cL L R fπ=   ( )/ 2i s cC C R fπ=  

C1 = 19.7µF  C3 = 64µF  C5 = 19.7 µF 

L2 = 103 mH  L4 = 103 mH 

 



 
PROBLEM 7.36 

 
 
KNOWN:     y(t) is a complex periodic waveform passed through a low pass  
                   RC filter and then sampled discretely.  

          fs = 500 Hz  
          Filter cut-off:  fc = 250 Hz  

 
FIND:   fm : The highest frequency harmonic of y(t) that can be sampled and keep  
             ( ) 0.10fδ ≤  
 
ASSUMPTION Sampling criteria selected for proper signal measurement. 
 
SOLUTION  
 
The input signal has the form  
 
           1( ) sin(2 )o n n

n
y t A C nf tπ= + + Φ∑  

 
We are looking for the value for fm = nf1 such that ( ) ( ) 1 0.10m mf M fδ = − ≤ .  
 

           
( )

1/ 22

1( )
1 k

c

M f
f f

=
 +  

 

 
where k =1 here. Setting fc = 250 Hz and M(fm) = 0.9, then  
 

          
( )

1/ 22

10.9
1 250mf Hz

≤
 +  

 

or 121mf ≤  Hz. 
 
With fc = 250 Hz, we know that M(250 Hz) = 0.707. 
 
  



PROBLEM 7.37 
 
 
KNOWN:      A 500 Hz component is to be removed from an analog signal and  
            passed through an A/D converter.  

           M = 8; EFSR = 10 V; fs = 200 Hz  
 
FIND:       Low-pass anti-alias filter with M(500 Hz) ≤ eQ.  
 
SOLUTION  
 
A Butterworth low-pass filter will meet this need.  
 
Quantization error: eQ = ± 0.5[EFSR/2M] = ± 0.5[10V/256] = ±0.01953 V  
 
With fs = 200 Hz, an appropriate anti-alias filter will have fc ≤ 100 Hz.  
We set fc = 100 Hz. To select the order of the filter,  
 
     M(500) = B/A = 1/[1 + (f/fc)2k]0.5 = 1/[1 + (500 Hz/100 Hz)2k]0.5  
 
where the magnitude ratio is defined by the ratio of the output amplitude B to the input 
amplitude A. The quantization error is fixed at 0.01953 V. The output amplitude at 500 Hz 
depends on the input amplitude and M(500), or B = MA. Solving for k in terms of input 
amplitude, A:  
 
           k = [2log A  + 5.597]/1.3979  
 
           A [V]       k  
 
           0.02        2  
           0.10        3  
           1.00        4  
          10.00        6  
 
So if A = 1 V, a two-stage filter will work; if A = 10 V, six stages are needed.  



PROBLEM 7.38 
 
 
KNOWN:     Sensor-transducer: Thermocouple  
              Thermocouple measures 50 70o oT≤ ≤ C  and the signal output is  

             2.585 ≤  E ≤  3.649 mV.  
                   Signal is digitized using an A/D converter:  

             M = 12; EFSR= 10 V  (ie -5 to +5 V, bipolar); SNR = 40 dB  
 
FIND:   (a) eQ/E  
         (b) gain (G) required to reduce a to 5% or less  

 (c) estimate SNR in (b)  
 
SOLUTION  
 
(a)   The quantification error of an M-bit device is estimate by its uncertainty due to its 
resolution 
           ( ) ( )/ 2 / 2 10 / 4096 / 2M

Q FSRe E V= ± = ± = ± 1.22 mV  
The relative quantification error would vary between  
 
           eQ/E = 1.22 mV/2.585 mV = ±0.472  
 
or 47% at 50oC, to  
 
           eQ/E = 1.22 mV/3.649 mV = ±0.33  
 
or 33% at 70oC. Both values are significantly large.  
 
(b)   One means to reduce this relative quantization error is through amplification of the 
analog signal prior to quantization. To achieve 5% or less error requires an input signal of the 
magnitude,  
 
           E = eQ/0.05 = 1.22 mV/0.05 = 24.40 mV  
 
At 50oC (the smallest voltage quantized), this requires a linear amplifier gain of  
 
           G = Eo/Ei = 24.40 mV/2.585 mV = 9.44 ~ 10  
 
Or roughly, use an amplifier having a linear gain of 10.  
 
(c)   Any signal is composed of a magnitude attributable to deterministic signal, Es and a 
magnitude attributable to noise, En.  
 



           SNR = 20log Es/En 
 
With SNR = 40 dB, Es= 100En.  
 
COMMENT  
  
During signal amplification, all information (within the frequency range of the amplifier) will 
be scaled by the gain of the amplifier. So the SNR based on the incoming signal and signal 
noise will not change. At the analog level, amplifying a signal will not affect the SNR. You 
need a combination of filters and amplifiers to help with that. 
 
But amplification of the analog signal occurs before quantization. Quantization error is added 
during sampling. Quantization error will manifest itself as random noise on the sampled 
signal. In effect, it reduces the SNR.  
 
We see in part (a) that the sampled signal will be masked by this large quantization error 
noise level. We see in part (b) that the signal level is raised to a level where it will not be 
masked by the quantization noise. So a benefit in amplification is realized as a reduction in 
the relative quantization error. 



PROBLEM 7.39 
 

 
KNOWN: A/D Converter: M = 8 or 12; EFSR = 10 V; 0 < fs ≤ 100 Hz  
 
FIND: Specify M, fs, amplifier gain G, and filter (type, fc and k). Estimate eQ  
           and Nδt expected for your choice.  
 
SOLUTION  
 
These design problems have an open-ended solution path. To demonstrate, one possible 
solution is presented for each case.  
 
(a) E(t) = 2sin 20πt  V  
 
    The input signal has an amplitude of A = 2 V and a single frequency of f1 = 10 Hz. 
Accordingly, we will want  
      (1)     fs > 2fm   that is       fs > 20 Hz  
      (2)     mf1 = Nδt    m = 1, 2, ...  
to correctly reconstruct both signal frequency and amplitude in the time discrete series. If we 
set fs = 40 Hz so as to satisfy (1), we should sample the signal at data rates in multiples of 4, 
i.e. from (2)  N = 4m, m = 1, 2, ... . The sample period, Nδt, will then be consistent with (1) 
and (2).  
    The 12-bit A/D converter is chosen for its better resolution and, hence, lower quantization 
error:  
 
           Q = EFSR/2M = 10 V/4096 = 2.44 mV  
 
           eQ/E = ± 0.5Q/A = ±0.00122 V/(2 V) = ± 0.0006  
 
Because A = 2 V, which fits within the ±5 V range of the converter, AND because the 
relative quantization error is so small, no amplification is required.  
    An anti-alias filter is always required. A low-pass, LC Butterworth filter is selected for its 
flat bandpass characteristics. Set fc = fs/2 = 20 Hz.  The order of filter affects signal 
attenuation at f1 = 10 Hz. The dynamic error is 
 
           δ(f) = M(f) - 1 = 1/[1 + (f/fc)2k]1/2 - 1  
 
                   k       M(10 Hz)  δ(10 Hz)  [%]    Attenuation [%] 
 
                   2        0.971         - 2.99     2.99  
                   3        0.992         - 0.8     0.8  
 
Set k = 3 to provide an attenuation due to the filter of less than 1% at 10 Hz.  



 
(b) E(t) = 1.5sin πt + 20sin 32πt - 3sin (60πt + π/4)  V  
 
    The input signal contains amplitudes of A1, A2 and A3 with frequencies of f1 = 0.5, f2 = 16 
and f3 = 30 Hz, respectively. The maximum frequency in the signal, fm, is 30 Hz. The signal 
does not contain a single fundamental frequency. We need  
 
          (1)   fs > 2fm   or  f > 60 Hz  
 
          (2)   mT = Nδt    m = 1, 2, ...  
 
Criterion (2) can be rewritten as  m/f = N/fs. In order to meet both criteria for this signal 
requires a minimum sample rate of fs = 240 Hz with N = 480 (i.e. Nf/fs = 1, 32 and 60, an 
exact integer multiple of each of the three frequencies, respectively). Alas, the A/D converter 
does not have such a capability! As one compromise, setting fs = 80 Hz with N = 160m will 
meet the criteria for both the f1 and f2 components, but not for f3. We should expect leakage 
about f3 in the discrete time series representation. An alternative approach is to use trial  
and error on fs and N until leakage is reduced to acceptable levels.  
    The 12-bit A/D converter is chosen for its better resolution.  
 
           Q = EFSR/2M = 10 V/4096 = 2.44 mV  
     
Amplitude A2 will saturate the A/D converter. We choose a linear amplifier with a gain of G 
= 0.2 to keep the signal well within range. The relative quantization error becomes:  
 
           eQ/E = ± 0.5Q/GAi = ± 0.00122 V/GAi  
 
which, for values of A1, A2, and A3, results in an eQ of 0.004, 0.0003, and 0.002 for the three 
respective frequencies. Because this is below 1%, a value that we judge sufficient, the 
amplifier gain seems appropriate.  
    An anti-alias filter is always required. A low-pass, LC Butterworth filter is selected for its 
flat bandpass characteristics. Set fc = fs/2 = 40 Hz.  
 
The order of filter affects signal attenuation at each fi . The dynamic error is 
 
           δ(f) = M(f) - 1 = 1/[1 + (f/fc)2k]1/2 - 1  
 
          k        M(0.5)     M(16)      M(30)      δ(30) [%]      Attenuation [%] 
 
          3         1             1             0.92         - 8   8 
          5         1             1             0.97         - 3   3 
          7         1             1             0.99         - 0.9   0.9 
 
Set k = 7 to keep attenuation below 1% at all frequencies (see COMMENT).  
 



COMMENT  
 
A seven-stage (k = 7) filter is a high order for a passive filter circuit, but it will these 
requirements. Note that the high k required results from the sample rate. If fs, and then fc, 
were increased, the attenuation criterion could be met with a lower order filter. Try it! 
 
(c) P(t) = -10sin 4πt + 5sin 8πt psi;  K = 0.4 V/psi  
 
    The voltage signal sensed by the data acquisition system will be  
 
    E(t) = KP(t) = -4sin 4πt + 2sin 8πt V  
 
    The input signal has amplitudes A1 = 4 V and A2 = 2 V with f1 = 2 Hz and f2 = 2f1, 
respectively. The maximum frequency is fm = 4 Hz. We want  
 
           (1)   fs > 2fm    or   fs > 8 Hz  
           (2)   mT1 = Nδt   m = 1, 2, ...  
 
Criterion (2) can be rewritten as m/f1 = N/fs. If fs = 10 Hz, then we should sample at data rates 
of N = 2m.  
    The 12-bit A/D converter is chosen for its better resolution and small relative quantization 
error:  
           Q = EFSR/2M = 10 V/4096 = 2.44 mV  
           eQ/E = ± 0.5Q/Ai = ±0.00122 V/Ai  
For A1 = 4 V and A2 = 2 V, eQ/E = ± 0.0003 and 0.006, respectively. Because A1 and A2 fit 
within the ±5 V range of the converter AND because the relative quantization error is so 
small, no amplification is required.  
    An anti-alias filter is always required. A low-pass, LC Butterworth filter is selected for its 
flat bandpass characteristics. Set fc = fs/2 = 5 Hz.  
 
            
The order of filter affects the attenuation. The dynamic error is 
 
           δ(f) = M(f) - 1 = 1/[1 + (f/fc)2k]1/2 - 1  
 
 
          k         M(2)      M(4)        δ(4) [%]  
 
          1        0.98        0.78           - 22  
          5        1            0.95           -  5  
          7        1            0.98           -  2   
 
We set k = 5 to keep attenuation below 5%.  
 
 



COMMENT  
 
One way to improve on this attenuation number without increasing the number of required 
filter stages is to choose a higher value for fs. This enables selecting a higher fc. For example, 
with fs = 50 Hz, N = 25m, we could set fc = 25 Hz requiring k = 1 to reduce attenuation well 
below 1%.  
                       



PROBLEM 7.40 
   
   
KNOWN:  y(t) = 4 sin 2πf1t + 2sin 2πf2t + 3 sin 2πf3t 
  where f1 = 4 Hz, f2 = 10 Hz, and f3 = 21 Hz 
 
FIND:  N and effective sample rate   
 
SOLUTION  
 
The signal frequency content is found by inspection. The maximum frequency is fm = 21 Hz. 
To meet the Sampling Theorem criterion we will want 
  fs > 2fm = 42 Hz 
To determine the sample size, the amplitude ambiguity criterion based on the fundamental 
period T1 is  mT1 = Nδt. This will eliminate spectral leakage. 
 
This signal has no 
fundamental period, so its 
lowest frequency is used. 
For f1 = 4 Hz,  
T1 =1/4 s. So, N = m/4δt. 
For m = 1 integer period: N 
= 1/4δt = fs/4. Use some 
reasonable combination of 
these. For example, if we 
want N to be an multiple 
power of 2 (useful for many 
DFT algorithms), then try N 
= 256 and this sets fs = 64 
Hz. This combination meets 
both criteria. The resulting 
DFT is exact. 
 
Alternatively, a good 
approximation of the signal 
can be had by following the 
rule to use an fs > 5fm.This 
yields, fs > 5fm > 105 Hz. 
Any N, fs > 105 Hz 
combination works. Here we 
try fs = 110 Hz and N = 256. 
Note the spectral leakage 
with amplitude degradation. 
Try fs = 128 Hz and N = 
256! 
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PROBLEM 7.41 

 
 
KNOWN:  Transducers: ±1 V output; ±25 cm H2O  input  
         DAS: M = 10; EFSR = 10 V; 4 MB memory; 10 min. battery life. 
  T1 = 0.5 sec   
 
FIND: N, fs, fc, G  
 
SOLUTION  
 
The transducer sensitivity is: K = 2V/50 cm H2O = 0.04 V/cm H2O.  
 
The A/D resolution is:  Q = 10V/210 = 0.00976 V. This can be expressed as Q = 0.00976 
V/0.04 V/cm H2O = 0.244 cm H2O/bit.  
 
Set G = 5. Although sensitivity already meets problem constraints, an analog amplifier 
between the transducer and the A/D with a gain of G = 5 will take full advantage of the A/D 
range and improve resolution:  
      Q = 10V/(5)(210) = 0.00195 V = 0.0488 cm H2O/bit.  
So a full scale input on pressure (± 25 cm H2O) corresponds to full scale to the A/D (± 5V). 
 
We are interested in mean values and signal dynamic frequency content at about f1 = 1/T1 = 2 
Hz. So any fs > 4 Hz with appropriate anti-alias filter will meet the Sampling criterion. Using 
the mT1 = N/fs criterion to minimize amplitude errors, we would try to set N = m(0.5)fs, 
where m is an integer. At fs = 20 Hz, 12,000 samples will be taken per channel over a 10 
minute period. 
 
We should use an anti-alias filter set at fc = fs/2 .  
 
COMMENT  
 
You can always use higher sample rates. However, be aware that a higher sample rate means 
a larger data set to analyze. In many cases, this is fine but sometimes it becomes a real 
burden. In this example, an engineer at a race car track test might have 2 minutes to offer 
advice on car modifications before the next test run. Being smart during acquisition will help 
the engineer get the information faster (from analysis) so more time can be spent on 
decisions. 
 



 
Lay-out for Problem 7.41. 

Transducer 
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card 

memory 
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PROBLEM 7.42 
 
 

KNOWN: Transducer in Problem 4.41 with accuracy of 0.25% 
  Measurement (precision) uncertainty of 0.10 cm H2O noted 
 
FIND: ud at M = 10 and M = 12 
 
SOLUTION 
 
The transducer sensitivity is: K = 2V/50 cm H2O = 0.04 V/cm H2O 
 
The A/D quantization uncertainty, uo, is estimated by 
 
 (uo)A/D = 10V/210 = 0.00976 V   
 
or in terms of pressure 
 
 (uo)A/D = (0.00976 V)/0.04 V/cm H2O = 0.244 cm H2O 
 
This just meets the requirements. 
 
A typical good quality A/D converter might have an overall accuracy to within 1 LSB. Using 
this value, the instrument error is 
 
 (uc)A/D = 0.244 cm H2O 
 
The transducer has an instrument error of 0.25%. At full scale, 
 
 (uc)p = (0.0025)(25 cm H2O) = 0.0625 cm H2O 
 
Then, 
 
 (ud)system = ± [ (0.244)2 + (0.244)2 + (0.0625)2]1/2

  = ± 0.35 cm H2O    (95%) 
 
If we include the additional knowledge that the data scatter adds a random uncertainty of 
about 0.10 cm H2O, then this estimate becomes, 
 
 (ud)measurement = ±[(0.35)2 + (0.10)2]1/2 = ± 0.36 cm H2O (95%) 
 
Note how the A/D converter qualities dominate the overall uncertainty. The random 
uncertainty from the measurement plays almost no role. 
 



 
 
Improving the A/D converter to a 12-bit unit provides: 
 
  (u0)A/D = 0.061 cm H2O 
 
Then, assuming an overall accuracy of 1 LSB, 
 
  (uc)A/D = 0.061 cm H2O 
 
and 
 
  (ud)system = ± 0.11 cm H2O   (95%) 
 
Now, the transducer and A/D converter contribute more equally to overall uncertainty while 
the uncertainty has been reduced notably. 
 
Including the random uncertainty has an effect now, as 
 
  (ud)measurement = ± 0.15 cm H2O   (95%) 
 
 
 



PROBLEM 7.43 
 
 
KNOWN:    Set-up of Figure 7.17 
  Ei = 3.333 V 
  Rs = R2 = R3 = R4 = 120 Ω 

Rnull ≈39 kΩ 
 
FIND:  Offset null voltage, Enull 
 
SOLUTION 
 
The adjustable trim pot has a nominal value at 39 kΩ. You adjust the value of the trim pot to 
achieve the desired nulling voltage required to provide a zero output when the strain gauge is 
not load (zero input). Consider the trim pot as the "fine tuning knob." 
 
The offset null voltage available is found from 
 

3

3

( )
2 ( )

i i null s
null

null s null s

E E R R R
E

R R R R R
 +

= ± − 
+ +  

    

 
(3.333 )(120 )(39000 120 )3.333

2 (39000)(120) 120 (39000 120 )null
VVE

 Ω Ω+ Ω
= ± − + Ω Ω+ Ω 

 

    = ± 0.00256 V = ± 2.56 mV 
 

Notice how this value will change: (1) if you use a different excitation voltage, (2) use a 
different trim potentiometer resistance (often done by using a shunt resistor with the existing 
trim pot). 
 
COMMENT 
 
The particular arrangement uses a single strain gauge sensor, known as a quarter-bridge 
arrangement (as opposed to two strain gauge sensors, called a half-bridge, and four strain 
gauge sensors, called a full-bridge).  
 
The quarter-bridge sensor resistance is matched with a resistor of equal resistance, as indicted 

by fixed resistor R3 = 120 Ω. R3 is sometimes called the "completion resistor." Because the 
resistor resistance values around the bridge are nominal values (i.e.,    not exactly equal to 
120 Ω), the bridge will likely not be balanced at zero input conditions. Hence, a nulling 
voltage is used to subtract out any output voltage at zero input occurring due to slight 

differences in resistor values.



 PROBLEM 7.44 
 
 
KNOWN:  LC low-pass Butterworth filter 
             fc = 10 Hz 

            M(f = 5 Hz) ≥ 0.95 
M(f = 20 Hz) ≤ 0.10  

  Rs = RL = 10Ω 
FIND:      Values for L, C  and k 
 
SOLUTION 
 
This problem is an open-ended design and one possible solution follows.  
 
For a low-pass, Butterworth filter such as shown in Figure 6.31, we begin by fixing the cut-
off frequency (known to be 10 Hz here) and then estimating the order (number of reactive 
stages) k needed to meet the constraints at 5Hz and 20 Hz. We end by specifying the C and L 
values. For the filter: 
           M(f) = 1/[1 + (f/fc)2k]1/2 

 
For f = 5 Hz, f/fc = 0.5; For f = 20 Hz, f/fc = 2 
  
          M(5Hz) = 0.95 = 1/[1 + (5/10)2k]1/2  
This gives k = 1.6 ≈ 2. 

 
M(20Hz) = 0.95 = 1/[1 + (20/10)2k]1/2 

 
This gives k = 3.3 ≈ 4. Note: these equations can be manipulated to yield k directly as, 

2

2

c

1 Mlog( )
Mk

2log(f/f )

−

=  

So select the higher order filter to meet both constraints: k = 4 
 
A four-order filter has four reactive elements. To specify the capacitors and inductors, we 
refer to Table 6.1 with its scaling equations: 

 
Hence, for a normalized value of R = 10Ω and fc = 10 Hz, estimates for C and L yield: 
 
C1 = 1.218µF   C3 = 2.94µF    
L2 = 0.294 H   L4 = 0.122 H 
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PROBLEM 7.45 
 
 
KNOWN:  Second order LC low-pass Butterworth filter (k =2) 
             fc = 100 Hz 

             
FIND:       Attenuation at 10, 50, 75, 200, 400 Hz 
 
ASSUMPTION: Input and output impedance are 1Ω  
 
SOLUTION 
 
For a Butterworth low pass filter, the magnitude ratio is given by: 
 
           M(f) = 1/[1 + (f/fc)2k]1/2 

 
In terms of decibels, this is dB = 20 log M. 
 
Attenuation = 1 - M(f) or, in decibels, Attenuation(dB) = -20 log M 
 
For f = 10 Hz, f/fc = 0.1 
  
 f f/fc    M  Attenuation 
 
10 0.1 0.9998  0dB 
50 0.5 0.970  0.26dB 
75 0.75 0.872  0.6 dB 
200 2 0.243  12.3 dB 
400 4 0.0623  24 dB 
 
 
  
 
 
 
 
 
 
    
 
 
 
 



PROBLEM 7.46 
 
 
Program Leakage allows the user to vary the sample rate and the sample number. It displays 
the original and sampled waveforms and their corresponding amplitude spectra.  
 
Use Leakage as a tutorial surrounding the discussion of Figure 7.4. 
 
 
 
 

PROBLEM 7.47 
 
 
Program Aliasing allows the user to vary the input frequency and the sample rate of a 
continuous signal. It displays the original and sampled waveforms and their corresponding 
amplitude spectra.  
 
Use Aliasing as a tutorial to study the effect of sample rate on both the frequency content and 
the time domain waveform. Look closely at the amplitude information in the sampled signal. 
With this program, you can test the Sample Theorem and the Amplitude Ambiguity criteria 
directly. 

 
 



PROBLEM 7.48 
 
 
Program Aliasing allows the user to vary the input frequency and the sample rate of a 
continuous signal. It displays the original and sampled waveforms and their corresponding 
amplitude spectra.  
 
Use Aliasing as a tutorial to study the folding diagram (Figure 7.3).  
 
fs = 10 Hz  ⇒    fN = 5 Hz     5 Hz is displayed as the Nyquist frequency 
 
So 5 Hz is the fN folding point on the folding diagram  
0 Hz is the other folding point and 0 Hz is always one of the folding points. 
 
Moving the slider on the signal frequency shows: 
 
 f = 10 Hz = 2fN ⇒  fa = 0 Hz 
 f = 15 Hz = 3fN ⇒  fa = 5 Hz 
 f = 20 Hz = 4fN ⇒  fa = 0 Hz 
 
 f = 8 Hz  =  1.6 fN ⇒  fa = 2 Hz 
 f = 11 Hz = 2.1 fN ⇒  fa = 1 Hz 

f = 13 Hz = 2.6 fN ⇒  fa = 3 Hz 
f = 16 Hz = 3.2 fN ⇒  fa = 4 Hz 

   



PROBLEM 7.49 
 
 
Program Signal allows the user to vary the sample rate of a continuous signal (selected from 
a pull down menu). It displays the original and sampled waveforms and their corresponding 
amplitude spectra.  
 
Use Signal as a tutorial to examine the effect of sample rate on both the time domain and 
frequency domain discrete representations of the original signal. 

 
 

PROBLEM 7.50 
 
 
Program Leakage focuses on spectral leakage due to sampling. The user can select sample 
rate and the number of sampled points so as to control the sample period. In this way, both 
the length of the signal measured is controlled, as well as the spectral resolution δf.  
 
As you vary 
sample rate and 
N, look at the 
waveform 
presented. This 
is the 
waveform 
measured. In 
particular, look 
at the last 
period 
measured. If it 
is a complete 
period, there 
will be no 
leakage, 
otherwise there 
will be some. 
Spectral 
leakage is 
eliminated 
when the 
dominant 
frequencies are 



centered within the interval define by each δf. This is the basis for the amplitude ambiguity 
criterion. When a frequency is not centered within δf, some information spills out into 
adjacent intervals.  
 
 

 
 



PROBLEM 8.1 
 
 
KNOWN/FIND:  Define and discuss the significance of: 

a) temperature scale 
b) temperature standards 
c) fixed points 
d) interpolation 

 
SOLUTION: 

a) temperature scale - an established relationship for assigning numerical values 
to measures of temperature.  The absolute temperature scales are: 

the Rankine scale, for U.S. customary units 
the Kelvin scale, for SI units 

b) temperature standards - a formally adopted and recognized means for practical 
realization of temperature measurement.   Standards provide a means for the 
measurement of temperature which can be reproduced and agrees with the 
thermodynamic definition of temperature.   
c) fixed points - identifiable and experimentally reproducible conditions which are 
associated with a certain temperature (numerical value).  See Table 8.1.   
d) interpolation - a method for determining temperatures other than those defined 
by fixed points on a temperature scale.   For the majority of applications, the 
interpolating instrument is a platinum RTD. 

 



PROBLEM 8.2 
 
 
KNOWN:  An apparatus to produce phase equilibrium points is required.  
 
FIND:  Describe the conditions necessary to establish phase equilibrium points.  Identify 
the effects of elevation, weather and material purity. 
 
SOLUTION: 
 
Other than the vapor-pressure-temperature points for helium and hydrogen, the fixed 
points for ITS-90 are freezing points, melting points or triple points. 

triple point - The procedure for calibrating a thermometer at a triple point is: 
1. completely freeze the sample (an appropriate mass of material) in a closed 
container 
2. experimentally determine the energy required to melt the sample 
3. re-freeze the sample 
4. Add energy and record the thermometer output at 10, 20 40, 60, 70 and 80% 
melted.  These readings should agree. 

This procedure demonstrates that a container capable of preventing contamination of a 
sample of material, while allowing the removal and addition of energy, is required to 
establish the triple point for a material. Similar requirements are needed for 
melting/freezing points, with the notable exception that containers must generally be 
flexible, to accommodate thermal expansion.  Representative values of measured 
temperatures agree to 0.1 mK. 
 
A sample which is 99.9999% pure will produce measured temperatures over a phase 
change within 0.1 mK. 
 
Weather and elevation should be eliminated through appropriate design of the 
experimental apparatus. 



 
PROBLEM 8.3 

 
 
KNOWN:  A length of platinum wire having: 
   length, l = 2 m 
   diameter, D = 0.1 cm 
   resistivity, ρe = 9.83 × 10-6 Ω-cm 
FIND:  The resistance of the wire, R 
 
SOLUTION: 
 
Since  

R
l

A
e

c
=
ρ

 

and  

( )22 20.1 0.0079 cm
4 4cA Dπ π

= = =  

The resistance is found as  
 

( ) ( ) ( )6 2

2

9.83 10 2 m 10  cm/m
0.25 

0.0079 cm
R

−×
= = Ω  

 
COMMENT:  An RTD would normally have a reasonably large resistance, on the 
order of 25 Ω.   As such, a very small diameter wire or long length must be employed. 



PROBLEM 8.4 
 
 
KNOWN:  A Wheatstone bridge and RTD as shown in Figure 8.35, with 
 
   α = 0.003925°C-1 
   Ro = 25 Ω at 0°C 
   R1 = 41.485 Ω for balanced conditions 
 
FIND:   a) The temperature of the RTD 

  b) Compare the static sensitivity of this circuit  
  to the circuit in Example 8.2 
 
SOLUTION:  
 
At balanced conditions 
 

R
R

R
R

2

3

1

4
=  

and when R1 = 41.485 Ω  

1
41485
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we find 

T =
−

41485
25

1

0 003925

.

.
  and T = 168°C 

b) The static sensitivities are the same, since R = R1 (R3/R2) and R2 = R3 in both cases. 



PROBLEM 8.5 
 
 
KNOWN:  A thermistor has a resistance of 20,000 Ω at 100°C. 
 
   β = 3650°C 
   Ro = 20,000 Ω  
   R = 500 Ω  
 
FIND:   The temperature corresponding to a thermistor resistance of 500 Ω. 
 
SOLUTION:  
 
From (8.11) 
 

R R eo
T To=
−









β

1 1

 
Letting Ro = 20,000 Ω 
 

1 13650
373500 20,000 TR e

 − 
 = =  

and 

1 1ln 500 ln 20,000 3650
373T

 = + − 
 

 

Solving for T 
 
  T = 598.7 K = 325.7°C 



PROBLEM 8.6 
 

KNOWN:  The uncertainty in temperature 0.005Tu C= ± ° . 
FIND:   Required uncertainty in measured resistance. 
 
ASSUMPTIONS: Initially assume that we wish to find the required uncertainty in 
resistance measurement as if it were the only contributor to the total uncertainty.  In 
addition, this problem is open-ended to some extent, in that some nominal value of Ro 
must be assumed, or a range of values for Ro examined. 
 
SOLUTION:  
 
With 
 

( )[ ]R R T To o= + −1 α  

and α = 0.003925°C-1, we can express 
 

u
T
R

uT R=
∂
∂

 

 

Then  
1
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o
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T T
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 − 
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∂
∂ α
T
R Ro
=

1
 

Taking Ro = 100 Ω 

( ) ( )
o1 2.55 C/

0.003925 100
T
R

∂
∂

= = Ω  

and the uncertainty in resistance is  

uR = ±0 00196.  Ω 

COMMENT:  A parametric examination of the effect of the value of Ro on the 
uncertainty would contribute to the fundamental understanding of the measurement (see 
plot below).  This is crucial at the design stage for a measurement system, and would 
provide information concerning the sensitivity of the design to Ro. 
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PROBLEM 8.7 
 
 
KNOWN/FIND: Define and discuss the following terms related to thermocouple 
circuits: 
 
a) thermocouple junction 
b) thermocouple laws 
c) reference junction 
d) Peltier effect  
e) Seebeck coefficient 
 
 
SOLUTION:  
a) thermocouple junction - electrical connection between two dissimilar metals which form 
a thermoelectric circuit. 
 
b) thermocouple laws - observed behavior of thermoelectric circuits which allow the 
measurement of temperature using thermocouple circuits. 
 
c) reference junction - an emf is present in a thermoelectric circuit having two junctions 
maintained at different temperatures.  In order to measure temperature, one of the 
junctions must have a known temperature, and is called the reference junction. 
 
d) Peltier effect  - this phenomenon results from the conversion of electrical to thermal 
energy at a junction. 
 
e) Seebeck coefficient - defines the relationship between temperature and emf for a 
thermocouple circuit. 
 



 
PROBLEM 8.8 

 
 
KNOWN:   For a J-type thermocouple, the measured emf at the potentiometer:    

emf = 13.777 mV, for a reference junction temperature of 0°C 
 
FIND:   Measuring junction temperature 

ASSUMPTIONS: The J-type thermocouple is within NIST standards and Table 8.6 
may be utilized. 
 
SOLUTION:  
 
From Table 8.6  with an emf = 13.777 mV and a reference junction temperature of 0°C 
 
the temperature is found as 254oC. 
 

PROBLEM 8.9 
 

KNOWN:  J-type thermocouple in Fig. 8.36 produces 15 mV for T1 = 750°C 
 
FIND:   T2 
 
SOLUTION: 
 
The law of intermediate temperatures provides that  
 

2121 TTTT emfemfemf −=−  
 

Referenced to 0°C, the emf corresponding to 750°C is 42.281 (Table 8.6) 

Thus the reference junction temperature, T2, has an emf, referenced to 0°C of 42.281-

15 mV which yields 498°C. 



PROBLEM 8.10 
 
KNOWN:   

T-type thermocouple in Fig. 8.36 produces 6 mV for T1 = 200°C 
 
FIND:   

T2 
 
SOLUTION: 

 
The law of intermediate temperatures provides that  
 

2121 TTTT emfemfemf −=−  
 

Table 8.7 provides the reference function relating emf and temperature for a T-type 

thermocouple referenced to 0°C.  We must solve the following polynomial for T2: 
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This equation is most conveniently solved in a spreadsheet or higher-level mathematical 

software package.  The value of T2 is 78.46°C. 

 



PROBLEM 8.11 
 
 
KNOWN:   

a)  Thermocouple circuit of Fig. 8.37a yields an emf 
of  7.947  with Tref = 0°C 
         
b)  Tref = 25°C 
 
c)  Tref = 0°C with copper extension wires installed 

 
 FIND:  The indicated temperature 

ASSUMPTIONS: NIST standard thermocouple behavior 

SOLUTION:   
a) from Table 8.6,  T =  148.9°C 
 
b)  Knowing emf1 + emf2 = emf3 
 
            7.947 mV = emf0-25  + emf25-148.9 

 
with emf0-25 = 1.277 mV yields 6.67 mV for the output. 
 
c)  148.9°C 



PROBLEM 8.12 
 
KNOWN:  A J-type thermocouple referenced to 70°F.   
output emf = 2.878 mV with Tref = 70°F. 
 
FIND: The temperature of the measuring junction 
  
ASSUMPTIONS: NIST Standard Behavior 
 
SOLUTION:   
 
To utilize Table 8.6, convert  °F to °C  
 

           70°F = 21.1°C 
 
and employing the Law of Intermediate Temperatures 

emf0-21.1 = 1.076 mV 
 

emf0-T = 1.076 + 2.878 = 3.954 mV   
and 
           T = 75.7°C 
 

 
PROBLEM 8.13 

 
 
KNOWN:  A J-type thermocouple referenced to 0°C;  

output emf = 4.115 mV 
  
FIND:  The temperature of the measuring junction 
 
ASSUMPTIONS: NIST Standard Behavior 

 
SOLUTION: From Table 8.6 at an emf of 4.115 mV 
 

T = 78.7°C 



PROBLEM 8.14 
 
 
KNOWN:  An uncertainty level  uT = 2°C  at 200°C is required for a temperature 
measurement using a T-type thermocouple.  The readout device used for this temperature 
measurement has: 

accuracy:  ± 0.5°C  (e1) 
resolution: ± 0.1°C (e2) 

 
FIND:  Determine if the uncertainty constraint is met. 
 
ASSUMPTIONS:     NIST Behavior 
 
SOLUTION:   
The elemental errors associated with the indicator (output stage) may be combined as 
 

e e1
2

2
2 2 205 0 05 0503+ = + = ±. . . o C 

 
This is the uncertainty that would result if the thermocouple exactly followed NIST 
Standard Behavior.  The uncertainty due to variations from the NIST Standard is found 
from Table 8.5 as ±1.0°C or ± 0.75%, whichever is larger.  This yields ±1.5°C, and 
 

uT = + = ±15 0503 1582 2. . . o C 
 
Yes, the uncertainty constraint is met. 
 



PROBLEM 8.15 
 
 
KNOWN:  Thermocouple arrangement shown in Figure 8.21 with  
    

N = 3 
J-type thermocouples  
all junctions sense 3°C temperature difference 
Maximum variation from NIST - 0.8%  
Voltage measurement uncertainty ± 0.0005 V 

 
  
FIND:   

a) thermopile output for an average junction temperature of 80°C 
b) the design stage uncertainty in measured temperature 

 
 
SOLUTION:  
The thermopile output will be 3 times that for 1 thermocouple sensing ∆T = 3°C at 80°C 
(approximated from Table 8.6) 
 

o -10.053 mV Cemf
T

∂
∂

=  

 
The output is then 
 

3 × (3°C) × (0.053 mV/°C) = 0.477 mV 
 
b)  First find the uncertainty in temperature which results from the uncertainty in the 
voltage measurement 
 

u T
emf

uT emf=








∂
∂

 

 
But  ∂ ∂

T
emf is the slope of the emf vs T curve at 80°C for the thermopile.  For a single 

thermocouple, this slope is 1/0.053.   For the thermopile, this slope is 1/[3(0.053)]  
or 0.053 mV/°C.   This yields 
 

( )
o

o1 C 0.05 mV 3.1 C
0.053 mVTu

 
= = ± 
 

 

 



and there is a contribution due to the variation of the thermocouple from NIST standards, 
which is related to the uncertainty in the slope of the curve shown below 
 

 
 
 
 
 
 
 
At  ∆T = 3oC, the 
uncertainty in 
temperature based 
on the ±0.8% 
yields  ±0.024°C, 

in the ∆T.  Thus the resulting uncertainty is given by 

uT = + = ±0 024 31 312 2. . . o C  
 
COMMENT: 
 
The value of ∂ ∂emf T   is relatively insensitive to temperature; for example, at 400oC the 
value is 0.055 mV/oC.  The uncertainty in voltage of ±0.5 mV is unacceptable for most 
temperature measurements, since the resulting uncertainty is higher than the measured ∆T.  
However, if the number of junctions increased to 10, the resulting uncertainty would be 
±0.94°C, which may be acceptable in many cases.   
 

 



PROBLEM 8.16 
 
 
KNOWN:  Values of temperature and emf for a given reference temperature 
  
FIND:  Complete the table of values 
 
ASSUMPTIONS: NIST Standard Behavior 
 
SOLUTION:   
       Temperature [oC] 
 
Measured  Reference  emf [mV] 
  

100 0 5.269 
   

-10 0 -0.501 
   

100 50 2.684 
   

96.6 50 2.5 
 
 



PROBLEM 8.17 
 
 
KNOWN:  A thermopile having 
 
        4 junctions (N = 4) 
        Tref = 0°C 
        T = 125°C 

        uemf =   ±0.0001 V = ±0.1 mV 
  
FIND:   
 
a)  emf 
b)  N for an uncertainty of  ±0.1 C 
 
ASSUMPTIONS:  NIST Standard Behavior 
                J-type thermocouple 
 
SOLUTION:  
a) for a single thermocouple  

                  emf1 = 6.634 mV 

Thus for the thermopile the output would be  

4(6.634 mV) = 26.536 mV 
 
b) The static sensitivity of the thermocouple at 125°C is approximately 0.055 mV/°C and 
 

u T
emf

uT emf=








∂
∂

 

Thus  
 

( )0 1 1
0 055

0 0001 10

18 2

3.
( . )

.

.

o o  C C mV mV

  or  19

= ×

=
N

N
 



PROBLEM 8.18 
 
 
KNOWN:  A bimetallic thermometer serves as the sensing element in a thermostat for a 
residential heating/cooling system. 
 
  
FIND:   
Considerations for 
       a)  location for the installation of the thermostat 
       b)  effect of the thermal capacitance of the thermostat 
       c)  thermostats are often set 5°C higher in the air conditioning season 
 
ASSUMPTIONS: Goal is to measure the air temperature inside the house 
 
SOLUTION: Answers should address the following 

1.  Location should be on an inside wall to minimize conduction errors 
2.  Location should not be exposed to direct solar radiation, to prevent radiation 
errors 
3.  Location should not be in the direct flow from the HVAC system 
4.  The thermal capacitance of the bimetallic thermometer typically yields a time 
constant much shorter than required to regulate room temperature 
5.  Thermostats are typically set 5°C higher in summer primarily to save energy, 
but also to accommodate seasonal lifestyle changes. 
 

 



PROBLEM 8.19 
 
KNOWN:  A J-type thermocouple is to be used at temperatures between 0 and 100°C.  
A single calibration point is available, at the steam point.  Barometric pressure is  
30.1 in. Hg, and the measured emf = 5.310 mV  

FIND:  Develop a calibration curve for this thermocouple 

ASSUMPTIONS: (emfref - emfmeas) is linear from 0°C to 100°C  

SOLUTION:  
First, determine the steam point temperature for this barometric pressure 

Tst = + −




− −





212 50
30 1

29 921
1 20 95

30 1
29 921

1
2

.422
.

.
.

.
.

 

which yields Tst = 212.30°F = 100.17°C 

A calibration curve can be plotted with the dependent variable as (emfref – emfmeas) where 
  emfref = NIST standard emf value (mV) 
  emfmeas = measured output from thermocouple (mV) 
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In this case, from Table 8.6 

    emfref = 5.278 mV 
and we have a single data point at T = 100.17°C where (emfref – emfmeas) = - 0.032 mV 
A second calibration point is known, since, at 0°C  emfmeas = 0.  Assuming linear behavior 
for the error between these two points yields the calibration curve shown above.  The 
curve is used to correct a measured emf to an equivalent NIST standard thermocouple 
output. 
 
b) (Note:  part b of this problem requires using some judgement in setting uncertainty 
levels for various contributions to uncertainty) 
One contribution to the uncertainty would result from the measured barometric pressure 
(at the design stage) 

u T
P

uT P= 





∂
∂

 

Assume up =  ± 0.05 in. Hg  and from 

  
( )

T P
P

P
P

T
P P P

P
P

st
o o

st

o o o

= + −






 − −









= − −








212 50 1 20 95 1

50 2 20 95 1

2

.422 .

.422 .∂
∂

 

at 30.1 in. Hg            
∂
∂
T
P
st = 1.677°F/in.Hg = 0.93°C/in. Hg 

 
The contribution to uncertainty would be  

( )( )uT = = ±0 93 0 05 0 047. . .o oC / in.Hg  in.Hg C  

Some estimate of the uncertainty due to the assumed behavior of emfref – emfmeas must be 
made.  A reasonable estimate may be to take 1/4 of the maximum deviation, 32 µV, and 
assign this value of uncertainty at the midpoint of the calibration range, such that in this 
case at 2.5 mV the uncertainty would be 

8 Vµ±  
yielding an uncertainty in temperature of   ±0.00044°C 
 
COMMENT: 
Without additional measured data points, a reasonable estimate of the deviation from the 
assumed linear behavior for emfref – emfmeas yields an uncertainty estimate.  Engineering 
judgement is required in applying this estimate for decisions in interpreting measured data 
or in measurement system design or selection. 
 



PROBLEM 8.20 
 
 
KNOWN:  A J-type thermocouple is calibrated against an RTD, yielding calibration data 
over a range from 0°C to 100°C.  The uncertainty in determining temperature using the 
RTD is ±0.01°C over the range 0 to 200°C 
  
FIND:   
 a) a polynomial to relate temperature and emf 
 b)  the uncertainty in a measured temperature using the system as calibrated 
 c)  the uncertainty in measured temperature using a specified indicator 
 
ASSUMPTIONS: The calibration polynomial curve will be employed in data reduction 
 
SOLUTION:   
First, second, and third order polynomials for this data are 

2

2 3

0.34058 18.833
0.10989 19.157 0.06075

0.079403 19.926 0.45169 0.048639

y x
y x x
y x x x

= +

= + −

= − + − +

 

Choice of an appropriate polynomial can be made for a particular application, depending 
upon the required uncertainty level.  The standard error of the fit for the third order 
polynomial is 0.34, and for the fourth order is 0.46. 
 
b) Error contributions are  
    RTD - ±0.01°C 
    Potentiometer - 2 20.001 0.015 0.015 mV+ = ±  
which is equivalent to a temperature uncertainty of  

( ) o
o

10.015 mV 0.27 C0.055 mV/ C = ±  

and the value of se taken to be 0.34, yielding 
2 2 20.01 0.27 0.34 0.43 CTu = + + = ±   

c) The readout uncertainty can be substituted for the potentiometer value and 
2 2 20.01 0.32 0.34 0.47 CTu = + + = ± 



PROBLEM 8.21 
 
 
KNOWN:  A thermocouple is placed in a moving gas stream with 
 
        U = 200 ft/sec  cp = 0.6 Btu/lbm R 
         
        h = 30 Btu/hr-ft2-R     Ts = 1200 R 
 
        Tp = 1400 R         r = 0.22 
 
        F = 1              ε = 1 
 
 FIND:  a) T∞ 
 
              b) er 

 
SOLUTION:  
 
a) the static temperature of the gas may be found from (8.37) 
 

   T T
rU
g cp

c p
∞ = −

2

2
 

 
which yields 
 

( )( )
( )( )( )T∞ = −1400

0 22 200
2 32174 0 6 778

2.
. .

 

 
                                        = 1400 R - 0.293 R = 1399.78 R 
 
b) The radiation error may be found from (8.30) 
 
            

( ) ( )
( ) ( ) ( )

4 4

2 8 4 4 4
2 4

Btu30 Btu/hr ft  R 0.1714 10 1400 1200 R
hr ft  R

s p s p s

p

hA T T FA T T

T T

εσ∞

−
∞

− = −

− = × −
 

 T∞  = 1501.0  R 
 
 er = -101  R 
 
 



PROBLEM 8.22 
 
 
KNOWN:  The static temperature of air outside an aircraft is to be measured. 
 
 U = 300 mph = 438.3 ft/sec 
     
 Altitude = 20,000 ft 
 
 r = 0.75    cp = 0.24 Btu/lbm-R 

 T∞  = 413 R               ρair = 0.0442 lbm/ft3 

FIND:  Tp 
 
SOLUTION:  
 
From (8.36) 
 

   ( )

2

22
2

m
2

m

2

ft0.75 438.3 sec413
ft-lb Btu ft-lb2 32.174 0.24 778
lb-sec lb R Btu

p
c p

rUT T
g c∞= +

= +
    
    

    

 

 
which yields  
 
Tp = 425 R 



PROBLEM 8.23 
 
 
KNOWN:  A sheathed thermocouple, as shown in Figure 8.38. 
 
FIND:  An estimate of the upper limit for conduction error for such a probe. 
 
 
SOLUTION: From (8.27) 
 

      e
T T

mLc
w=
− ∞

cosh
 

where 
 

mL hP
kAL=  

 
For immersion depth as a parameter, an estimate of the conduction error requires a model 
of the effective thermal conductivity of the thermocouple probe.  A conservative estimate 
for many constructions could be an average of the thermocouple, sheath and insulating 
materials.  Consider the following values: 
 
 kconstantan  = 23 W/m-K 
 kstainless    = 15 W/m-K 
 kinsul     = 0.05 W/m-K 
 
Averaging these values yields 12.7 W/m-K.  Considering the thermocouple probe to be 
cylindrical in shape,  

4

eff

hmL L
k D

=  

For a probe having a diameter of 0.25 cm and an immersion length of 5 cm, the 
conduction error is plotted as a function of h in the figure below. 
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PROBLEM 8.24 
 
 
KNOWN:  An iron-constantan thermocouple is placed in a moving gas stream (as 
shown in Figure 8.39) 
 
  Tref  = 100°C  Tw = 260°C 
 
  h = 70 Btu/hr-ft2-°F  V = 200 ft/sec 
 
  emf = 14.143 mV  r = 0.7 
 
  cp = 0.24 Btu/lbm °F      ε = 0.25 
 
  
FIND:   
a) Tp    
 
b)  er and eu 
 
ASSUMPTIONS: Radiation and velocity errors are additive 
 
SOLUTION:   
 
a)  From Table 8.6,   Tp = 355.8oC 
 
b) The velocity error is given by  
 

( )
( ) ( ) ( )

22 0.7 200
2.33 R

2 2 32.174 0.24 778U p
c p

rUe T T
g c∞= − = = =  

and the radiation error by 
 

( ) ( )
8

4 4 4 40.25(0.1714 10 ) 960 1132.4 4.87 R
70r p w pe T T T T

h
εσ −

∞
×

= − = − = − = −  

 
The total error is then estimated as  
 

o2.33 ( 4.87) 2.54 R= 1.4 CU re e e= + = + − = − −  
 



PROBLEM 8.25 
 
 
KNOWN:    Ei = 1.564 V  At 125°C, from example 8.5, BRT = 247 Ω 
  
FIND:    Show that BRT =  247 Ω, and determine the values of BRT at 150 and 100°C 
 
SOLUTION:   
 
Since 
 

( ) ( ) ( )B R
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and 
 

( ) ( )
1

1.96 k      1.96 k
iR E

B B= ± Ω = ± Ω  

The sensitivity indices are functions of temperature with  

 1
1

1i
T

ER R E
 = − 
 

 

and  
 
Sensitivity Indices 100°C 125°C 150°C 

11

1T iR E
ER

∂  = − 
 ∂

 0.042 0.022 0.012 

1

1

T

i

R R
E E

∂
=

∂
 86942 85238 84466 

1
2

1 1

iT R ER
E E

−∂
=

∂
 90591 87076 85505 

 
This yields values of BRT of 
 

T (°C) BRT (Ω) 
100 264 
125 247 
150 241 

 
 



PROBLEM 8.26 
 
 
KNOWN:  A thermocouple circuit emf is measured by a potentiometer having limits of 
error as 

0.05% of reading + 15 µV at 25°C 
and a resolution of 5 µV. 

The connecting block temperature is 21.5 ± 0.2°C 
and the potentiometer junctions are 25 ± 0.2°C.  
 
FIND: 1T  
 
SOLUTION: 
The error sources for the potentiometer may be combined, 

2
20.05 9000 15 2.5

100emfu  = × + 
 

 

 
19.66 V 0.020 mVemfu µ= ± = ±  

 
Then since 
 

T emf
Tu u

emf
∂
∂

 
=  
 

 

 
and the sensitivity of the thermocouple is 0.055 mV/°C (from Table 8.6) 
 

( )
o

o1 C 0.020 mV 0.366 C
0.055 mVTu

 
= = ± 
 

 

The contribution from the uncertainty in the reference junction at the potentiometer is  
±0.2°C, and the limits of error on the thermocouple are ± 2.2°C.  Thus the total 
uncertainty in temperature is 
 

( ) ( ) ( )2 2 2 o0.366 0.2 2.2 2.24 CTu = + + = ±  
 
The emf referenced to 0°C would be  

emf0-T = 9mV + 1.096 mV = 10.096 mV 
yielding 
 

T = 187.7 + 2.24°C. 



PROBLEM 8.27 
 
 
KNOWN:  A concentration of salt of 600 ppm in tap water will cause a 0.05°C change 
in the freezing point. 
 
FIND:  Error in ice bath temperature having 1500 ppm of salt. 
 
SOLUTION: 
 
Consider two error sources for this ice bath, 
1. Salt  ± 0.125°C 
2. Local temperature variations  ± 0.05°C 
 
The resulting design stage uncertainty may be found as 
 

 ( ) ( )2 20.125 0.05 0.135 CTu = + = ±   

 0 0.135 CT = ±   



PROBLEM 8.28 
 
 
KNOWN:  An RTD is to be calibrated; the RTD forms one leg of a Wheatstone bridge, 
and has 

 
-1 50.00392 C 1 10 (95%)

0.001  (95%)Ru
α −= ± ×

= ± Ω



 

At balanced conditions with T = 0°C, Rc =100.000 Ω and at 100°C, Rc = 139.200 Ω. 
   
FIND:  RRTD at 0°C and 100°C, and the uncertainty at the design stage at these 
temperatures 
 
SOLUTION: 
At balanced conditions 

 cRTD

a b

RR
R R

=  

Thus 

 
   

at 0 C  100.000 
at 100 C  139.200 

RTD c

RTD

RTD

R R
R

R

=

= Ω

= Ω





 

Expressing the relationship between temperature and resistance as 

 1 1RTD
o

o

RT T
Rα

 
= − + 

 
 

the uncertainty at the design stage may be expressed, with RTD

o

R
R
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1
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The sensitivities are found as  
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at Rc = 300 Ω   which implies 300 , 100   3RTD c RTD oR R R R γ= = Ω = Ω =  
 



We must estimate the uncertainty in γ .  Since 

 a
RTD c

b

RR R
R

=  

with 0.001 Ru = ± Ω  

 ( )3 0.001 0.003 
RTDRu = × = ± Ω  

and  

 

1
2 2 2

2

1
22 2

2

1
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yielding 

( ) ( )
1

2 2 25130154 10 255 0.0055 1.91 CTu − = − × + × = ±  




PROBLEM 8.29 

 
 
KNOWN:  A T-type thermopile is used to measure the temperature difference to 
establish heat flux across an insulation.  The pertinent variables and their values are: 
 
  Ac = 15 m2  k = 0.4 W/m-K 
  L = 0.25 m  ∆T = 5°C 
 
The uncertainty in the measured emf is ± 0.04 mV. 
 
FIND:  The number of junctions in the thermopile to yield an uncertainty level of 5% in 
the heat flux across the insulation. 
 
ASSUMPTIONS:  NIST standard emf versus temperature relationship, and an 
average temperature in the insulation of 40°C. 
 
SOLUTION: 
The heat flux is expressed as  

Q kA
T
Lc=
∆

 

For the purposes of the present analysis, express the uncertainty in Q as a percentage, 
yielding 

u
Q

u
T

Q T= ∆

∆
 

To determine the uncertainty in ∆T, the sensitivity to the uncertainty in emf must be 
detemined.  From the equation in Table 8.7, the value can be determined using 

dE
dT

c c T c T c T c T c T c T c T= + + + + + + +1 2 3
2

4
3

5
4

6
5

7
6

8
7  

 
This expression yields a value of 0.042 mV/°C.  Thus 
 

( )u
N

u

u

T emf

emf

∆ =

= ±

1
0 042

0 04

.

.
where

 mV
 

 
Then with  
u

T N
T∆

∆
=  5% =

which yields N =  4

1
5

 



PROBLEM 8.30 
 
 
KNOWN:  A T-type thermocouple referenced to 0°C is used to measure 100°C 
    
FIND:  The output emf. 
 
ASSUMPTIONS:  NIST standard emf versus temperature relationship. 
 
SOLUTION: 
 
From Table 8.7, the polynomial expression for emf as a function of temperature yields an 
emf of 4.2785 mV at 100°C. 
 

 
 
 

PROBLEM 8.31 
 
 
KNOWN:  A T-type thermocouple referenced to 0°C has an output of 1.2 mV.   
    
FIND:  The temperature of the measuring junction. 
 
ASSUMPTIONS:  NIST standard emf versus temperature relationship. 
 
SOLUTION: 
 
From Table 8.7, the polynomial expression for emf as a function of temperature yields an 
temperature of 30.086°C for an emf of 1200 µV. 
 
 



PROBLEM 8.32 
 
 
KNOWN:  A T-type thermocouple and voltmeter form a temperature measuring system 
The temperature at the voltmeter is 25°C, and the output emf is 10 mV.   
    
FIND:  The temperature of the measuring junction. 
 
SOLUTION: 
 
The law of intermediate temperatures allows the following superposition to be used to 
establish an equivalent emf referenced to 0°C. 
 25 0 25 0-Temf emf emfT− −+ =  

From Table 8.7, the polynomial equation for ( )E f T= yields 
 
 0-25emf 992 Vµ=  

and     0-Temf 992 10,000 10,992 Vµ= + =  
 
which yields for T, from Table 8.7, a value of 231.542°C. 
 
COMMENT:  A calculator or mathematical analysis software is essential to solve for a 
temperature from the polynomial expression in Table 8.7.  NIST publications are also 
available that contain tables of emf as a function of temperature for a variety of 
thermocouple types. 



  

 



  
PROBLEM 9.1 

 
 
FIND:  Convert to units of gauge pressure in N/m2  
 
SOLUTION  
 
Absolute pressure reference scale:  
 
    1 atm abs = 14.69 psia = 101.325 kPa abs = 101,325 N/m2 abs  
    1 atm abs = 760 mm Hg abs = 406 in H2O abs  
 
Conversion factors:  
 
    14.69 psi = 101.325 kPa = 101,325 N/m2  
    14.69 psi = 1 atm = 29.92 in Hg = 406 in H2O = 760 mm Hg  
    1 bar = 14.505 lb/in2 = 100,000 N/m2   
 
p(gauge) = p(absolute) – p(reference) 
 
Using p(reference) = 101,325 N/m2 : 
 
 (a) 10.8 psia x 101325 N/m2/14.69 psi = 74 442 N/m2 abs  
      p = 74,442 – 101,325 N/m2  = -26,883 N/m2 = -26.883 kPa 
 
(b) 1.75 bars abs x 100,000 N/m2 = 175,000 N/m2 abs  
      p = 175,000 – 101,325 N/m2  = 73,675 N/m2 = 73.675 kPa 
 
(c) 30.36 in H2O abs x 101,325 N/m2 /406 in H2O = 7,577 N/m2 abs  
      p = 7,577 – 101,325 N/m2 = -93,748 N/m2 = - 93.748 kPa 
  
 
(d) 791 mm Hg abs x 101,325 N/m2 /760mm Hg = 105,458 N/m2 abs  
      p = 105,458 – 101,325 N/m2

 = 4,133 N/m2 = 4,133 kPa 
 
COMMENT 
 
Note that gauge pressure can be negative or positive relative to the reference pressure. 
Absolute pressure, which is measured relative to a perfect vacuum, is always a positive 
value. 



 
PROBLEM 9.2 

 
 
FIND:  Convert into absolute pressure  
 
SOLUTION  
 
      p(absolute) = p(gauge) + p(reference)    where here:  p(reference) = 1 atm abs.  
 
Absolute pressure reference scale:  
 
    1 atm abs = 14.69 psia = 101.325 kPa abs = 101,325 N/m2 abs  
    1 atm abs = 760 mm Hg abs = 406 in H2O abs  
 
Conversion factors:  
 
    14.69 psi = 101.325 kPa = 101,325 N/m2 

      14.69 psi = 1 atm = 29.92 in Hg = 406 in H2O = 760 mm Hg  
 
(a) -0.55 psi + 14.69 psia = 14.14 psia = 0.963 atm abs  
 
(b) 100 mm Hg + 760 mm Hg abs = 860 mm Hg abs = 1.13 atm abs 
 
(c) 98.6 kPa + 101.325 kPa abs = 199.925 kPa abs = 1.97 atm abs  
 
(d) 7.62 cm H2O + 760 mm H2O abs = 836.2 mm H2O abs = 1.10 atm abs  
 



PROBLEM 9.3 
 
 
KNOWN:    H = 250 cm H2O  
           patm = 101.3 kPa abs  
 
FIND:     The tank pressure p1.  
 
PROPERTIES: γH2O = 997 kg/m3  
 
SOLUTION  
 
Referring to Figure 9.5 (manometer)  
 
      p1 – p2 =  p1 -  patm  
 

p1 = patm + γH2O H  
 

= 101,325 N/m2 abs + (997 kg/m3 )(250cm)(1m/100cm)(1N/kg-m/s2) 
= 103,818 N/m2 abs 
 
or  
 
= 0 N/m2 + (997 kg/m3 )(250cm)(1m/100cm)(1N/kg-m/s2)  = 2493 N/m2 

 



PROBLEM 9.4 
 

 
KNOWN:    Deadweight tester provides a calibration pressure, pc  
           Tester:  
                                  W = 25.3 kgf = 2.58N (where gc = 9.8 kg-m/s2/kgf) 

Ap = 5.065 cm2 

            Wp = 5.38 kgf  
            pamb = 770 mm Hg abs = 102.104 kPa abs  
            z = 20 m (sea level datum)  

             φ = 42o  
 
FIND:    pc  
 
PROPERTIES:  γair = 9.8 N/m3 
               γstainsteel = γmass = 78.4 kN/m3  
 
SOLUTION  
 
    Referring to the free-body diagram,  
 
      ΣFy = 0 = piAp + FB – Wp - W - pambAp  
 
       W     
 
      pambA 
 
 
   pamb(A – Ap) 
 
       Wp 
       piAp 
 
       FB 
 
where FB is the buoyancy force. Neglecting FB, the indicated pressure is  
 
      pi = 122,313 N/m2 abs 
 
Now, the actual pressure provided by the deadweight tester is estimated by  
 
      pc = pi(1 + e1 + e2)  
 



where e1 provides a correction for altitude effects and e2 provides the correction for the 
neglected buoyancy effects. From (9.6a),  
 
     e1 = - 0.0003  
 
and from (9.9),  
 
      e2 = - γair/γmasses = -(9.8 N/m3 /78,000N/m3) = - 0.00012  
 
Then, the actual deadweight pressure is estimated by  
 
pc = 122,313 N/m2 (1 - 0.0003 - 0.00012) =  122,262 N/m2 abs = 122.262 kPa  abs 
 
COMMENT  
 
By including the correction factors e1 and e2, we corrected for a known systematic error, 
thus reducing the uncertainty error sources of this measurement. The error corrections do 
not eliminate these systematic errors but do reduce them to the level of uncertainty in the 
corrections themselves. 



PROBLEM 9.5 
 
 
KNOWN:   Inclined tube manometer  
         L∆ = 5.6 cm H2O  
         θ  = 30o 
 
FIND:    H∆  
 
SOLUTION  
 
    Referring to Figure 9.7, for an inclined manometer,  
 
      sinH L θ∆ = ∆  
 
Further, this deflection away from a null balance condition is referenced to the pressure on 
the open end of the tube. So the device measures a gauge (referenced to local atmosphere 
pressure) or differential pressure (referenced to some other pressure).  
 
    H∆ = 5.6 cm H2O  x  sin 30o 

 
       = 2.8 cm H2O  
 
COMMENT  
 
Referring to Figure 9.7, if the manometer fluid deflects towards the tank, the pressure 
applied to the tank is below the reference pressure (p2<p1). If the deflection is away from 
the tank, the pressure applied to the tank is above the reference pressure (p2>p1).  



PROBLEM 9.6 
 
 
FIND: Compare K for inclined and U-tube manometers.  
 
SOLUTION  
 
    For a U-tube manometer, H is the measured output,  
 
      ( )mp Hγ γ∆ = − so  
      K = dH/d(∆p) = 1/( mγ γ− )  
 
    For an inclined manometer, H = Lsin θ  where L is the measured output.  
 
      ( ) sinmp Lγ γ θ∆ = −  so  
 

/ 1/[( )sin ]mK dL d p γ γ θ= ∆ = −



PROBLEM 9.7 
 
 
KNOWN: Inclined manometer measures air using mercury as its fluid.  
       θ = 30o 

 
FIND: K  
 
SOLUTION  
 
     For an inclined manometer, where L is the measured output  
 ( )mp Hγ γ∆ = − ( ) sinm Lγ γ θ= −  
the sensitivity is  

/ 1/[( )sin ]mK dL d p γ γ θ= ∆ = −  
          = 1/{[(13.6)(9800 N/m3) - 11 N/m3)]sin 30o} = 0.015 mm/N/m2 



PROBLEM 9.8 
 
 
KNOWN:  Conditions of Example 9.2.  
  90oθ →  
 
FIND: 

pdu  

 
SOLUTION  
 
From Example 9.2:  
 

( ) ( ) ( )
1/ 22 2 2

sin ( )sin ( )cos
p md L m mu u L u u Lγ θθ γ γ θ γ γ θ = ± + − + −  

 

For a U-tube manometer at the stated conditions, L ≈  10.25 mm and 90oθ = .  
Then with mγ  = 9770 N/m3; γ = 11.5 N/m3; 

m
uγ = 49 N/m3; uL = 0.0007 m  

 
1/ 22 2 20.5 6.8 0

pdu  = ± + + = ±  6.82 N/m2 

  
COMMENT  
 
 The uncertainty in measured pressure increases nearly 50% by going from an inclined 
manometer with θ  = 30o (Example 9.2) to a U-tube manometer (θ  = 90o) when operating 
at these pressures.  



PROBLEM 9.9 
 
 
KNOWN:   Steel diaphragm  
         t = 0.1 in  
         Em = 30 x 106psi  
         d = 2r = 0.75 in  
         ρ = 0.28 lbm/in3 
         pν  = 0.32  
 
FIND:    ymax, nω , maxp∆  
SOLUTION  
 
The maximum elastic deflection of a metallic diaphragm is about one third of the 
diaphragm thickness,  
 
      ymax ~  t/3 = 0.033 in = 0.85 mm  
 
    The natural frequency can be computed directly  
 

      
2 6 2 2 2

2 4 2 3 4

(30 10 / )(0.1 ) (32.2 / )(12 / )
64.15 64.15

12(1 ) 12(1 0.32 )(0.28 / )(0.375 )
m c m

n
p m

E t g lb in in lb ft s lb in ft

r lb in in
ω

ν ρ

× − −
= =

− −
 

 
         = 2.8 x 106 rad/s   or 450 kHz.  
 
The maximum differential pressure which can be applied across a diaphragm is limited in 

part by ymax. With 
2 4

1 2
max 3

3( )(1 )

16
p

m

p p r
y

E t

ν− −
=  and ymax = t/3 gives  

      
6 2 4

2 4max

16(30 10 / )(0.1 )
9(1 0.32 )(0.375 )

lb in inp
in

×
∆ =

−
 

 
                = 300,460 psi   = 2.07 GPa  
 
COMMENT  
 
These relatively high numbers are due to the relatively thick and small diameter steel 
diaphragm used. The numbers are not unusual for high pressure diaphragm transducers. 
Some transducers on the market permit the user to interchange diaphragms of different 
thicknesses to change the maximum pressure differential range allowed. This is a cost 
saving feature for the user. 



PROBLEM 9.10 
 
 
KNOWN:   Strain gauge, diaphragm tranducer with  ∆p = 10, 100, 1000 kPa  

         Transducer:  
             Accuracy:   within 0.1% of reading (i.e. u∆p/∆p = 0.001)  

         Voltmeter:  
             Resolution: 10 mV  

           Accuracy:   within 0.1% reading  
 
FIND:    ud in indicated pressure  
 
ASSUMPTIONS:   Transducer: Kt = 1 V/100 kPa ;  Voltmeter:  KE = 1 V/V  
  
SOLUTION  
 
Based on the assumptions for static sensitivity (you can assume any reasonable value), the 
output voltage should be: 
 
Eo = 1V @ 100 kPa,   0.1V @ 10 kPa, and 10V @ 1000 kPa 
 
To estimate uncertainty: 
    Transducer:  
 
        u∆p = 0.001 ∆p  
 
     Voltmeter: (Note the inclusion of KE for scaling and units below)  
 

uE = [uo
2 + uc

2]1/2 = [(0.005)2 + (0.001KEE)2]1/2 

 
      System: (Note the inclusion of Kt for scaling and units; that is, puts in terms of kPa)  
 

ud = ±[u∆p 2 + (uE/Kt)2]1/2 
 
With Kt = 1 V/100kPa and KE = 1 V/V,  
 
      ∆p   Eo        uE   ud  
     [kPa]           [V]      [V]  [kPa]  
 
      10               0.1       0.005   0.010  
     100              1.0       0.005  0.100  
    1000           10.0       0.011  1.0  
 
 



PROBLEM 9.11 
 
 
KNOWN:    U-tube manometer is used to measure gas pressure.  

         pgas ≤ 68,950 Pa  
         Several manometric fluids available: oil, water, mercury  

 
FIND:    Choose an appropriate manometric fluid.  
 
PROPERTIES:   water: S = 1; γH2O = 9790 N/m3 (given)  
               mercury: S = 13.57  (given); γHg = SγH2O  

            oil: S = 0.82  (given); γoil = SγH2O  
 gas: γgas = 10.4 N/m3  

 
ASSUMPTIONS:  Specific weight of a gas is negligible relative to that of the  

manometer fluids.  
 
SOLUTION  
 
To select an appropriate fluid, we must consider at least two things. (1) The manometric 
fluid should not be soluble with the working fluid, and (2) the manometer deflection should 
be of a reasonable magnitude. Neglecting the effects of the gases, the relation between 
pressure and manometer fluid deflection is given by,  
 
       p - patm = ∆p = γ H  
 
 
Water:  
 
      H = ∆p/γ = (68950 N/m2 )/9790 N/m2 = 7.1 m (that's high!) 
 
Oil:  
 
      H = ∆p/γ = (68950 N/m2 )/(0.82 x 9790 N/m2) = 8.6 m (that's high, too!) 
 
Mercury:  
 
      H = ∆p/γ = (68950 N/m2 )/(13.57 x 9790 N/m2) = 0.52 m (that's more like it!) 
 
While sensitivity considerations will always favor the lighter fluid, the logistics of this 
application clearly suggest that mercury will be a workable choice.  



      
PROBLEM 9.12 

 
KNOWN:    Air pressure to be measured using either a mercury filled U-tube  
           manometer or inclined tube manometer.  
                  200 ≤  p ≤  400 N/m2 

         T = 20oC  
                    U-tube Manometer:  
             Resolution: 1 mm; Zero error:  0.5 mm  

         Inclined-tube manometer  
            Resolution: 1 mm; Zero error:  0.5 mm;  

            Inclination angle: 30o ±  0.5o 
 
FIND:    ud in equivalent head pressure measured by either manometer  
 
PROPERTIES:  mercury: S = 13.57; water: ρ = 9780 N/m3 
 
SOLUTION  
 
U-tube manometer:  
 
Because the measured deflection is the equivalent head pressure, the uncertainty in 
equivalent head pressure at the design-stage will be due only to the ability to measure the 
deflection at a given pressure.  
 
    ud = ±(uo

2 + uc
2)1/2 

 
If we assume that uc is based only on the zero pressure error uncertainty given,  
 
      uo = 0.5 mm           uc = 0.5 mm  
 
   ud = ± (0.52 + 0.52)1/2 = ±0.71 mm    (95%)  
 
This result is independent of pressure.  
 
Inclined-tube manometer  
 
    The equivalent head pressure is related to the manometer deflection by,  
 
      H = L sin θ 
 
where L is the measured deflection. We can estimate L:  
      / sin / sinL H pθ γ θ= = ∆  
   At 200 N/m2, L = 41 mm.  At 400 N/m2, L = 82 mm.  
 



For the inclined manometer, the uncertainty in the manometer deflection, L, at the design 
stage is  
 
   

1/ 22 2

Ld o cu u u = ± +  =
1/ 22 20.5 0.5 ± +  = ±0.71 mm 

where uo = 0.5 mm and uc = 0.5 mm as before. However, the uncertainty in equivalent head, 
H, depends on the uncertainty in two variables,  H = f(L,θ) , so 

     
1/ 22 2

Hd L

H Hu u u
L θθ

 ∂ ∂   = ± +    ∂ ∂     
= ( ) ( )

1/ 222
sin cosLu L uθθ θ ± +  

 

 
We set uθ = 0.5o = 0.0087 radians from the problem statement.  
 
At 200 N/m2:  
 

( ) ( )
1/ 22 20.707 0.5 41 0.87 0.0087

Hdu mm mm = ± × + × ×   = ±0.47 mm (95%) 

 
At 400 N/m2:  
 

  ( ) ( )
1/ 22 20.707 0.5 82 0.87 0.0087

Hdu mm mm = ± × + × ×  = ±0.72 mm (95%) 

 
COMMENT  
At the lower pressure, the uncertainty is reduced by a factor of about sin θ by using the 
inclined manometer. But at higher pressures, the uncertainty in θ becomes increasingly 
important. In this application, the uncertainty in θ cancels out the benefits of the better 
sensitivity of the inclined instrument.  



PROBLEM 9.13 
 
KNOWN:   A water filled inclined-tube manometer.   
         Inclination angle is variable.  
         p∆ ≈  10,000 N/m2 
         T = 20oC  
         Manometer:  
           Resolution:  1 mm; Zero error:  0.5 mm; Inclination error: ±1o 
 
FIND:    ud in pressure as a function of θ 
 
PROPERTIES:  water:      mγ = 9770 N/m3 
 
ASSUMPTIONS:   /

m
u uγ γ = 0.5%. Neglect effects of the ambient air.  

 
SOLUTION  
 
    ( )sin sinm mp L Lγ γ θ γ θ∆ = − ≈  

Then, ( , , )mp f L γ θ∆ = , so 
1/ 222 2

mp L
m

p p pu u u u
L γ θγ θ∆

  ∂∆ ∂∆ ∂∆    = ± + +     ∂ ∂ ∂      

( ) ( ) ( )
1/ 222 2

sin sin cos
mm L mu L u L uγ θγ θ θ γ θ = ± + +  

 

For the inclined manometer, the uncertainty in the manometer deflection, L, at the design 
stage is  
     

1/ 22 2

Ld o cu u u = ± +  =
1/ 22 20.5 0.5 ± +  = ±0.71 mm 

where uo = 0.5 mm and uc = 0.5 mm. From the problem statement 
     du

θ
=  1o = 0.0175 rad       

mdu
γ

 = (9770 N/m3)(0.005) = 49 N/m3 

Then,            
Inclination     L            pu

∆
 

                  [m]       [N/m2]  
 
  10o             5.894        994      uθ dominates  
  30o             2.047        307      uθ dominates  
  60o             1.182        113      uθ dominates  
  80o             1.039         59       

m
uγ , uθ large  

  90o             1.024         50       
m

uγ  dominates  

 



COMMENT 
 
 At large pressures, uθ becomes very important (compare with Problem 9.12). In practice, 
the inclination angle must be carefully set. But even so, the inclined manometer is selected 
for deflections up to only about H = 0.25 m.  



PROBLEM 9.14 
 
 
KNOWN:   Capacitance pressure transducer of Figure 9.14.  
         C1 = 0.01 ±0.005 µF  
         Ei = 5 ± 1% V  
         A = 8 ± 0.01 mm2 
         t = 1.5 ±0.1 mm  
         ∆t = 0.2 mm  
 
FIND:    C and Eo 
 
SOLUTION  
 

We know that /C c A tε=   and  1
o i

C
E E

C
=  

 At to = 1.5 mm  
 
      C = (0.0885)(1)(8 mm2)/(1.5 mm)(10 mm/cm) = 0.0472 µF  
 
and  
 
      Eo = (0.01/.0472)(5V) = 1.0593 V  
 
At to + ∆t  = 1.7 mm  
 
      C = 0.0416 µF 
 
      Eo = (0.01/.0416)(5V) = 1.2006 V  



 
PROBLEM 9.15 

 
 
KNOWN: Diaphragm pressure transducer:  
           uc = ± 0.5 psi  
        Voltmeter  
          uc = ±10 µV  
          uo = 1 µV  
        System (0 to 100 psi)  
          p = 0.564 + 24E ± 1 psi  (95%)   with N = 5  
        Installation errors: B = ±0.5 psi  
 
FIND: up 
 
SOLUTION  
 
The system sensitivity is: K = dp/dE = 24 psi/V. The system uncertainty includes,  
   Instrument errors, uc:  
     transducer uncertainty  ut = ±0.5 psi  
     voltmeter uncertainty uE = (1x10-6 V)(24 psi/V) = ± 2.4x10-4 psi  
These instrument errors are normally treated as systematic errors or Type B errors. 
  
  Data reduction errors, u1:  
     curve fit uncertainty  uyx = ± 1 psi    with ν = 4 
The curve fit error is usually treated as a random error or Type A error. 
   Installation effects, u2:  
     installation errors  uin = ± 0.5 psi  
Installation errors are usually treated as systematic errors or Type B errors. 
 
So that: up = ± [.52 + (2.4x10-4)2 + 12 + .52]1/2 = ± 1.22 psi   (95%)    
 
Alternatively, we can segregate the errors into types and developed the expanded 
uncertainty:  
      ut = Bt; uE= BE; uin = Bin; uyx= tPyx = tSyx/N1/2  with ν = 4 then,  

 ( )1/ 22
kB B= ∑      and ( )1/ 22

kP P= ∑   so that 
       

up = ± [B2 + (tP)2]1/2 = ± 1.22 psi   (95%)  
 
COMMENT  
  
There is no magic in uncertainty analysis. Different approaches will yield similar (but not 
necessarily identical) results provided that the same errors are included. The important 
thing is to do an analysis!  



 
PROBLEM 9.16 

 
KNOWN: pressure transducer: t90 = 10 ms; dω  = 200 Hz; ζ = 0.8  
 
FIND: Test plan to verify given specifications. Estimate frequency response.  
 
SOLUTION  
 
This problem is open-ended and could form the basis of a lab exercise. One solution is 
discussed. Second-order systems are discussed in detail in Chapter 3. 
 
(i)  A step test should be developed to test for the rise time. An appropriate magnitude for  
the pressure rise is the step from atmospheric pressure to the expected pressure at top dead 
center for this engine (note: the compression ratio for an IC engine is about 8:1 or 9:1). 
Transducer output can be measured on a storage oscilloscope or suitable data acquisition 
system.  
 
For a damping ratio of 0.8, the transducer will still exhibit a modest ringing during a step 
test. But it will require excellent resolution in the measuring device to observe and to 
accurately measure the amplitude changes. With adequate resolution, the maximum 
amplitudes in the oscillation can be plotted versus time to estimate the product nω ζ  (note: 
this will be the slope of the line if plotted on semi-log axes). The period of oscillation will 
be related to 21d nω ω ζ= − . The damping ratio and natural frequency are found by 
solving these two pieces of information simultaneously.  
 
(ii) Car with 4-cylinder engine turning at 5000 RPM = 83 rps. This gives expected pressure 
changes at about 83/4 ~ 21 Hz. For the transducer,  
         2/ 1n dω ω ζ= −  or 2/ 1n df f ζ= − = 200 Hz/(1 - .82)1/2 = 333 Hz. 
Checking out the magnitude ratio plot for a second order device: / nf f ≈ 0.063 and 
M(21Hz) ≈1. So yes, it could measure the pressure variations in the engine.  



 
PROBLEM 9.17 

 
 
KNOWN: Steel diaphragm transducer: t = 0.001 m; r = 0.003 m  
 
FIND: nω , pmax 

 
SOLUTION  
 
The natural frequency is given  
 

  
2

2 464.15
12(1 )

m c
n

p

E t g

r
ω

ν ρ
=

−
 = 

9 2 2 2

2 3 4
200 10 / (0.001 ) 1 /64.15

12(1 0.35 )(7832 / ) (0.003 )
N m m kg m s N

kg m m
× × × − −

− ×
  

 
        = 173,000 r/s     or   fn = 127 kHz  
 
The maximum elastic displacement of the diaphragm is limited to about t/3.  
 
      3 2 416 ( / 3) / 3(1 )m pp E t t rν∆ = −  
 
For steel with Em = 200x109 N/m2, ρ = 7832 kg/m3 and pν  = 0.35:  

9 2 3 2 416 200 10 / (0.001 ) (0.001 / 3) / 3(1 0.35 )(0.003 )p N m m m m∆ = × × × −  
  
            = 5000 MPa  
 
This is a very high pressure limit, but reflects the stiffness of steel and the relatively small 
radius, thick diaphragm used. A larger radius for a given thickness lowers the natural 
frequency and the maximum pressure: For example, doubling the radius here lowers p∆ by 
16 times (r4) to about 312 MPa.  



PROBLEM 9.18 
 
 
KNOWN:   Pressure transmission system filled with air at 20oC  
           L = 0.25 m  

            d = 3.25 mm  
            ∀= 1600 mm2 

                Transducer:  
           fn = 100kHz  

 
 
FIND:   maxω  such that 0.9 ≤ M(ω) ≤  1.1  
 
PROPERTIES: Air: µ= 1.8 x 10-5 N-s/m2; R = 0.287 kJ/kg-K  
 
ASSUMPTIONS:  Air behaves as a perfect gas  
 
SOLUTION  
 
    2 2/ 4 (3.25 ) (250 ) / 4t d L mm mmπ π∀ = = = 2400 mm3 
 
With  ∀t > ∀,  
 

    
(0.5 4 / )n

t

a
L

ω =
+ ∀ ∀

 

        
 

    2

16 0.5 4 / )tL
ad

µ
ζ

ρ

+ ∀ ∀
=  

 
If we assume that the process occurs at a pressure near atmospheric pressure, then we can 
compute the density of the air by  
 
    ρ= p/RT = (101325 N/m2 abs)/(0.287 kJ/kg-K)(293 K) = 1.16 kg/m3 
 
The speed of sound (acoustic wave speed) is  
 
    a = [kRT]1/2= [(1.4)(0.287 kJ/kg-K)(293 K)]1/2 = 345 m/s  
 
Then,  
 
      nω  = 775 rad/s             ζ  = 0.026  
 



The frequency response is  
 

      
2 2 2

1( )
[1 ( / ) ] [2 ( / )]n n

M ω
ω ω ζ ω ω

=
− +

 

 
     nω   [rad/s]         M(ω )            
 
      10                   1.00  
     100                  1.02  
     200                  1.07  
     225                  1.09  
     250                  1.12  
     300                  1.17  
 
The frequency response remains within the ±10% constraint over the frequency band,  
0 ω≤ ≤  230 rad/s.  
 
COMMENT 
 
 Note how the natural frequency of the tubing is much less than that of the transducer. As a 
consequence, the response characteristics of the connecting tubing govern the system 
response. The limits of the frequency response of the transducer do not come into play.  
 
The assumption concerning the pressure affects the density of the air only. Its effect on the 
solution is minimal for low gauge pressures.  



PROBLEM 9.19 
 

 
KNOWN:  Pitot static tube used to measure velocity  
 
FIND: Sensitivity of velocity to pressure 
 
SOLUTION: 
 
A pitot-static tube, such as shown in Figure 9.23, can be used to determine velocity based 
on the measured difference in total and static pressure through  
 

 
where C is a coefficient. 
 
The sensitivity is the change in output for a change in input or 
 

  
So the static sensitivity here is inversely related to the pressure. That is, the sensitivity of 
the pitot static tube to changes in velocity decreases as the pressure difference increases. 
 
COMMENT 
 
The pitot-static principle is widely used and considered a fairly accurate means of 
estimating velocity. This is a good example of a useful device whose sensitivity is not a 
constant but varies with the magnitude of the input signal. 

pCpU ∆=∆= ρ/2

2/1

2
1 −∆=

∆∂
∂

= pC
p

UK



PROBLEM 9.20 
 
 
KNOWN:    Pitot-static probe measures flow in a duct.  
           2/v H OH p γ= = 20.3 cm H2O  
 
FIND:    U  
 
ASSUMPTIONS:  Duct flow is air at room temperature.  
 
PROPERTIES:   airρ = 1.16 kg/m3 
                  20Hρ  = 998 kg/m3 
 
SOLUTION  
 

 21
2v t airp p p Uρ= − =  

2 /v airU p ρ= 22 /H O airHγ ρ= 22 /H O airgHρ ρ=   
3 2 32(998 / )(9.8 / )(0.203 ) /(1.16 / )kg m m s m kg m=  

= 58.5 m/s  



PROBLEM 9.21 
 
 
KNOWN: Pitot-static tube in air.  
        
FIND: U', uU 
 
SOLUTION  
  
The mean velocity is determined by converting the mean voltage values to pressure and, 
finally, to velocity. From the given data, the pooled estimates are:  
 
      E = (2.438 + 2.354 + 2.473)/3 = 2.422 V  

      <SE> = [(.012 + 0.0092 + .0122)/3]1/2 = 0.01 V      Eν  = 60  
 
     From the calibration data, p = f(E), so we determine:  
 
      p  = 0.205 + 0.950E = 2.506 N/m2 
 
Now variations in voltage are related to variations in pressure by the static sensitivity at the 
operating voltage (the mean voltage here), as noted in discussions related to Figures 1.6 and 
5.2. Here Kp = dp/dE = 0.95 N/m2/V.  
 
     <Sp> = Kp<SE> = 0.0095 N/m2    with  Eν  = 60  
 
The velocity is estimated by 2 /v airU p ρ=  where pv is the dynamic pressure measured by 
the pitot-static tube sensor. The pooled mean estimate is 
 
     2 2 32(2.506 / )(1 / ) /(1.2 / )U N m kg m s N kg m= − −  = 2.04 m/s  
 
Variations in pressure are related to variations in velocity. Here KU = dU/dp = 

( ) 1/ 2
2 /v airp ρ

−
=  = 0.41 m/s/N/m2 at pv = 2.506 N/m2:  
 
    <SU> = KU<Sp> = KUKp<SE> = 0.004 m/s  
 
This value represents the effect of the variations in the test data during repetition. The effect 
of variation in the measured mean value during replication is estimated by:  
 

  SU = KUKpSE = 
1/ 22( ) / 2U p jK K E E ′ − ∑ = 0.022 m/s  with ν = 2  

 



For the voltmeter: an systematic uncertainty due to instrument error is assigned 
 
 B1 = 10 Vµ±  = 10 Vµ± (.95 N/m2/V)(0.41 m/s/N/m2) = 4x10-6 m/s  
 P1 = 0 
For the pitot-static tube, a systematic uncertainty due to instrument error of 1% is assigned:  
 
 B2 = (0.01)KUpv = (0.01)(0.41 m/s/N/m2)(2.506 N/m2) = 0.010 m/s  
 P2 = 0 
For the transducer: no information is given, so assume a negligible instrument error. 
 
 B3 =0 and P3 = 0 
 
From the calibration data tSyx/N1/2 = 0.002 N/m2 with ν  = 30, so Syx/N1/2 ~ .001 N/m2

 (i.e. 
t~ 2) 
 
 P4 = (0.001 N/m2)(.41 m/s/N/m2) = 0.00041 m/s     ν 4 = 30  
 B4 = 0 
For the measurement:  
 
 P5 = 0.004 m/s  with  ν 5 = 60   (repetition effect)  
 B5 = 0 
 
From the replication study, 
 
 P6 = SU = 0.022 m/s     (replication effect)  
 B6 = 0 
 
Collecting terms:  
 
 B = (B1

2 + B2
2 + B3

2)1/2 = 0.010 m/s    
 
 P = (P4

2 + P5
2 + P6

2)1/2 = 0.024 m/s  with ν  = 3 (from Welch-Sattertwaite method)  
 
so,  
 
  uU = [B2 + (t3,95P)2]1/2 = 0.07 m/s  
 
  U' = 2.04 ± 0.07 m/s    (95%)  



PROBLEM 9.22 
 
KNOWN: Pitot-static tube in freestream 
  U = 325 kph 
  (a) measured on open road  

(b) measured in open circuit tunnel (where pt = 0) 
 
FIND: Static, dynamic, stagnation pressures 
 
SOLUTION 
 
For a pitot-static tube in air, 
 

  
Rearranging, the dynamic pressure is given by 
 

so,  
∆p = (0.5)(1.225 kg/m3)(325 km/hour x 1 hour/3600 s x 1000m/km)2  
     = 4991 N/m2 = 37.4 mm Hg 
 
This is the measured pressure. Now, ∆p = pt – pstatic, where pt is the stagnation pressure and 
the static pressure pstatic is the freestream pressure (p∞). 
 
On the open road: 
 
In this case, the flow is at rest and the car (and pitot-static tube) moves through the air, 
causing the pressure to rise at the impact port (stagnation pressure). 
 
p∞ = 0 N/m2 (local atmospheric pressure) 
 
pt = 4991 N/m2 
 
 
In the open circuit wind tunnel:  
 
In an open circuit wind tunnel, air is drawn from rest from outside the tunnel and 
accelerated to a desired speed within the test section, which houses the car.  
 
The car is at rest and the flow is moved past it. Flow always moves from high to low 
pressure, from the atmospheric pressure outside the tunnel to the low pressure inside it. The 
pressure in the test section is the freestream pressure and clearly this must be below 

airpU ρ/2∆=

2

2
1 Up airρ=∆



atmospheric pressure for air to move through the test section. The stagnation pressure in the 
tunnel is zero (just the same as it is for atmospheric pressure). Another way to think of the 
stagnation pressure is that since the local pressure is negative, the pressure at the impact 
port must rise an amount to reach atmospheric pressure. 
 
p∞ = - 4991 N/m2 
 
pt = 0 N/m2 
 



PROBLEM 9.23 
 
 
KNOWN: Wall pressure taps connected by tubing to transducers.  
  
FIND:  Select tube size for better time response. 
 
SOLUTION  
 
The system is depicted in Figure 9.21. From equation (9.27): 

     
or the system time constant is proportional to L/d per unit volume. So this indicates to keep 
τ small that it is best to keep lengths as short as possible and diameters of moderate size, 
but certainly not very small.  
 
In fact, very small diameter tubes can be used as effective filters to suppress higher 
frequency aspects from a pressure signal. This possibility is seen in equations (9.21 –9.26) 
in which natural frequency decreases as L increases and damping rises as diameter 
decreases. 
 

∀
∝=∝
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PROBLEM 9.24 
 
 
KNOWN:  System of Example 9.7 
  Average pressures and deviations. 
 
FIND:  Uncertainty in pressure measurement 
 
SOLUTION  
 
This problem offers a realistic scenario and requires some straightforward thought.  

The resolution of the transducer and A/D system is limited to 

Qtransducer = 50.8 cm H2O/5V = 10.16 cm H2O/V 

QA/D = 5V/212 = 0.00122 V/digit 

Or, the total measuring system resolution is  
 

Q = 0.00122*10.16 = 0.0124 cm H2O  
 
This yields a uo = 0.0124 cm H2O. The accuracy of the A/D is 2 bits, equivalent to  
 

uc = (2 x 0.00122V)(10.16 cm H2O/V) = 0.025 cm H2O. 
 
The uncertainty in the A/D signal is:  
 

uA/D = [uo
2 + uc

2)1/2 = 0.028 cm H2O 
 
In the wind tunnel the measurements will be sampled over a reasonable period of time to 
acquire a large data set. Uncertainty enters the estimation of the average pressure due to 
variations in the measured data. Some locations on the car will show larger variations than 
do others. Based on the sample data given, the variation in pressure is on the order of 
0.0025 to 0.05 cm H2O. Assuming large data sets (such that t95 ≈ 2.0), the uncertainty in 
pressure due to variations alone is 0.005 to 0.10 cm H2O. The uncertainty in estimating the 
mean pressure will be about one order of magnitude better than this, 0.0005 to 0.01 cm 
H2O. 
 
So our ability to resolve pressure is limited at one extreme by the A/D system at 0.028 cm 
H2O. Our precision in a pressure measurement is reasonably estimated at 0.10 cm H2O and 
provides the other extreme. The precision in the mean pressure estimation is set at 0.01 cm 
H2O. Thus, 
 

  up = [.12 + 0.0282]1/2 ≈ 0.10 cm H2O  (95%) 



 
and  

 
 
COMMENT  
 
To put this in perspective of Example 9.7, this uncertainty level provides an uncertainty in 
rear down force estimation of about 10 lbs (2.2 N) out of 600 lbs (135 N)) when done 
correctly. Incredibly, this is about the level when a top professional driver can begin to 
sense changes in car handling. 
 
                      

(95%)    O Hcm  0.03]0.028[.01u 2
22

p
≈+=



  
PROBLEM 9.25 

 
 
KNOWN: Pressure measured at M = 4 stations, N = 20 each.  
 
FIND: Effects of data pooling  
 
SOLUTION  
 
Pooling of the data obtained at 4 different radial planes would provide an overall average 
pressure which accounts for non-axisymmetric effects, that is spatial variations between 
cross-planes. In fact, by comparing the mean values found along each plane, an estimate of 
the non-symmetry can be found.  
 
   p = (153 + 142 + 161 + 157)/4 = 153.25 MN/m2 
 
A measure of the average variation along any cross-section is estimated by  
 
   <S> = [(72 + 92 + 92 + 72)/41/2 = 8.1 MN/m2 
 
A measure of the spatial variation in the mean is inferred by (with M = 4) 
 

   ( )
1/ 2

M 2

p j
j 1

S p p /(M 1)
=

 
= − − 
  
∑ = 8.2 MN/m2 

 
Note: The closeness of <S> and S here is just coincidence of the problem numbers.  
 
Replications provide a means to estimate how well the test conditions and their effect on 
the measured results can be repeated.  



PROBLEM 9.26 
 
 
KNOWN:    Air flow measured using a pitot-static tube and a mercury filled  
           manometer.  
 

          5 U≤ ≤  50 m/s  
 
FIND:   Manometer resolution required to achieve a zero order uncertainty of  

 5 and 1% in measured velocity.  
 
SOLUTION 
 
The velocity of a flow of fluid of density ρ  bringing about a manometer deflection H is 
given by  
 

        
Hg air Hg air

U 2 H / 2 gH /= γ ρ = ρ ρ  or  2
air Hg

1H ( U ) /( g)
2

= ρ ρ  

 
To assess the effect of uH on uU :  
 

 

1/ 221/ 22
Hg1/ 2

U H H
air

gU 1u u H u
H 2

−

    ρ ∂    = ± = ±    ∂ ρ        

 

dividing through by the expression for velocity U 
 
 

U H
u / U u / 2H= ±  

 
So the relative uncertainty in velocity is one-half the relative uncertainty in manometer 
deflection. The uncertainty at any level can be found by inserting the corresponding and 
consistent value of uncertainty into this expression. At the zero order, our concern is only 
on the resolution of the measuring instrument. For example, for  uUU = 0.01,   uH/H = 
± 0.02 , or we need a manometer resolution of 4% of the expected manometer deflection.  
 
   U [m/s]      H [mm Hg]            Resolution  [mm]  
      1%  5% 
    5              0.115                  0.00046  0.023 
   50             11.49                  0.46   2.3 
 

The lower velocity readings require micron level resolution if using mercury. 



PROBLEM 9.27 
 
 
KNOWN:   Static pressure around cylinder, p( )θ .  
          pv = 20.3 cm H2O  
           p∞ = patm = 101.3 kPa abs  
           T∞ =Tatm = 16oC  
        Manometer measures pressure using deflection of water  
 
FIND:   U(θ )  
 
ASSUMPTIONS:  Total pressure constant throughout tunnel (i.e., neglect losses).  
 
PROPERTIES:   Water: ρ= 1000 kg/m3 
                   Air:  ρ  = p/RT = 1.2 kg/m3 
 
SOLUTION  
 
For no losses, the Bernoulli equation can be written along a streamline from the freestream 
to the stagnation point as  
     2

t
p p 0.5 U

∞ ∞
= + ρ  

Similarly, we can relate to the pressure around the body’s surface 
     2 2p 0.5 U p( ) 0.5 U ( )

∞ ∞
+ ρ = θ + ρ θ   

so that,    
 2

t
p p( ) 0.5 U ( )= θ + ρ θ  

Then, rearranging we get the velocity as a function of measured pressure 

 t

air

2(p p( ))
U( )

− θ
θ =

ρ
 

The manometer will deflect relative to the pressure difference, p( ) p
∞

θ − . But at the 0o tap, 

t
p( ) pθ = , so the manometer will deflect to the pressure difference, 

t
p p

∞
− . In terms of 

deflection,   
o

t H2O
H( 0 ) (p p ) /

∞
θ = = − γ   

But we see that oH( 0 ) 0θ = = , meaning that pt = p∞. This allows us to rewrite the 
expression for velocity as (where H [cm] and U [m/s]),  
 

 H20 1/ 2

air air

2 gH2(p p( ))
U( ) 12.65H∞

ρ− θ
θ = = =

ρ ρ
 

  



         θ       H [cm H2O]     U  [m/s]  
 
         0               0                    0  
        45          41.4                81.4  
        90          81.3                114.0  
       135         23.1                60.8  
       180         23.9                61.8  



PROBLEM 9.28 
 
KNOWN:   Pitot-static probe. Tamb = T∞ =20 oC  
 
FIND:  Lowest airspeed and manometer deflection for which the viscous  
       correction is negligible.  
 
PROPERTIES:  Air:   ρ= 1.225 kg/m3 
                   ν= 2 x 10-5 m2/s  
               Water: 

m
γ = 9780 N/m2 

 
SOLUTION  
 
Viscous correction is required when Rer < 500. To keep Rer > 500,  
         Rer = Ur/ν    
         U > 500ν /r = (500)(2 x 10-5 m2/s)/r  
or we need 
         U > (0.01/r) m/s  
 
From the pitot-static probe,  
 

         m

air

2 H
U

γ
=

ρ
 

 
Equating with the above expression for velocity (with r and H in [m]) gives,  
 

2
m

H ( / 2 )(500 / r)> ρ γ ν  

    2 3 5 2 2[1.225kg / m /(2 9780N / m )] [(500 2x10 m / s) / r]−> × × ×  
 
For a 6 mm diameter probe (r = 0.003 m), U > 3.3 m/s  (10.8 ft/s) and H > 0.7 mm.  



 
PROBLEM 9.29 

 
 
KNOWN:  Anemometer circuit 
        3 4 500R R= = Ω  ; α = 0.00395/oC  
         Sensor resistance at temperature Ts: Rs(20oC) = 110 Ω  
 
FIND:    RD if Ts = 60oC  
 
SOLUTION  
 
For a metallic resistance temperature device, the resistance temperature relation is 
approximated by,  
 
      Rs(Ts) = Ro[1 + α  (Ts – To)]  
 
Using Ro = R(20oC) = 110 Ω   
      
 Rs(60oC) = 110Ω  [1 + 0.00395(60 – 20C)]  
 
               = 127.38 Ω  
If the sensor resistance is Rs, the bridge will be balanced when  
 
      Rs = RD(R3/R4)   so that    RD =  127.38 Ω .  



PROBLEM 9.30 
 
 
KNOWN:   Constant resistance anemometer  
 
FIND:    Sensitivity relative to velocity  
 
SOLUTION  
 
    For a thermal anemometer operating at constant resistance,  
 
    E2 = A + BUn 
 
The sensitivity, K, is found by  
 
    K = (dE/dU)U = nBUn-1/2(A+BUn)1/2 
 
For n = 0.5,  
 
    K ∝  U-0.75 

 
The sensitivity decreases as velocity increases.  
 
 
 
 
 
 
 
 
 



PROBLEM 9.31 
 
 
KNOWN:   F = 600 mm  
                θ  = 5.5o 

      λ  = 514.5 nm  
 
FIND:    fd at U = 1, 10, 100 m/s  
 
SOLUTION  
 
    fd = U [2 sin θ /2]/ λ   = U [2 sin 2.75o]/514.5 x 10-9m  = 186,540 U  
 
At   U = 1 m/s,   fd = 186.540 kHz  
    U = 10 m/s,  fd= 1.8654 MHz  

U = 100 m/s, fd = 18.654 MHz  
 
Recomputing for F = 300 mm and θ  = 7.3o,  
 
    fd = 247,517 U  
 
At  U = 1 m/s,   fd = 247.517 kHz  

U = 10 m/s,  fd= 2.47517 MHz  
U = 100 m/s, fd = 24.7517 MHz  



PROBLEM 9.32 
 
 
KNOWN:    LDA measurement using dual beam mode.  
                   N = 5000  

         U = 21.37 m/s  
         θ = 6o 
         SU = 0.43 m/s    
         λ  = 623.8 ±  0.5% nm  
         Bfd/fd  ≤0.9%  
         B≤  ≤  0.25o 

 
FIND:    Estimate U', the best estimate of the velocity, based on available  
          information.   
 
SOLUTION  
 
The relation between velocity and Doppler frequency using dual beam mode is,  
 
         U = fd λ /[2 sin θ /2]  
 
with the mean Doppler frequency estimated by  
 
        fd = U [2 sin θ /2]/ λ  = (21.37 m/s)[2 sin 3o]/(623.8 x 10-9 m)  
 
           =  3.5858 MHz  
 
The systematic error in the velocity estimate can be estimated by  
 

       

1/ 22 2 2

dU f
d

U U UB B B B
f λ θλ θ

  ∂ ∂ ∂    = ± + +      ∂ ∂ ∂      
 

Using  
 
        Bθ  = 0.25o = 0.0044 rad  
        Bfd = 0.009 fd = 32,272 Hz  
        Bλ  = (623.8 x 10-9 m)(0.005) = 3.12 x 10-9 m  
 
 

1/ 22 22

2sin / 2 2sin / 2 sin / 2 tan / 2d

d d
U f

f f
B B B Bλ θ

λλ
θ θ θ θ

      = ± + +    
      

 



1/ 22 2 29 6 6 9
9623 10 1.09 10 / 1.09 10 / 623.8 109836 / 3.12 10 0.0044

sin / 2 tan / 22sin3 2sin3o o

m s s ms m
θ θ

− −
−

      × × × × ×
 = ± + × +     
       

 

( ) ( ) ( )
1/ 22 2 20.19 0.11 3.27 3.28 = ± + + = ±   m/s 

 
The systematic error is completely dominated by the optical system error.  
 
The random error in the mean velocity is estimated by  
 
      PU = SU/N1/2 = (0.43 m/s)/50001/2 = 0.007 m/s  
 
with degrees of freedom of 4999.  
 
The uncertainty in velocity is estimated by  
 
      uU = ±  [B2 + (t4999,95PU)2]1/2      (95%)  
 
         = ±  [3.282 + (1.96 x .007)2]1/2= 3.28 m/s    (95%)  
 
The best estimate of the velocity may be stated as  
 
      U' = 21.37 ±  3.28 m/s    (95%)  
 
 
COMMENT  
 
The error in the optical set-up dominates the overall uncertainty in measuring velocity. One 
can minimize this error by using a shorter focal length lens, as this will increase the value of 
θ . But the value assigned for the systematic error in θ  in this problem is actually quite 
large for precise work. Standardized metrology equipment and methods allow vendors of 
high quality optics to measure θ  to better than 0.01o.  
 
At Bθ  = 0.01o, U' = 21.37 ±  0.26 m/s  (95%), a 1% uncertainty.  
 
 



PROBLEM 9.33 
 
KNOWN:       A = 4 m2 (2m by 2m duct) 

pitot static tube measurements at 9 locations, each at the center of equal 
rectangular areas 

  Air: T = 15 oC, p = 1 atm abs. 
 
FIND:   Flow rate 
 
SOLUTION 
 
The flow rate Q UA=  where the velocity is determined from each pitot-static tube 
measurement. The dynamic pressure is measured by the pitot-static tube and it is related 
directly to the velocity at the point of measurement by 
 

 2
2

1
2v t H O airp p p gH Uρ ρ= − = =  

 

 202 H

air

gH
U

ρ
ρ

=  

 
The value of H is obtained from the pitot-static tube. To estimate the average velocity in the 
duct, a spatial average of the readings is made,   
 

 202 H

air

gH
U

ρ
ρ

= =
9

2
1

4 ( )
N

i
H mmH O

N

=

=
∑ = 3.29 m/s 

 
Then, 
 
 Q = (3.29 m/s)(4 m2) = 13.1 m3/s 
 



PROBLEM 9.34 
 
KNOWN:       Information of  Problem 9.33 
  A = wL Bw = 0.010 m     BL = 0.010 m 
   
FIND:  Uncertainty in flow rate   
 
SOLUTION 
 
The flow rate is found from the continuity relation 
 Q = UA 
 
so Q UA=  = 13.1 m3/s (Problem 9.33) and  uQ = f(uU, uA). 
 
The instrument error associated with a pitot-static tube is assigned an uncertainty of 1 %, 
 
 BH/H = 1% (Section 9.8) 
 
The data variation in the 9 measurements of Problem 9.33 gives a random uncertainty in H 
 

 PH = 

1/ 29
2

1
( )

/ 9 0.324
9 1

i
i

H H
=

 
− 

  =
− 

  

∑
 mm H2O  8ν =  

The uncertainty in flow rate contains systematic and random uncertainties. These propagate 
as 

1/ 22 2

Q U A

Q QB B B
U A

 ∂ ∂   = +    ∂ ∂     
( ) ( )

1/ 222

U AAB UB = +  
 

1/ 22 2

Q U A

Q QP P P
U A

 ∂ ∂   = +    ∂ ∂     
( ) ( )

1/ 222

U AAP UP = +  
 

 

But 202 H

air

gH
U

ρ
ρ

= . If we consider only the errors in H as affecting the uncertainty in U, 

( )
1/ 22 1/ 221/ 2(4.0)(0.5)U H H

UP P H P
H

−
 ∂   = =     ∂   

= 0.263 m/s 

( )
1/ 22 1/ 221/ 2(4.0)(0.5)U H H

UB B H B
H

−
 ∂   = =     ∂   

1/ 22 /HH B H =  =0.222 m/s 

 



A = wL: 
 

1/ 22 2

A w L

A AB B B
w L

 ∂ ∂   = +    ∂ ∂     
( ) ( )

1/ 22 2

w LLB wB = +  
= 0.028 m2 

 PA = 0 
 
Then, 
 

( )
1/ 222(4 0.222) 3.29 0.028QB  = × + ×  = 0.893 m3/s 

 

( )
1/ 222(4 0.263) 0QP  = × +  = 1.026 m3/s  ν  = 8 

 

( )
1/ 222

Q Q Qu B tP = ± +  
= ( )

1/ 2220.893 2.306 1.026 + ×  = ± 2.53 m3/s (95%) 

 
Q = 13.1 ± 2.53 m3/s (95%) 
 
There is about a 19% uncertainty in flow rate. 



PROBLEM 9.35 
 
KNOWN:      p∆ ≈ 10 kPa 
  2Hg H OSρ ρ=   where  SHg = 13.6 
   
FIND:  H if θ  = 30o for inclined manometer 
 
SOLUTION 
 
Let H be the deflection in the vertical direction (such as a U-tube manometer), 
 

2m m Hg H O

p p pH
S gγ γ γ ρ

∆ ∆ ∆
= ≈ =

−
=
( )( )

2

3 2

10,000 /
1000 / 9.8 / 13.6

N m
kg m m s

= 0.075 m 

 
But for an inclined manometer 
 

sinH L θ=  
 
or 
 

2 sinHg H O

pL
S gρ θ

∆
=

′
 = 0.15 m 

 
So the inclined manometer doubles the deflection for an applied head. 



PROBLEM 9.36 
 
KNOWN:      steel diaphragm transducer 

t = 0.5 mm 
d= 25 mm (so r = 12.5 mm) 

pν = 0.32 
Em = 200 GPa 
 

FIND:  differential pressure limit (∆p associated with ymax) 
 
SOLUTION 
 
The differential pressure limit occurs at the maximum deflection of the diaphragm (after 
which plastic deformation of the diaphragm may occur), 
 

2 4

max 3

3( )(1 )

16
p

m

p r
y

E t

ν∆ −
=  

 where ymax = t/3. Then, rearranging 
 

 
4

2 4

16

9(1 )
m

p

E t
p

rν
∆ =

−
=

9 2 4

2 4
16(200 10 / )(0.0005 )

9(1 0.32 )(0.0125 )
N m m

m
×

−
= 1 MPa 

   
 



 
 PROBLEM 10.1 

 
 
KNOWN:  Flow of air through a pipe 
          U(r) = 25[1 - (r/r1)2] cm/s 

p = 1 bar abs = 100,000 N/m2 abs 
T = 5oC = 278 K 
d1 = 2r1 = 5 cm 

 
FIND:    mass flow rate 
 
ASSUMPTIONS: Steady, incompressible, axisymmetric flow of a perfect gas. 
 
SOLUTION 
 
Conservation of mass gives 
 

 
which for steady, incompressible, axisymmetric flow becomes 
 

The velocity can be written in vector form as 
 

 resulting in 

  
For a perfect gas, the density can be estimated by 
 
           ρ = p/RT = 1.16 kg/m3 
 
so that (with 1 m = 100 cm): 

 

0dAn̂Uρρd
t CV CS

=•+∀
∂
∂
∫∫∫ ∫∫

∫ ∫=
•   2π

0

r1  

0

ρU(r)rdrdθm

ze2

1

)
r
r25(1U −=

→

/scm    39.3ρρπr
2
25θddr r  ))

r
r(25(1ρm 32

1
2

  π2

0

r1  

0 1

==−= ∫ ∫
•

kg/hr  0.16kg/s  104.5m 5 =×= −
•



 
 
                       PROBLEM 10.2 
 
KNOWN:     Air flow through a pipe 
                   diameter = 2r1 = 20 cm 

         N = 5 velocity measurements per cross-sectional traverse 
         M = 3 cross-sectional traverses 
         BQ/Q = ±2% 

 
FIND:   Q' 
 
ASSUMPTIONS:  Steady, incompressible flow of a perfect gas. 
                       Flow rate remains perfectly controlled (constant) during all  

                   measurements (equivalent to the assumption that all  
                    measurements are taken simultaneously).  

                    
 
SOLUTION 
 
    The flow rate along each traverse line (j = 1, 2, 3) can be approximated by 
 

        
1 5

10
2 2

r

j ij
i

Q Urdr U r rπ π
=

= ≈ ∆∑∫        i = 1,2,3,4,5 

 
where ∆r = 2 cm and j = 1, 2, 3. Then, 
 

[ ]1 2 (25.31)(1)(2) (22.48)(3)(2) (21.66)(5)(2) (15.24)(7)(2) (5.12)(9)(2)Q π= + + + +  
     = 4446 cm3/s 
 
Similarly, Q2 = 4421 cm3/s, Q3 = 4400 cm3/s. The mean flow rate is 
 
        Q = (1/3)[4446 + 4421 + 4400]cm3/s = 4423 cm3/s 
 
with standard deviation, 
 

        
1/ 2

3
2

1

1 ( )
2Q j

j
S Q Q

=

 
= − 
 
∑  

           = 23 cm3/s 
 
and 
 
        1/ 2/ 3QQ

S S= = 13.3 cm3/s    with ν  = 2  

 



Then, t2,95 = 4.303. With P = 
Q

S , tP=57.2 cm3/s and with B = 0.02Q = 88.5 cm3/s, then  

uQ = [88.52 + 57.22]1/2 = 105.3 cm3/s.  
So,  
        Q' = 4423 ± 105.3 cm3/s     (95%) 
 
COMMENT 
 
Sources of systematic error include: instrument errors, errors in the control of operating 
conditions for all three traverses, and the approximation for the integral expression at the 
start of the solution. 



PROBLEM 10.3 
 
 
KNOWN:     Manometer measuring the pressure drop of flowing water 

         H = 10.16 cm Hg 
         d1 = 5.1 cm 

                   γ  = 9800 N/m3 (water) 
         Sm = 13.57 (mercury) so that m mSγ γ=  

FIND:   p1 – p2 
 
ASSUMPTIONS: p1 and p2 taps are located along the same horizontal datum line. 
 
SOLUTION 
 
 Applying the hydrostatic equation between points 1 and 2 yields  
 
    p1 + Lγ  + Hγ m - (L+H) γ  = p2 
 
    p1 – p2 = H(γ m - γ ) 
 
            = H(13.57γ  - γ ) = Hγ 12.57 
 
            = (0.1016 m)(12.57)(9800 N/m2)(1 Pa/N/m2) = 12.516 kPa  



PROBLEM 10.4 
 
 
KNOWN:     Air flow through orifice meter 
                   p1 – p2 = 69 kPa 

         d1 = 25.4 cm 
         T = 32 oC 

 
FIND:   H 
 
SOLUTION 
 
    p1 – p2= γ H 
 
    H = (p1 – p2)/ γ  
 
with   γ  = 9750 N/m3 (Appendix)  
 
H = (69,000 N/m2)/9750 N/m3 = 7.041 m H2O = 704.1 cm H2O 



PROBLEM 10.5 
             
 
KNOWN: Water flow through orifice meter using flange taps. 
         d1 = 3 in. 
         T = 60oF 
         p1 = 100 psi 
         p2 = 76 psi 
         do = 1.5 in 
         RO2 = 48.3 ft-lb/lbm-oR 
 
FIND:   Is Y < 1? 
 
ASSUMPTIONS:� Steady flow 
 
SOLUTION 
 
    Y = f(k, 1, /p pβ ∆ ) 
 
For a diatomic gas, such as O2, k = 1.4. 
 
    1/od dβ =  = 0.5 
 
     1/p p∆ = 0.24 
 
Using Figure 10.7,  
 
    Y = 0.92 
 
There is an 8% reduction in flow rate due to compressibility effects. 
 
COMMENT 
 
Aside from the usual sources of error in an measurement, data reduction errors enter into the 
obstruction meter relations from the assumed values of the various coefficients and from the 
ability to read these values from the tables and charts. Normally, these are treated as 
systematic errors unless additional information about how they were estimated is known. 



PROBLEM 10.6 
 
 
KNOWN:    Orifice meter using flange taps 
                 do = 5 cm 

         d1= 15 cm 
         Red1 = 250,000 

 
FIND:   C 
 
SOLUTION 
 
    C = f( β , Red1) 
 
    1/od dβ =  = 0.33 
 
    Red1 = 250,000 
 
From Figure 10.6, Ko = CE = 0.60. 
 
    E = 1/(1 - 4β )1/2 = 1.006 
 
    C = Ko/E = 0.596 ~ 0.60 
 
COMMENT 
 
 Aside from the usual sources of error in a measurement, data reduction errors enter into the 
obstruction meter relations from the assumed values of the various coefficients and from the 
ability to read these values from the tables and charts. Normally, these are treated as 
systematic errors unless additional information about how they were estimated is known. 
 



PROBLEM 10.7 
 
 
KNOWN:  Flow of water through orifice meter at 20oC 
                  d1 = 10 cm 
                β = 0.4 
 
FIND:   Q at which C = f( β , Red1) becomes C = f( β ) 
 
ASSUMPTIONS:  Flange pressure taps are used so that Figure 10.6 is applicable. 
 
SOLUTION 
 
    For β  = 0.4, Figure 10.6 shows Reynolds number independence in flow coefficient for 
Red1 > 20,000. Because Ko = CE and because E depends only on β , we conclude that C = 
f( β ) for all Red1 > 20,000.  
 
        1 1Re 4 /d Q dπν= > 20,000 
 

  
11Re

1
4 d

Q dπν π> = (1 x 10-6 m2/s)(0.1m) (20000)/4 = 1.6 x 10-4 m3/s  

 
with ν  from the Appendix.  
 
COMMENT 
 
 Aside from the usual sources of error in an measurement, data reduction errors enter into the 
obstruction meter relations from the assumed values of the various coefficients and from the 
ability to read these values from the tables and charts. Normally, these are treated as 
systematic errors unless additional information about how they were estimated is known. 
 



PROBLEM 10.8 
 
 
KNOWN:  Water flow through an orifice plate with flange taps 
                  Q = 50 L/s 
                  T = 25oC 
                  d1 = 12 cm 
                β = 0.5 
 
FIND:   , lossp p∆ ∆  
 
ASSUMPTIONS:  Steady, incompressible (Y = 1) flow. 
 
SOLUTION 
 
For an orifice meter,  2 /Q CEAY p ρ= ∆   with A based on do. Now, do = β d1 = 0.06m and 
A = 2 / 4odπ  = .0028m2:  
 
    Ko = CE = f( β , Red1) = f(0.5, 530,000) ~ 0.63 
 
Using ν  = 1 x 10-6 m2/s and ρ  = 997 kg/m3 from the Appendix , 
 
  1 1Re 4 /d Q dπν=  = 4 (0.05m3)/ (π  x 1 x 10-6m2/s)(0.12m) = 530000  
 
Then, 
 
  ( )( )2/ 2 /p Q CEAYρ∆ =  = [(1000 kg/m3)/2]{(0.05m3/s)/(0.63)(0.0028m2)(1)}2  
        = 4.017 x 105 N/m2  
 
From Figure 10.8, we can expect 
 
    0.77lossp p∆ = ∆ = 3.093 x 105 N/m2 
 
COMMENT 
 
 Aside from the usual sources of error in an measurement, data reduction  
errors enter into the obstruction meter relations from the assumed values of the  
various coefficients and from the ability to read these values from the tables and  
charts. Normally, these are treated as systematic errors unless additional information about 
how they were estimated is known. 
 



PROBLEM 10.9 
  
KNOWN:    Air flow through a flow nozzle (k = 1.4) 
                   do = 3 cm 

         d1 = 6 cm 
         H = 75 cm H2O 
         p1 = 94.4 kPa 
         T1 = 38 oC 

FIND:   Q 
 
ASSUMPTIONS:  Steady flow of a perfect gas.  
 
SOLUTION 
 
For a flow nozzle,  2 /Q CEAY p ρ= ∆   with A based on do. Now, β =do/d1 = 0.5 and A = 

2 / 4odπ  = .00071m2.. With λ  = 9800 N/m3 from the Appendix,  
    p Hγ∆ = = (9800 N/m3)(0.75 m) = 7350 Pa 
    1/p p∆  = 7350 Pa/94900 Pa = 0.078 
The compressibility factor (Figure) is  Y = f(k, 1, /p pβ ∆ ) ~ 0.98. For a perfect gas,  
    1 1 1/p RTρ =  = (94,400 Pa)/(287 J/kgK)(311) = 1.06 kg/m3 
We need a value for Ko. But Ko = f( ,β Red1) and Red1 depends on Q.  
 
Guess a value for Ko and iterate on a solution. From Figure 10.11, pick a value of Ko that lies 
on the β  = 0.5 curve. Lets choose Ko = 1.008, which is a value that lies in the flat region of 
the curve. Then,  

 Q = (1.008)(0.00071m2)(0.98)[(2)(7350 Pa)/(1.06kg/m3)]1/2 = 0.082 m3/s 
But this uses a guessed value. So, check on the guessed value of Ko. Using our new value for 
Q:  
 
 1 1Re 4 /d Q dπν=  = (4)(0.078 cms)/(π )(0.06m)(1.6x10-5 m2/s) = 103,000  
 
or from Figure 10.11, K~ 1.008. Close enough.  
 
So the solution remains:  Q = 0.082 m3/s. 
 
COMMENT 
 
Aside from the usual sources of error in a measurement, data reduction errors enter into the 
obstruction meter relations from the assumed values of the various coefficients and from the 
ability to read these values from the tables and charts. Normally, these are treated as 
systematic errors unless additional information about how they were estimated is known. 



 
PROBLEM 10.10 

 
KNOWN:  Nitrogen (k = 1.4) flows through an orifice meter with flange taps.  
                  T1 = 520oR 
                   p1= 20 psia 

 p2 = 15 psia 
 d1 = 4 in. 
 β = 0.5 
  RN2 = 55.13 ft-lb/lbm-oR 

 
FIND:   Q 
 
ASSUMPTIONS:  Steady flow of a perfect gas 
 
SOLUTION 
 
For an orifice meter,  2 /Q CEAY p ρ= ∆   with A based on do. Now, do = β d1 = 2 in. and A 
= 2 / 4odπ  = .0218ft2. So find Y, E, and C: 
    Y(k, (p1 – p2)/p1, β )   
    p1 – p2 = (20 – 15) psia = 5 psia = 720 psf  and        (p1 – p2)/p1 = 0.25 
so, 
    Y(k, (p1 – p2)/p1, β ) = Y(1.4,0.25,0.5) = 0.92   (Fig. 10.7) 
 

1 1 1/p RTρ =  = (20 psi)(144 in2/ft2)/(55.13 ft-lb/lbm-oR)(520oR) = 0.1 lbm/ft3 
 
Now, Ko = f( ,β Red1) and Red1 depends on Q. Guess a value for Ko and iterate on a solution. 
From Figure 10.16, pick a value of Ko that lies on the β  = 0.5 curve. Lets choose Ko = 0.63 
    Q = (0.63)(0.0218 ft2)(0.92)[(2)(32.2 lbm-ft/lb-s2)(5 lb/in2)(144 in2/ft2)/0.1lbm/ft3]1/2 
        = 8.6 cfs 
 
Checking: 1 1Re 4 /d Q dπν=  = (4) (8.6 ft3/s)/ (π )(1.15 x 10-4ft2/s)(4/12 ft) = 285655 
 and Ko (285,655 and 0.5) ~ 0.63. 
 
So, Q = 8.6 ft3/s. 



PROBLEM 10.11 
 
 
KNOWN:  Water flow through an orifice meter 
         T = 20oC 
         d1 = 38 cm 
         m ≈  200 kg/s 
         H ≤  15 cm Hg  ( with S = 13.57) 
 
FIND:   Design orifice meter by setting do. 
 
ASSUMPTIONS:  Steady, incompressible (Y = 1) flow  
 
SOLUTION 
 
 The mass flow rate for a constant density ( ρ ) flow  
       2 /m Q CEAY pρ ρ ρ= = ∆  
with A based on orifice diameter, do. Solving for do with A = 2 / 4odπ ,  

       
1/ 2

4 /( 2 /od m CE pπρ ρ = ∆   

From the Appendix , ρ = 999 kg/m3 and µ  = 9.6 x 10-4 N-s/m2. 
  Hgp H S gHγ ρ∆ = = =  (13.57)(9760 N/m3)(0.15m) = 19928 N/m2 
If we were to select β  = 0.5, then do = 19 cm (trial). Then  
    1 1Re 4 /d m dπµ=   = (4)(200 kg/s)/π  (0.38m)(9.6x10-4N-s/m2) = 698000 
From Figure 10.6, Ko = f( ,β Red1) = f(0.5, 698000) ~ 0.625, then, 
 od ≥ [(4)(200kg/s)/{(.625) (π )(1000kg/m3)[(2)(19928N/m2/(10000kg/m3)]1/2}]1/2 
      = 0.25 m  or  25 cm  (updated value) 
 
Using this new value for do gives β  = 0.658.  
 
With β  = 0.658, do = 25 cm. Rechecking: Ko(0.658, 698000) ~ 0.625 and do = 0.25 m. 
Converged. So, this value for do will meet our constraints.  
 
We may wish to build in a safety factor on the ∆p constraint. So setting  β = 0.7 or do = 26.6 
cm (Note from Figure 10.6 that this is the largest value for β  at which the ASME tables may 
be used. Larger β  values will require in situ calibration. We find Ko = 0.668 and  
the resulting pressure head works out to 10.8 cm Hg at 200 kg/s.  
 
COMMENT 
 
It is apparent that by choosing different values for do, the pressure drop across an obstruction 
meter can be altered as desired for an expected flow rate. 



PROBLEM 10.12 
 
 
KNOWN:   Water flowing through a venturi meter 

        T = 15oC 
        d1 = 10-cm. 
        H ≤ 76 cm. H2O 
        Q ≈ 0.5 m3/min = 0.0083 cms 

 
FIND:   Design the meter size, do 
 
ASSUMPTIONS:  Steady, incompressible (Y = 1) flow. 
                     Cast venturi meter. 
 
SOLUTION 
 
    From (10.14), Q = CEAY(2∆p/ρ1)1/2  where A and β (in the term E) are based on the 
venturi throat diameter, do. Using ρ = 998 kg/m3 and ν = 1x10-6 m2/s for water from 
Appendix C:  
 
    ∆p = γH2O H = (ρg/gc)H ≤ (998 kg/m3)(9.8 m/s2) (76 cm/100 cm/m) (1 N/kg-m/s2) = 7433 
N/m2 
 
We seek, 
 
       do ≥ [4Q/{CEπ (2∆p /ρ1)1/2}]1/2 
 
Using Red1 = 4Q/πd1ν = 4(0.0083cms)/ π(10/100)(1.0x10-6 m2/s) = 106000. We choose β= 
0.5 so that for the venturi, C = 0.984 (see text). Then,  E = 1/(1 - β4 )1/2 = 1.0328. So,  
 
  do ≥ [4(0.0083 cms)/{(.984)(1.0328) π [2 (7433 N/m2 )/(998kg/m3)]1/2 }]1/2 =  0.052m or 5.2 
cm 
 
This yields a β sufficiently close to 0.5, as selected. A value of do ≥ 5.2 cm will meet the 
constraint. 
 
COMMENT 
 
It should be apparent that by choosing different values for do the pressure drop across an 
obstruction meter can be altered. Hence, one can specify the dimensions based on an 
expected flow rate so as to achieve a desired range of values. �16 
                        



PROBLEM 10.13 
 
 
KNOWN:  Q = 120 cfm of water at 60oF 
                  H ≤  20 in. Hg 
                  d1 = 6 in. 
                  pump efficiency: η = 0.60 
                  power costs: $ 0.10/kW-hr 
                  operating time: 6000 hr/yr 
    
FIND:   Specify design for suitable orifice, venturi and nozzle. 
            lossp∆  and operating costs for each device. 
 
ASSUMPTIONS  Steady, incompressible (Y= 1) flow. 
 
PROPERTIES   water: 1ρ = 62.4 lbm/ft3  ν  = 1 x 10-5 ft2/s  
 
SOLUTION 
 
 For an obstruction flow meter,  Q = CEAY(2∆p/ρ1)1/2where p gHρ∆ = = 1411 lb/ft2.  
At Q = 120 cfm,  
  1 1Re 4 /d Q dπν=  = (4)(120cfm)(1min/60s)/(π )(.5ft)(1x10-5 ft2/s) = 5.1x105 
 
The meter throat sizes do are found from 
       1/2

1do = [(4Q)/(CE  2 p / ) ]π ρ∆  
Orifice: 
 
From Figure 10.6, Ko = f( β , Red1). If we guess, Ko = 0.6, then do = 0.33 ft for  
β = do/d1 = 0.66. From Figure 10.6, Ko(0.66, 5 x 105) = 0.65, so that do = 0.32 ft for β  = 
0.64. Then from Figure 9.6, Ko(0.64, 5 x 105) = 0.65. So β  = 0.64  
and do = 3.84 in. 
 
From Figure 10.8, with β  = 0.64 and Red1 = 5 x 105, 
 
   lossp∆   = 0.6 p∆  = 847 psf 
 
ASME Long Radius Nozzle: 
 
From Figure 10.11, Ko = f( β , Red1). If we guess, Ko = 1.0, then do = 0.26 ft for  
β = do/d1 = 0.52. From Figure 10.11, Ko(0.52, 5 x 105) = 1.01, so that do = 0.26 ft. So  β = 
0.52 and do = 3.12 in. 
 
From Figure 10.8, with β  = 0.52 and Red1 = 5 x 105, 



 
    lossp∆  = 0.6 p∆  = 847 psf   (Same as the orifice, but with smaller β )  
 
Venturi: 
 
Suppose we choose a 15o cast model. The text states, based on the ASME Power Test Codes, 
that C ~ 0.98.  
 
So we begin an iteration with a guess, Ko = CE = 0.98. Then, do = 0.265 for a β  = 0.53.  
E = (1- β 4)-1/2 = 1.04.  So we get Ko = 1.02. Using Ko = 1.02, do = 0.26 ft, β  = 0.52 and  
E = 1.04. This is close enough. So,  do = 3.12 in. 
 
From Figure 10.8, 
 
     lossp∆  = 0.18 p∆   = 254 psf 
 
Cost Analysis 
 
    The power use is estimated from: 
          /lossW Q p η= ∆  
and operating cost from: 
 
          cost = (W)(operating time)(cost/kW-unit time) 
 
 
                        β      W [kW]     Cost[$/yr] 
 
    orifice      0.64        3.7            2230 
    nozzle       0.52        3.7            2230 
    venturi      0.52        0.9            538 



PROBLEM 10.14 
 
 
KNOWN:   Water flow at 27oC through an ASME long radius nozzle. 
          β = 0.6 
          H = 25.4 cm Hg 
          d1 = 15 cm. 
 
FIND:   Q 
 
ASSUMPTIONS:  Steady, incompressible (Y=1) flow. 
 
PROPERTIES:   Water: ρ = 997 kg/m3  ν = 1 x 10-6 m2 /s  
 
SOLUTION 
 
    From (10.14) with A and β based on throat diameter do, 
 

 Q = CEAY(2∆p/ρ1)1/2   
 
With β = do/d1 = 0.6, do = (0.6)(15) cm. = 9 cm. = 0.09 m and  
∆p = γH2O H = (ρg/gc)H  = (997 kg/m3)(9.8 m/s2) (0.09m) (1 N/kg-m/s2) = 879 N/m2 
 
The value for Ko = CE = f(β, Red1). From Figure 10.11, guess Ko = 1.035. Then, with  
A = π(0.09)2/4 = 0.0064 m2 and Y =1 (incompressible water): 
 

  Q = (1.035)(0.0064 m2) (1)[2(879 N/m2 )(1 kg-m/s2-N) /997 kg/m3 )]1/2  
           = 0.0088 cms 
 
Check the guess: 

 
 Red1 = 4(0.0088cms)/π(.09m)(1x10-6 m2/s) = 124,500 

 
From Figure 10.11, Ko = (0.6, 124,500) = 1.03.  
 
So,  Q = 0.0088 cms 



  
PROBLEM 10.15 

 
 
KNOWN:  Orifice meter 
                  d1 = 9 cm 
                  do = 4 cm 
                  Meter to be located within 4 m of straight run of pipe. 
                  Upstream elbow. 
 
FIND:   Meter placement 
 
ASSUMPTIONS:  Elbow is in-plane with downstream pipe. 
 
SOLUTION 
 
For β  = do/d1 = 0.44, we use Figure 10.13 which indicates that the meter  
should be located in a straight run of pipe 6.25 diameters downstream of the  
elbow with 3 diameters of straight run pipe downstream of the meter. Using 7  
diameters upstream to be conservative, this should just fit into the available  
space.  



PROBLEM 10.16 
 
 
KNOWN:  Orifice meter used as a sonic nozzle to meter air flow. 

         T1 = 40oC 
         p1 = 695 mm Hg abs = 92,660 N/m2 abs 
         p2 = 330 mm Hg abs = 43,996 N/m2 abs 
         d1 = 5 cm = 0.05 m 
         β = 0.4 

 
FIND:    mass flow rate 
 
PROPERTIES:  R = 287 N-m/kg K  ;    k = 1.4 
 
ASSUMPTIONS: Air behaves as a perfect gas. 
 
SOLUTION 
 
    For this flow,  
 
         p2/p1 = 330 mm Hg/695 mm Hg = 0.475 
 

(p2/p1)crit = [2/(k+1)]k/(k-1) = 0.528 
 
Since p2/p1 < 0.528, the flow in the orifice throat is choked and sonic conditions exist there. 
Using, 
 

 ρ1 = p1/RT1 = (92,660 N/m2 abs)/( 287 N-m/kg K)(300 K) = 1.076 kg/m3 
 
    
  A = πdo

2/4 = π(0.4 x 0.05)2/4 = 0.0003 m2 
 
Equation 10.18 applies using k = 1.4, R = 287 N-m/kg K, and T1 = 300 K: 
 

  
 kg/s  0.067]1)1)(2/k[(k/k)A(2RTρm 1/212/k1/2

11 =++= −
•



 
PROBLEM 10.17 

 
 
KNOWN:  Air flow through an orifice meter with flange taps. 
                  do = 0.5m 
                  d1 = 1m 
                  H = 90 mm H2O 
                  p1 = 2 atm = 3 atm absolute 
 
FIND:   Q 
 
ASSUMPTIONS:  Steady flow of a perfect gas. 
 
PROPERTIES:   air: ν = 1.5 x 10-4 m2/s   R = 0.287 kJ/kg-K 
                           water: ρ = 1000 kg/m3 
 
SOLUTION 
 
    Using equation 10.14 with A and β  based on the orifice throat diameter do,  
                Q = CEAY(2∆p/ρ1)1/2   
 
where   1 1 1/p RTρ =  = (3)(101,325 N-m2/atm)/(287 J/kg-K)(293K) = 3.6 kg/m3 

 
  p gHρ∆ =  = (1000 kg/m3)(9.8 m/s2)(0.09 m)/1 kg-m/N-s2 = 882 N/m2 

 
With β  = do/d1 = 0.5 and ∆p/p = 0.003, Figure 10.7 gives Y ~ 1. From Figure 10.6, guess 
Ko = f( β ,Red1) = 0.633. Then,  
 
   Q = (0.633)(π  (0.5 m)2/4)[2(887 N/m2)/1000 kg/m3]1/2 = 2.75 m3/s 
 
Checking,    Red1 = 4Q/π d1ν  = 4(2.75 m3/s)/π  (1m)(1.5x10-4m2/s) = 23,350 
From Figure 10.6, Ko(0.5, 23350) ~ 0.635 or  Q = 2.76 m3/s.  
 
Checking, Red1 = 23,400 and Ko = 0.635.  
 
So, Q = 2.76 m3/s. 



PROBLEM 10.18 
 
 
KNOWN:     Flow of 20oC water through an ASME Long Radius Nozzle. 

         β = 0.5 
         d1 = 8 cm id 
         0.6 ≤ Q ≤ 1.6 liters/s  (note: 1 liter = 0.001 m3) 
        Transducer: 
             u∆p /∆p: 0.25% full scale  (design-stage uncertainty) 

 
FIND:  ∆p or H; design stage uncertainty in Q 
 
ASSUMPTIONS:  Steady, incompressible (Y = 1) flow of water. 
 
PROPERTIES:  Water: ρ = 997 kg/m3;  ν = 1.0 x 10-6 m2/s 
 
SOLUTION 
                                                              
    Rewriting equation 10.14,  
 
        ∆p = (ρ1/2)(Q/CEYA)2 
 
Using do = βd1 = (0.5)(8) = 4 cm and A = πdo

2/4 = π (.04)2 /4 = 0.00126 m2 
 
At 0.6 liters/s,    Red1 = 4Q/πd1ν = 4(0.6 liters3/s)(0.001m3/liter) /π (.08)(1.0 x 10-6 m2/s) = 
9550 
 
              Ko(0.5, 9550) = CE = 0.965 
 
Then, ∆p = (997 kg/m3/2)[(0.0006 m3/s)/(0.965)(0.00126)]2 = 121 N/m2 = 0.9 mm Hg  
           
At 1.6 liters/s, Red1 = 4Q/πd1ν = 4(1.6 liters3/s)(0.001m3/liter) /π (.08)(1.0 x 10-6 m2/s) = 
25,450 
 
              Ko(0.5, 25450) = CE = 0.965 
 
Then, ∆p = (997 kg/m3/2)[(0.0016 m3/s)/(0.965)(0.00126)]2 = 863 N/m2 = 6.5 mm Hg 
 
So a transducer with a range from about 0 to 7 mm Hg (0 to 96 mm H2O) is needed. 
Electronic pressure transducers are readily available with a range from 0 to 10 mm Hg, and 
such a transducer will be suitable. (Alternatively if a mechanical output is acceptable, a 
manometer filled with water would work well in this range at a fraction of the cost.)  
 
The propagation of uncertainty to the flow rate can be written as,  
 
 



 

 
or dividing by Q = CEA(2∆p/ρ)1/2, the uncertainty on a percent basis is  

  
 
For the design-stage uncertainty analysis, we assume: 
 
Transducer:                  u∆p /∆p = 0.0025                [given] 
Discharge coefficient:   uC/C = 0.02                   [text ref. 2] 
Diameters:                   ud1/d1 = udo/do = 0.002        [reasonable assumption] 
Density:                        uρ /ρ = 0.002                   [reasonable assumption] 
 
Then, 
 
Area:                     uA/A = 2udo/do = 0.004 
Beta ratio:             uβ /β = [(udo/do)2 + (ud1/d1)2]1/2 = .003 
Approach factor:   uE/E = [2β3/(1-β4)2]uβ /β = 0.0009 
 
 
 uQ/Q = ± [0.022 + 0.00092 + 0.0042 + (0.002/2)2 + (0.0025/2)2]1/2 = ±  0.02  
 
That's an uncertainty of about 2% of the flow rate.  
 
COMMENT 
 
Note how the known information about the instruments and the coefficients has been used to 
estimate this uncertainty. It is clear that the uncertainty in discharge coefficient dominates the 
uncertainty in flow rate. In situ calibration of the nozzle could reduce this uncertainty in C. 
The uncertainty due to the pressure transducer is too small to be an important factor in this 
measurement.  
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PROBLEM 10.19 

 
 
KNOWN:  Water at 60oF flowing through an orifice meter. 
                  10 ≤  Q ≤  50 gpm 
                  d1 = 2.3 inch 
                  /pu p∆ ∆ = ± 0.005 
 
         Select C = f( β ) only 
 
FIND:   do; design stage uncertainty in Q 
 
ASSUMPTIONS:  Steady, incompressible (Y = 1) flow of water. 
 
PROPERTIES:  Water: ρ = 62.4 lbm/ft3    ν  = 1.2 x 10-5 ft2/s 
 
SOLUTION 
 
Begin by finding do.  
For an orifice meter,  Q = CEA(2∆p/ρ)1/2 . 41/ 1E β= − . From Figure 10.6, K becomes 
essentially independent of Reynolds number at the higher values. So we will try to meet the 
constraint at the lowest expected flow rate so that it will be met at all higher flow rates.  
    At 10 gpm, 

Red1 = 4Q/πd1ν= 4(10 gpm)(448 cfs/gpm)/π  (1.2x10-5 ft2/s)(2.3/12 ft) = 9900  
Again, using Figure 10.6 at Re = 9900, select β  = 0.3. The value for discharge coefficient 
falls within a range (C = Ko/E):  0.60 ≤  C ≤  0.615. Then with do = 0.6 inches, we can 
assume a constant value of C = 0.607 to within 2.5% over the flow range.  
 
The uncertainty of a result, in this case the flow rate, is estimated by propagation of terms 
and uncertainties, Q = f(C, E, A, ,ρ ∆p). This gives 

  
 (equation 1) 
     
 

From Chapter 10 reference 2 or 12, we find that we can estimate the error in discharge 
coefficient at ± 6% of C, i.e., B1 = ± 0.006C, when using the tabulated values. We also 
assume that C is constant over the full flow range, which introduces a systematic error 
estimated at B2 = 2.5% of C. Together we obtain the systematic uncertainty in C,  

   
1/ 2 1/ 22 2 2 2

1 2/ ( / ) ( / ) (0.006) (0.025)CB C B C B C   = + = +     = 0.026 
 
Further, it is reasonable to expect a tolerance of 0.005 inch in all dimensional  
measurements. Hence, we use this value as an estimate of the systematic error in the 
dimensional terms, 
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  Bdo/do = 0.0083 
   Bd1/dd1 = 0.0025 
 
Then, expanding each uncertainty and plugging in values gives  
 
   / 2 / 4 2 /A o do do oB A d B B dπ= =  = 0.0167 

   
1/ 22 2

1 1/ ( / ) ( / )do o dB B d B dβ β  = +   = 0.017 

   ( )23 4/ 2 /(1 ( / )EB E Bββ β β = −  
 = 0.0009 

 
It is reasonable to assume a ±  0.5% systematic uncertainty in density, so 
   /Bρ ρ = 0.005 
We will treat all of the uncertainty in the pressure transducer as a systematic uncertainty, then 

/pB p
∆

∆ = 0.005 ( because we have no other information to treat it otherwise). Subbing back 
into equation (1), 

   
1/ 22 2 2 2 2/ 0.026 0.0167 0.0009 (0.005/ 2) (0.005/ 2)QB Q  = ± + + + + = ±  0.031 

Finally, recognizing that all errors are treated as systematic errors, such that all P = 0, then  
/ /Q Qu Q B Q= = ± 0.031 

The uncertainty in flow rate is about 3.1%.  
 
COMMENT 
 
Certainly, the uncertainty in C dominates the uncertainty in Q. It is worth  
noting that as Red1 approaches 50 000 and beyond (Q > 40 gpm), the value for  
C approaches 0.60. Using this value for all flow rates would retain the previous  
uncertainty value at low flow rates but would reduce uQ/Q to less  
than 1.8% at the higher flow rates. Try it! 
 

We treat all errors in this problem as systematic errors and assign them systematic 
uncertainties. We then propagate these systematic uncertainties through to a result. Had we 
simply assigned the values as uncertainties (i.e., replace all the B terms with u terms), the 
problem would develop exactly the same. When errors can be separated into random and 

systematic components, their separation serves a useful purpose. 



                       PROBLEM 10.20 
 
 
 
KNOWN:  Air (70oF) flow through an orifice 
         10 80%≤ Φ ≤   where Φ  is relative humidity 
         (ρ Φ  = 45%) used 
 
FIND:   uQ due to variation in density due to humidity changes 
 
PROPERTIES:  Using a psychiometric chart for air at standard atmosphere,  
             ρ  (80%) = 0.0746 lbm/ft3 
             ρ  (10%) = 0.0735 lbm/ft3 
             ρ  (45%) = 0.0741 lbm/ft3 
 
SOLUTION 
 
 Inspection of the properties reveals that the density can be estimated as 
 
        ρ  = 0.0741 ± 0.0005 lbm/ft3 
 
over the range of relative humidity values. This does not account for systematic errors  
in the actual density values obtained from the chart. For an orifice plate, 
                   
  Q = CEA(2∆p/ρ)1/2 
 
To isolate the effects of humidity on the flow rate, we neglect all error sources except those 
involved with density (as density is affected by humidity). This assumes that C, A, and 
pressure are not affected by humidity variation, which is reasonable. Then,   

1/ 22

( )Q

Qu f uρρ
ρ

  ∂
= = ±   ∂   

 

Dividing through by the flow rate, gives 

      ( )
1/ 22

/ / 2Qu Q uρ ρ = ±   
 = 0.0034 

 
or an uncertainty of about 0.34% of the flow rate results due to relative humidity effects 
alone. 



PROBLEM 10.21 
 
 
KNOWN:  Air flow through an orifice meter with the conditions from Problem  
                10.20.  
         Q = 17 m3/hr = 17 cmh 
         T = 20oC 
         β  = 0.4 
         d1 = 6 cm 
         /pu p∆ ∆ = 0.005 
         udo = ud1 = 0.1 mm 
         p1 = 96.5 kPa 
 
FIND:   Design stage uncertainty in flow rate 
 
PROPERTIES  R = 28 N-m/kg-K 
                         ν  = 1.6 x 10-5 m2/s 
                          k = 1.4 
 
SOLUTION 
 
For an orifice,    Q = CEA(2∆p/ρ)1/2   with do = β d1 = 2.4 cm. But Ko= CE = f( β , Re). At 17 
cmh, Red1 = 4Q/πν d1 = 6260. Then from Figure 10.6, Ko(0.4, 6260) = 0.63 (at least to 
within ± 0.005). To solve equation (10.14) for ∆p, we assume Y = 1. This yields for A = 
0.00045 m2,  
 
  ∆p = [0.0047 cms/(.63)(0.00045m2)(1)]2(1.15 kg/m3/2) = 157.85 N/m2 
 
Using this value,  ∆p/p1 = 0.0016. With k = 1.4, Figure 10.7 gives Y = 1. So ∆p = 157.85 
N/m2. This is equivalent to about 1.6 cm H2O.  
 
Based on (10.14) and the propagation of uncertainty to a resultant, dividing by (10.14), the 
uncertainty in flow rate can be written as  
 
  
          
The uncertainty in C is due both to the intrinsic error in using tabulated values,  
u1, and due to our ability to read Figure 10.6, u2. Setting u1 = 0.006C (see text)  
and u2 = 0.008C (based on an estimated resolution of ± 0.005 from the chart):  
 
   uC/C = (0.0062 + 0.0082)1/2 = 0.01  

2 2 2 2 2 2 1/ 2( ) ( ) ( ) ( ) ( ) ( ) ]
2 2

Q pC E A Y
u uuu u u u
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ρ

ρ
∆= ± + + + + +
∆



Other values: 
 
   udo/do = 0.01/2.4 = 0.004 
 
   ud1/d1 = 0.01/6 = 0.0017 
 
   uA/A = 2udo/do = 0.008  
 
   u

β
/ β  = [ (udo/do)2 + (ud1/d1)]1/2 = 0.0043 

 
   uE/E = 2β 3(1 - β 4)-2u

β
/ β  = 0.0009 

 
   uY/Y = 0.004∆p/p1 = 1.3 x 10-5    (see text and reference 2) 
 
   u p∆ / p∆  = 0.005 
    
Lastly, the uncertainty in density will be due both to the error from the presumed humidity 
variations, u1, and the error in the tabulated values, u2. Taking u1/ ρ  = (0.0005/1.15) = 0.0004 
and u2/ ρ  = 0.005  (i.e. about 0.5% of the tabulated value):  
 
   u ρ / ρ  = [0.00042 + 0.0052]1/2 = 0.005 
 
Then, 

1/ 22 2 2 5 2 2 2/ 0.01 0.0009 0.008 (1.3 10 ) (0.005/ 2) (0.005/ 2)Qu Q − = ± + + + × + +   
      = ±  0.0133 
 
Accounting for known uncertainties, the uncertainty is about 1.3% of the flow rate.  
 
COMMENT 
 
The assignment of uncertainty estimates requires time, some research into available 
information and good common sense. Keep in mind that the above estimate does not include 
the effects of control of operating conditions and the measurement procedure.  



PROBLEM 10.22 
 
 
KNOWN:  Air flow at 70oF through an ASME Long Radius Nozzle  
                  Q = 45 cfm 
                  p1 = 14.1 psia 
 
FIND:   p2 and do required to assure choked flow at the throat. 
 
ASSUMPTIONS:  Air behaves as a perfect gas in this process 
 
PROPERTIES:   R = 53.3 ft-lb/lbm-oR 
                            k = 1.4 
 
SOLUTION 
 
 From (10.16), the critical pressure ratio is given by 
 
    [p2/p1]c= (2/k+1)k/k-1 = (2/2.4)1.4/0.4 = 0.528 
 
The critical pressure ratio sets the largest pressure possible and still choke the  
throat. Then, the critical downstream pressure is 
 
    [p2]c = 0.528p1 = 7.45 psia 
 
So, p2 ≤  7.45 psia to choke the flow.  
 
Under choked flow conditions, the mass flow rate is at a maximum value. Equation 10.18 
gives the mass flow rate at the critical pressure ratio which must then be the maximum mass 
flow through the nozzle. Rearranging (10.18), we solve for the throat area at critical 
conditions which must represent the largest throat area that can choke the flow,  
 

    

max
2 / 1

3

2 2 /(1.4 1)

/
22 ( )

1 1

(45 / min 1min/ )
1.4 22 53.3 530 32.2 / ( )

1.4 1 1.4 1

k

o
o m

m

mA
kRT

k k

ft s
ft lb R lb ft s lb
lb R

ρ

−

−

=

+ +

×
=

−
× × − −

+ +



 

       = 0.0011 ft2 
 
But A = 2 / 4odπ . So do ≤  0.459 inches would provide a suitable design. 



PROBLEM 10.23 
 
 
KNOWN: Water at 20oC flows through orifice plate with flange taps. 
                  d1 = 10 cm 
                  H = 100 mm Hg at Q = 2 m3/min = 0.033 cms  
 
FIND: do required 
 
SOLUTION 
 
 We want to have H = 100 mm Hg or ∆p = (13.57)(9800N/m2)(0.1 m) = 13,300 N/m2. 
Equation 10.14 can be rewritten as: 
 
        1/2 1/2

o 1d  = [4Q/(CE (2 p/  )  )]  π ρ∆   
 
for the conditions known, this reduces to  do= 0.09/(Ko)1/2  [m] 
 
To solve, we that Ko = CE = f( β , Red1). For the target flowrate, 
 
   Red1 = 4Q/πν d1=4(0.033 cms)/π  (.1m)(1x10-6m2/s) = 425,000 
 
Inspection of Figure 10.6 shows that the orifice diameter requires a β of nearly 1 to satisfy 
the flow meter equation. So an orifice meter can not be used to meet the given constraints! If 
an orifice meter were used, the pressure drop would be substantially less than the desired 
value. 



PROBLEM 10.24 
 
 
KNOWN: Nozzle used to meter 20oC water. 
                 d1 = 20 cm 
                 5000 cm3/s ≤  Q ≤  50,000 cm3/s 
               β  = 0.5 
 
FIND: Pressure transducer range required. 
 
SOLUTION 
 
 Rearranging the obstruction meter equation (10.14) with Y = 1 (incompressible): 
 
     2( / 2)( / )op Q K Aρ∆ =  
 
where Ko = f( β =0.5, Red1). 
 
Low Q:  Red1 = 4(.005 m3/s)/π  (.2m)(1x10-6m2/s) ~ 32,000 
 
High Q: Red1 = 4(.05 m�3�/s)/ π  (.2m)(1x10-6m2/s) ~ 320,000 
 
So from Figure 10.11: (Ko)low ~ 1.000 ; (Ko)high ~ 1.005. 
 
Solving:    
 
     lowp∆  = 203 N/m2 
 
     highp∆  = 20,100 N/m2   
 
So the selected transducer must have a range extending from about 200 to 20,500 N/m2, one 
rated from 0 to 21 cm H2O will work well. 
 



PROBLEM 10.25 
 
 

SOLUTION 
 
The solution to this problem is open-ended. We suggest that the instructor assign this 
problem and use it as a basis for an in-class or small group discussion. 



PROBLEM 10.26 
 
 
KNOWN: Vortex meter metering fluid flow 
                  St = 0.20   (shedder Strouhal number) 
                  f = 77 Hz   (shed frequency) 
                 d = 1.27 cm  (shedder characteristic length, see Table 10.1) 
 
FIND:   Average velocity, U 
 
SOLUTION 
 
      St = fd/U  
 
      U = (77 Hz)(0.0127)/0.2 = 4.89 m/s 



 
PROBLEM 10.27 

 
 
KNOWN:  Air flow at 30oC metered by a thermal mass flow meter 
                  d1 = 2 cm 
                  Power = P = 25 W 
                 ∆T = 1oC = 1K 
                  cp = 1.006 kJ/kg-K 
 
FIND:   mass flow rate 
 
ASSUMPTIONS:  cp is constant through meter and known. 

∆T reported (measured) must be the average mixed temperature across each pipe        
cross section. 

              Power supplied to meter is 100% dissipated in fluid (i.e. no losses). 
 
SOLUTION 
 
     pE mc T= ∆   
 
But the energy supplied to the meter is dissipated into the flow, so that E P= .  
Then,  
 
   / pm P c T= ∆ = (25 W)(1006 J/kg-K)(1K)  = 0.025 kg/s 
 
COMMENT 
 
Note the many assumptions that go into using this meter. Actually, for flows of gases which 
can be well modeled as perfect gases, these types of meters provide excellent accuracy. For 
other types of fluids, they have limited applicability.  
 



PROBLEM 10.28 
 
 
KNOWN:   Sonic nozzle used to regulate volume flow rate of air. 
 
FIND:    Uncertainty due to normal changes in ambient temperature and  pressure.  
 
SOLUTION 
 
    From (10.18), 

 
For air, (p2/p1) cr = 0.528. Provided that the actual p2/p1 ratio remains below this value the 
throat will remain choked. From (10.3) and (10.6), we can rewrite this for volume flow rate 
as,  
 

Q = A(2RT1)1/2 [(k/k+1)(2/k+1)2/k-1]1/2  
 
This shows that the volume flow rate will be affected by environmental changes in 
temperature even though constant mass flow rate is maintained in the nozzle throat (all other 
terms in the equation remain constant). If we look only at the effects of temperature variation 
over the ± 5 K range specified, then Q = f(T) only. This can expressed as  
 
       uQ/Q = ±[(uT/2T)2]1/2 

                = ± [(5 K)/(2 x 283 K))2 ]1/2 

                = ±0.0088 
 
or an added uncertainty in volume flow rate of 0.88% or about 1% due to temperature 
changes alone. 
 

1/212/k1/2
11 ]1)1)(2/k[(k/k)A(2RTρm −
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++=



                        
PROBLEM 10.29 

 
 
KNOWN:  From Example 10.4: Q = 0.053 cms (air) 
                   d1 = 6 cm 
                  β = 0.4 
                  do = 2.4 cm 
                  H = 250 cm H2O 
                  p1 = 93.7 kPa 
                  T=1 = 293 K 
                  Y = 0.92  
        All dimensions known to ± 0.025 mm 
        Upstream pressure is constant 
        Pressure drop has systematic uncertainty B = ± 0.25 cm H2O 
        SH = 0.5 cm H2O  with  N = 20 
 
FIND:   uQ 
 
PROPERTIES:  water: γ = 9800 N/m3; ρ = 998 kg/m3 
                           air: ν = 1.6 x 10-5 m2/s; ρ = 1.16 kg/m3 
 
SOLUTION 
 
The flow rate is found by 
 
        Q = f(C,E,A,Y,∆  p, ρ ) 
 
with   Q = CEA(2∆p/ρ)1/2

 and ∆p = (9800 N/m3)(2.5 m H2O) = 24.5 kPa 
 
The systematic uncertainty in Q can be estimated on a percent basis as, 
 
  
 
 
where 
   Bdo/do = 0.0025/2.4 = 0.001 
   Bd1/dd1 = 0.0025/6 = 0.0004 
   B β  =[(Bdo/do)2 + (Bd1/d1)2]1/2 = 0.001 
   BA/A = 2Bdo/ddo = 0.002  
   BE/E = 2β 3(1 - β 4)-2B β / β  = 0.0002 
   BY/Y = 0.004∆p/p1 = 1.3 x 10-5   (see text and reference 2) 
   B∆ p/∆p = 0.25/250 = 0.001 
   B ρ / ρ  = 0.005        (assumed value) 
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According to the text and reference 2, the systematic uncertainty in using the tabulated values 
for C amounts to 0.006C. However, we will also add an additional elemental systematic error 
in reading Figure 10.6 estimate with systematic uncertainty of 0.008C. Then, 
     
    BC/C = (0.0062 + .0082)1/2 = 0.0094 
 
Inserting yields, 
 
 BQ/Q = [0.00942+0.00022+0.0022+0.0000132+(0.005/2)2+(0.001/2)2]1/2 = 0.01 
 
Or BQ = 0.00053 m3/s. Note how the systematic error in C dominates. 
 
Likewise the random uncertainty in Q can be expressed as 

 
  
 
 

But the only random error estimate comes from the pressure reading, so that the random 
uncertainty is 
 
  PQ/Q = /pP p∆ ∆  
 
With  SH = 0.5 cm H2O , 
 
         PH = SH/(20)1/2 = 0.11 cm H2O 
 
or in correct units, 
 
         pP∆ = 9.8 N/m2   with a degrees of freedom of 19.  
Then, 

         PQ/Q = ( )
1/ 22

/ 2pP p∆
 ∆  

  = [(9.8/(2)(24500))2]1/2 = 0.0002 

Or PQ = 1x10-5 m3/s. 
    Combining random and systematic uncertainty estimates for flow rate,  

  
1/ 22 5 20.0053 (2.093 1 10 )Qu − = ± + × ×  = ±  0.00053 cms  (95%) 

 
COMMENT 
 
The uncertainty amounts to about 1% of the flow rate and is primarily due to systematic 
errors in the variables, notably the discharge coefficient. The user may feel more comfortable 
using larger values for the systematic errors as read from charts and properties obtained from 
tables. The point is that a careful consideration of each term relevant to the measurement has 
been made.  
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PROBLEM 10.30 
 
KNOWN:  10Q W=  

     3oT C∆ =  
     Air: cp = 1.006 kJ/kg K 

FIND: m  
 
ASSUMPTION: Air is a perfect gas (i.e., cp = constant) 
 
SOLUTION 
 

10 (1 / / )
(1006 / )(3 )o

p

Q Wm J s W
c T J kgK C

= =
∆


 = 0.0033 kg/s = 0.2 kg/min 

 



PROBLEM 10.31 
 
KNOWN:   St = 0.19  (Table 10.1 for Red > 10,000) 
         d = 10 mm = 0.010 m 
         D = 10 cm = 0.10 m 
         U = 30 m/s 
          T = 20oC   air 
 
FIND:   K1, Q 
 
SOLUTION 
 

0.19 30 /
0.01

St U m sf
d m
× ×

= = = 5,700 Hz 

 
1 / 4 (0.01 ) /(4 0.19)K d St mπ π= = × =0.0413 

 
Q = K1D2f = (0.0413)(0.1m)2(5700Hz) = 0.236 m3/s 
 
Check:  Q = UA = 2 / 4U dπ = 0.236 m3/s ok 
Check: Re = /Udρ µ = 20,000  so St = 0.19 ok 
 



PROBLEM 10.32 
 
KNOWN: Q = 30 acmm  = 30 actual m3/min 
             p = 50 mm Hg 
             T = 15oC 
 
FIND:  Qstandard 
 
SOLUTION 
 

tan
tan

293 760 50( )( )
273 15 760

actual
s dard actual actual

s dard

Q Q Q
C

ρ
ρ

+
= =

+
 

 
tan 1.0843s dard actualQ Q= = 32.5 scmm 

 



PROBLEM 10.33 
 
KNOWN: Cast venturi  
  C = 0.984  with  b = 0.00375 P = 0 
  do = 3.995 in  with  b = 0.0005 P = 0 
  d1 = 6.011 in  with  b = 0.001 P = 0 
  ρ = 62.369 lbm/ft3  with  b = 0.002  P = 0.002  (large dataset) 
  H = 100 in H2O  with  b = 0.15  P = 0.4      (large dataset) 
 
FIND: Best estimate of the flow rate at 95% confidence 
 
ASSUMPTION:   Neglect thermal expansion of the venturi material; Dataset is large such 

                  that N > 30, so that t ~ 2 is used throughout the problem 
 
SOLUTION 
 
This problem is taken from PTC 19.1 – 2005 where it was revised, edited and presented in 
that standard by author R. Figliola. The problem is formatted in a manner recommended by 
the standard, although the nomenclature has been revised to be consistent with this text. 
 

m Q CEYA 2 p /= ρ = ρ ∆ ρ  
 
where ρ is the density of water. With p gh∆ = ρ and h is the equivalent head in terms of 

inches of water; Y is set equal to 1 for incompressible liquids; E = 4d1/ 1 ( )
D

− ; and              

A = 2d / 4π , we can express the mass flow rate in lbm/s as  
2

4

0.099702Cd h
m

d1
D

ρ
=

 
−  
 

  

 
So, m f (C,d, , h,D)= ρ  and 

C d h D C d h Dm
u f (B ,B ,B ,B ,B ;P ,P ,P ,P ,P )

ρ ρ
=


, or using the fact 

that  b = B/2 (i.e., the standard systematic uncertainty equals one-half the systematic 
uncertainty) we can equivalently write 

C d h D C d h Dm
u f (b ,b ,b ,b ,b ;P ,P ,P ,P ,P )

ρ ρ
=


. Also,  
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so that the uncertainty in mass flow rate is found by  



( ) ( )
1/ 2 1/ 22 22 2

m
u B (2P) 2b (tP)   = ± + = ± +      

   (95%) 

where t has been assigned the value of t ~ 2. Or, in terms of the standard uncertainty 
 

( )
1/ 22 2

m
u b (P) = ± +  

   (68%) 

 
Table 1 states the known information. Table 2 states the sensitivity terms and values used in 
the propagation formulas. Table 3 states the contributions of each variable to the uncertainty 
in mass flow rate. Table 4 states the results.   
 
We find (from Table 4) that 
 

m 138.4 1.21= ±  lbm/s    (95%) 
 
which is equivalent to the result  
 

m 138.4 0.608= ±  lbm/s    (68%) 
 
Either answer is a correct statement at its specified probability level. 
 
 
 

 
Table 1: Nominal Values and Uncertainties for each Variable 

Independent Parameters 
 
 
X 
 

Symbol 

 
 
 
 

Description 

 
 
 
 

Units 

 
 
 

Nominal 
Value 

Absolute 
Systematic 
Standard 

Uncertainty 

X
b  

Random 
Standard 

Uncertainty 
of the Mean 

X X
P s=  

C  Discharge 
Coefficient 

 0.984 3.75E-03 0 

d  Throat Diameter inches 3.999 5.0E-04 0 

D  Inlet Diameter inches 6.001 1.0E-03 0 
ρ  Water density @ 

60oF [25] 
lbm/ft3 62.37 0.002 0.002 

h  Differential 
pressure head 
across venture 
(68oF) 

in.H2O 100 0.15 0.4 

GENERAL NOTES: 
a) The systematic and random estimates for density are based on water temperature 

measurements having systematic and random uncertainties of 0.2oF and 0.1oF, respectively. 
b) The systematic uncertainty for the differential pressure head is assumed to be one-half 

the least count of the manometer scale. 

  



Table 2: Estimation of the Sensitivities for Each Variable 
 

 

X
 

 
 

Nominal 
Values 

 
Formulas for Absolute Sensitivity 

m
X
∂
∂


 

Sensitivity 

m
X
∂
∂


 

 

C  
 

0.984 
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Table 3: Uncertainty Values for Each Variable 
Independent Parameters 

Parameter Information 
(in Parameter Units) 

 Uncertainty Contribution 
of 

Parameters to the Result 
(in Result Units Squared) 

 
 
 
 

X
 

 
 
 
 

Description 

 
 
 
 

Units 

 
 
 

Nominal 
Value 

 
Absolute 

Systematic 
Standard 

Uncertainty 

X
b  

 
Absolute 
Random 
Standard 

Uncertainty 

X x
P S=  

 
 
 

Absolute 
Sensitivity 

X
θ  

Absolute 
Systematic  
Standard 

Uncertainty 
Contribution 

2
X X

(b )θ  

Absolute 
Random 
Standard 

Uncertainty 
Contribution 

2
X X

(P )θ  

C
 
 

Discharge 
coefficient  0.984 3.75E-03 0 140 0.276 0 

d  
 

Throat 
diameter 

inches 3.999 5.0E-04 0 86.2 1.86×10-3 0 

D
 
 

Inlet 
diameter 

inches 6.001 1.0E-03 0 -11.4 1.29×10-4 0 

ρ
 
 

Water 
density @ 
60oF [25] 

lbm/ft
3 62.37 0.002 0.002 1.11 4.93×10-6 4.92×10-6 

h  
 

Differential 
pressure 
head across 
venturi (at 
68oF) 

in.H2O 100 0.15 0.4 0.692 1.08×10-2 7.66×10-2 

 
Table 4: Uncertainty Values: Results 

 
 
 

 
 

 
 
 

 
Description 

 
 

 
 

Units 

 
 

 
Calculated  

Value 

 
Absolute 

Systematic 
Standard 

Uncertainty 

m
b


 

 
Absolute 
Random 
Standard 

Uncertainty 

m
P


 

Combined 
Standard 

Uncertainty of 
the Result 

m
u (68%)


 

 
 

Total Absolute 
Uncertainty 

m
u (95%)


 

m  Mass Flow 
rate 

lbm/s 138.4 0.537 0.276 0.604 1.21 

 
 
COMMENT 
 
The tables here are set up in a convenient manner to express the formulation and results of 
the problem. This format meets that recommended by ASME/ANSI PTC 19.1.



 
PROBLEM 10.34 

 
KNOWN: Flow nozzle  
             d1 = 60 mm = 0.060m 
             Q = 0.003 m3/s 
             ρ = 790 kg/m3 
             µ = 1.2 x 10-3 N-s/m 
 
FIND:  do 
 
ASSUMPTION:  Incompressible flow (Y = 1) 
 
SOLUTION 
 

2 /Q CEAY p ρ= ∆ = 2( / 4) 2 /o oK d pπ ρ∆  
2

3 2
3

2(4000 / )0.003 /
4 790 /o

N mm s K d
kg m

π
=  

rearranging 
 

3
2 1.20 10
o

o

d
K

−×
=  

 
We know Ko = CE = f(Red1, β )  
 

3 3

31

4 789 / 0.003 /Re 4 /
0.06 1.2 10 /

kg m m sQ d
m N s m

ρ π µ
π −

× ×
= =

× × × −
= 42,200 

 
From Figure 10.11, with Re = 42,200, then 0.98 oK≤ ≤ 1.02 
 
Guess Ko = 1.00, then 
 
d0 = 31.2 10 / oK−× = 0.0346 m 
 
Then, β = 0.0346/0.06 = 0.58 
 
From Fig 10.11, Ko = f(42,300, 0.58) ~ 1.01 
 
Then, do = 0.0345 m; β = 0.057.  
 
From Fig 10.11, Ko = f(42,300, 0.57) ~ 1.01 
 



So, do = 0.0345 m = 34.5 mm 
 
 
 
 
 



PROBLEM 11.1 
 
KNOWN:  A steel rod (circular cross-section) having: 

6 2

m

10 in
0.25 in
30 10  lb/in

40 lb
m

L
D
E
m

=
=

= ×
=

 

FIND:  The change in length of the rod, Lδ , 
 
ASSUMPTIONS: Rod is elastically deformed, such that 

mEσ ε= ⋅  
SOLUTION: 
The force resulting from 40 lbm in standard gravity is 
 

( ) ( )2
m

m
2

40 lb 32.174 ft/sec
40 lb

ft lb32.174 
lb sec

N
c

maF
g

= = =
 
 
 

 

 
The resulting uniaxial stress is  
 

N
a

c

F
A

σ =  

 
where 
 

( )2 2

2
2

0.25 0.049 in
4

40 lb 814.9 lb/in
0.049 in

c

a

A π

σ

= =

= =
 

 
and 
 

2
5

6 2

814.9 lb/in 2.716 10
30 10  lb/in

a
a

mE
σε −= = = ×

×
 

 
 
The change in length is then 
 
  

( ) ( )52.716 10 10 in 0.00027 inaL Lδ ε −= ⋅ = × =  

10 in D=0.25 in 

FN 

Cross 
Section, Ac 



PROBLEM 11.2 
 

KNOWN:  A steel rod (circular cross-section) having: 

10

0.3 m
5 mm
20 10  Pa

50 kg
m

L
D
E
m

=
=

= ×
=

 

FIND:  The change in length of the rod, Lδ . 
 
ASSUMPTIONS: Rod is elastically deformed, such that 

mEσ ε= ⋅  
SOLUTION: 
The force resulting from 50 kg in standard gravity is 
 

( ) ( )2

2

50 kg 9.8 m/s
kg m1.0 
s  N

N
c

maF
g

= =
 
 
 

 

 
490 NNF =  

 
The resulting uniaxial stress is  
 

N
a

c

F
A

σ =  

 
where 
 

( )23 5 2

6
-5 2

5 10 1.96 10  m
4

490 N 25 10  Pa
1.96 10  m

c

a

A π

σ

− −= × = ×

= = ×
×

 

 
and 
 

6
6

10

25 10  Pa 125 10
20 10  Pa

a
a

mE
σε −×

= = = ×
×

 

 
The change in length is then 

( ) ( )6 60.3 125 10 37.5 10  maL Lδ ε − −= ⋅ = × = ×  

0.3 m 
D=5 mm 

FN 

Cross 
Section, Ac 



PROBLEM 11.3 
 
KNOWN:  An electrical coil with  
 

20,000
0.051 in

2.0 in

N
D
r

=
=
=

 

 
FIND:  The resistance, R. 
 
SOLUTION: 
 
We know 
 

e

c

LR
A
ρ

=  

 
where 61.673 10   cmeρ

−= × Ω for copper, and  
 

( )
2

2 5 20.051 1.42 10  ft
4 4 12cA Dπ π − = = = × 

 
 

 
The length is then found as  
 

( ) ( )22 2 20,000 20,944 ft
12

L r Nπ π  = = = 
 

 

 
which yields a resistance of 
 

( ) ( ) ( )6

5 2

1.673 10  -cm 0.0328 ft/cm 20,944 ft
1.42 10  ft

81 

R

R

−

−

× Ω
=

×
= Ω



PROBLEM 11.4 
 
 
KNOWN:  Aluminum having a volume of 3.14159 x 10-5 m3, and a resistivity,  
   82.66 10   meρ

−= × Ω . 
  
FIND:  Resistance, R, of 2 mm and 1 mm diameter wires having the same total volume. 
 
SOLUTION: 
 
Volume for a cylindrical wire is  
 

( )2

4
V D Lπ
=  

 
yielding 
 
L2mm = 10 m  and L1mm = 40 m 

 
The resistance values are then calculated as 
 

( ) ( )

( )
( ) ( )

( )

2
2

8

2 23

8

1 23

      
4

2.66 10  -m 10 m
0.085 

2 10  m
4

2.66 10  -m 40 m
1.355 

1 10  m
4

e
mm c

c

mm

mm

LR A D
A

R

R

ρ π

π

π

−

−

−

−

= =

× Ω
= = Ω

×

× Ω
= = Ω

×

 

 
 
 
 
 
 
 
 
 
 

 



PROBLEM 11.5 
 
 
KNOWN:  A nickel conductor with 
 

ρe= 6.8 x 10-8 Ω m  
 
Ac = 5 x 2 mm (rectangular) 
 
L = 5 m 

 
  
FIND:   a)  R - the total resistance 
 

b)  The diameter of a 5 m long copper wire having a circular cross-section 
to yield the same resistance. 

 
 
SOLUTION:  
 
The resistance is found from 
 

2    10 mm     5 me
c

c

LR A L
A
ρ

= = =  

 
which in this case yields  
 

( ) ( )8

6 2

6.8 10   m 5 m
0.034 

10 10  m
R

−

−

× Ω
= = Ω

×
 

  
For the copper, 81.7 10   meρ

−= × Ω  
 

( ) ( )8

6 2

1.7 10   m 5 m
0.034

2.5 10  m       1.8 mm
c

c

A
A D

−

−

× Ω
=

= × =

 

 
 
 
 
 



PROBLEM 11.6 
 
 
KNOWN:  A Wheatstone bridge with all resistances initially equal to 100 Ω. The 
maximum power through R1 is 0.25 W. 

  
FIND:   Maximum applied voltage 
         Bridge sensitivity 
 
ASSUMPTIONS: Infinite meter resistance 
 
SOLUTION: From the circuit shown below  
 

 

( )

1 1 2 2

1 2

1 2

i

i

i R i R E
i i i
i R R E

+ =
= =

+ =

 

But we know power, P, is given by 2P i R= , and 
 

0.25 W 0.05 A
100 

i = =
Ω

 

 
At node A  

1 3 2      0.1 Ai ii i i i i= + = =  

 
( ) ( )

  where  is the equivalent bridge resistance
so 0.1 A 100 10 V

i i B B

i

E i R R
E
=

= Ω =
 

The bridge sensitivity is defined as  

 0

1
B

EK
R

δ
δ

=  

and for a bridge with all resistances initially equal and assuming R Rδ   
 

 ( ) ( )0 10 V 100 
2.5 V/

4 400 
iE E R

R R
δ
δ

Ω
≈ = ≈ Ω

Ω
 

 

 
 



PROBLEM 11.7 
 
 
KNOWN:  A strain gauge with R1 = 120 Ω, GF = 2 in an equal arm Wheatstone bridge 

R2 = R3 = R4 = 120 Ω.   Maximum gauge current is 0.05 A 

  
FIND:  Maximum input bridge voltage  
 
 
SOLUTION:  From a basic circuit analysis, assuming infinite meter resistance 
 

1
1 2

iEi
R R

=
+

 

 
and 
 

( )
( ) ( )
1 1 2

0.05 A 240 12 V
i

i

E i R R

E

= +

= Ω =
 

 
  



PROBLEM 11.8 
 
KNOWN:  A strain gauge has a nominal resistance of 350 Ω, and GF = 1.8, and senses 
axial strain.  The gauge is mounted on a 1 cm2 aluminum rod (Em = 70 GPa) Eo = 1 mV,  
Ei = 5 V. 
 
FIND:  Applied load, assuming uniaxial tension 
 
SOLUTION:  
 
For an equal arm bridge, from (11.14) 
 

( )
( )

( )
( )

0 0.001         
4 2 5 4 2i

R R R RE
E R R R R

δ δδ
δ δ

= =
+ +

 

 
and 
 

0.0008      0.28 R R Rδ δ= = Ω  
 
Since 
 

     0.00044R R GFδ ε ε= ⋅ =  
 
and with 

( ) ( )     0.00044 70 GPa

0.0308 GPa

m
m

E
E
σε σ ε

σ

= = ⋅ =

=

 

 
To find the applied force, FN 

( )

( ) ( )

22 5 2
c

5 2 9

       A 1 10  m 7.854 10  m
4

7.854 10  m 0.0308 10  Pa

N

c

N

F
A

F

πσ − −

−

= = × = ×

= × ×
 

and since 21 Pa = 1N m  
 

  2419 NNF =  
 
COMMENT:  This force would result from a mass, in standard gravitational 
acceleration, of 246.6 kg. 



PROBLEM 11.9 
 
KNOWN:  Strain gauge installation shown in Figure 11.12.  
 
FIND:  Show that this installation is not sensitive to bending stresses. 
 
SOLUTION: 
The stresses created by a bending and axial load may be represented as  
 
 
 
 
 
 
 
 
 
 
 
In general, for four active elements in a bridge, 
 

( )0
1 2 4 34i

E GF
E
δ ε ε ε ε= − + −  

 
or for this case 
 

( )0
1 44i

E GF
E
δ ε ε= +  

 
Strain may be expressed as a linear combination of the imposed loads 
 

( ) ( )0
1 44 N Nm F m F

i

E GF
E
δ ε ε ε ε = + + +   

 
But since 

1 4m mε ε= −  this installation is not sensitive to bending. 
 

Tension 

Compression 

+ 

Tension 



PROBLEM 11.10 
 
 
KNOWN:  A steel member ( pν  = 0.3) subject to simple axial tension.  Strain gauges 
are mounted on top center, and bottom center.  2,   All ' 120 GF R s= = Ω  

10 V and 10 V, 120  and =2o iE E R GFδ µ= = = Ω  
  
FIND:  Bridge constant, for gauge locations 1 and 4.  Is the system temperature 
compensated?  Determine the axial and transverse strains. 
 
SOLUTION:  
 
The configuration is  
 
 
 
 
 
 
 
 
 
 
Since for any 4 gauges 
 

( )0
1 2 4 34i

E GF
E
δ ε ε ε ε= − + −  

 
and for a single gauge, sensing maximum strain 
 

( )0
max4i

E GF
E
δ ε=  

 
In the present case both gauges sense the maximum strain, and the outputs are additive 
 

2κ =  
 
This installation is not temperature compensated.  
  

FN FN 

1 

4 



For the gauge sensing maximum strain 
 

0 max

max4 2

s

i

E GF
E GF

δ ε
ε

 
=  + 

 

 
The actual output is then 
 

0 0

0

and

5 V

s

s

E E

E

δ κδ

δ

=

=

 

 
Solving for maxε  yields 
 

6
max 1 10ε −= ×      

 
Therefore 

6
max

6

1 10

0.3 10
axial

t

ε ε

ε

−

−

= = ×

= ×
 



PROBLEM 11.11 
 
 
KNOWN:  An axial and a transverse strain gauge are mounted to the top surface of a 
steel beam, and connected in arms 1 and 2 of a Wheatstone bridge. 
 

0 p

6

250 V    0.3    2222.2 psi

10 V    29.4 10  psii m

E

E E

δ µ υ σ= = =

= = ×
 

 
FIND:  a) Bκ  
 
       b) Average gauge factor 
 
SOLUTION:  
 
In general 
 

( )0
1 2 4 34i

E GF
E
δ ε ε ε ε= − + −  

 
which in this case, for one axial and one transverse gauge yields 
 

( )

( )

0
max max

max

0.3
4

       0.7
4

i

E GF
E

GF

δ ε ε

ε

= −

=

 

 
for a single gauge sensing the maximum strain 
 

0
max4

and
0.7

i

B

E GF
E
δ ε

κ

=

=
 

 
To find the average value of GF 
 

0
max

6

max

4

250 10
10 4

B
i

B

E GF
E

GF

δ ε κ

ε κ
−

=

×
=

 

 



with    σ = 2222.2 psi and max mEε σ=   
 

5
max 7.559 10ε −= ×  

       
and 
 

( )
( ) ( )

6

5

4 250 10
1.89

10 0.7 7.559 10
GF

−

−

×
= =

×
 

 
Comment:  The chosen arrangement of strain gauges yields a bridge constant less than 
one, which without other considerations, is not a good choice. 



PROBLEM 11.12 
 
 
KNOWN:  A strain gauge, mounted on a steel cantilever, has the following characteristics: 
 

 

120 
0.1 
2.05 1% (95%)
1%R

R
R

GF
u

δ
= Ω
= Ω
= ±
= ±

 

 
 
FIND:  Estimate the strain, εa,  and the uncertainty in the measured strain, uε. 
 
ASSUMPTIONS:  The bridge operates in a null mode and reasonable values for input 
voltage and galvanometer sensitivity must be assigned. 
 
SOLUTION: 
For an equal arm bridge, 
 

1

1
a

R GF
R
δ ε= ⋅  

 
which yields 
 

( )0.1 2.05     0.000407
120 a aε ε= =  

 
The uncertainty analysis can be approached in several ways.  Since the bridge is operated 
in a null mode, a galvanometer and a calibrated resistor are employed.  The following 
relationships are used for the bridge 
 

( )
( )

0

1 2 3 4

4 2

     (balanced bridge)
i

E R R
E R R

R R R R

δ δ
δ

 
=   + 

=

 

 
Let  ( )1 1R Rγ δ=  
 
A typical galvanometer sensitivity may be  ±1 µV, and  Ei = 10 V, then 

 
GF
γε =  

 



1 22 2

E GFu u u
GFγ

ε ε
γ

  ∂ ∂ = +    ∂ ∂    
 

 
This equation for the uncertainty in strain contains two uncertainties, yet to be estimated.  
The partial derivatives which represent the senstivity indices are evaluated at the nominal 
values as 
 

( ) ( )
4

22

1 1
2.05

0.1 2 10
2.05 120

GF

GF GF

ε
γ
ε γ −

∂
= =

∂
∂

= − = − = ×
∂

 

 

where 1

1

0.1 
120 

R
R
δγ Ω

= =
Ω

 

 
We must examine the uncertainty in γ, which has contributions from the galvanometer, and 
from the bridge and calibrated resistors. 
The analysis proceeds as 
 

( )
( )

( )

( )

0

0

0

0

0
0

4
1 2

At 0     4

i

i

i

b
E E

i

i

E E
E E

u u
E E

E
E E

γ δ

δ
γ

δ

γ
δ

γδ
δ

 
=  + 

∂
=
∂

∂
= =

∂

 

 
Assume the only contribution to 0 1E Eδ is the galvanometer, ± 1 µV ⇒ 

0

71.1 10  V
iE Euδ

−= ± ×  
 
Additional contributions to uncertainty in γ result from 
 
 Bridge resistance R3, R4 ± 1% 
 Calibrated resistor R2 ± 1% 
 
and with ( )1 2 3 4R R R R=  



31

2 4

1 2

3 4

2 31
2

4 4

1

1

1

RR
R R
R R
R R

R RR
R R

∂
= =

∂
∂

= =
∂
∂

= − =
∂

 

 

( )

( ) [ ]

1

2

2 27

3 0.01 0.0173 

0.173 0.000144 
120

Combining  and 

4 1 10 0.000144 0.000144 

R

a

a b

u

u

u u

u

γ

γ γ

γ
−

= = ± Ω

= = ± Ω

 = × + = ± Ω 

 

 
Then with 
 

1 22 2

2

1 22 2

2

1

1 0.1 120   0.000144 0.02
2.05 2.05

GFu u u
GF GFε γ

γ    = + −    
     

    = + −    
     

 

 
With this result, the uncertainty in strain is found as 
 

57 10uε
−= ± ×  

 
 
 
 
 



PROBLEM 11.13 
 
 
KNOWN:   
R = 120 Ω  Gauges mounted on opposite arms of bridge 

Ei= 4 V  Eo = 120 µV 

GF = 2   Em = 29 x 106 psi  

 
  
FIND:  Resistance change for each gauge 
 
SOLUTION: 
For this bridge 

 0
1 24i

E GF
E
δ ε ε= − 4 3ε ε+ −( )  

which implies a bridge constant of 2. 
 
Thus 
 

( ) ( )

( )

0

6
5

max

2
4 4

120 10 4 3.0 10
4 2 2

B
a max

i

E GF GF
E
δ κε ε

ε
−

−

= =

  ×
= = ×     

 

 
Since 
 

( ) ( ) ( )5
max      120 3 10 2R GF R

R
δ ε δ −= = Ω ×  

 
The change in resistance is 
 

0.0072 Rδ = Ω 
 



PROBLEM 11.14 
 
 
KNOWN:   
A rectangular bar in uniaxial tension, having strain gages mounted to measure axial and 
transverse strain.  Cross-section, Ac = 2 in2,  axial strain, εa = 1500 µε, transverse strain, 
εa = − 465  µε, axial load, FN = 1500 lb 
  
FIND:  Modulus of elasticity, Em, and Poisson’s ratio, νp 

 
SOLUTION: 
 
The axial stress and strain are related as 

 

2
2

2
5 2

6

1500 lb 750 lb/in
2 in

yielding
750 lb/in 5 10  lb/in
1500 10

a m a

a

a
m

a

E

E

σ ε

σ

σ
ε −

=

= =

= = = ×
×

 

 Poisson’s ratio is determined from the transverse strain, 
 

 
transverse strain 465 0.31

axial strain 1500pν = = =  



PROBLEM 11.15 
 
 
KNOWN:   
A circular bar in uniaxial tension, having strain gages mounted to measure axial and 
transverse strain.  Cross-section, Ac = 3 cm2, axial strain, εa = 600 µε, transverse strain, 
εa = − 163  µε, axial load, FN = 10 kN 
  
FIND:  Modulus of elasticity, Em, and Poisson’s ratio, νp 

 
SOLUTION: 
 
The axial stress and strain are related as 

 
-4 2

6

10 kN 33.3 MPa
3  10  m

yielding
33.3 MPa 55.6 GPa
600 10

a m a

a

a
m

a

E

E

σ ε

σ

σ
ε −

=

= =
×

= = =
×

 

 Poisson’s ratio is determined from the transverse strain, 
 

 
transverse strain 163 0.27

axial strain 600pν = = =  



PROBLEM 11.16 
 
 
KNOWN:  A single active gauge and a dummy gauge are employed to measure strain.  
The active gauge experiences an axial loading with bending, and both strain gauges 
experience the same temperature.   
 
FIND:  Show that the use of the dummy gauge compensates for temperature, but not for 
bending 
 
SOLUTION:  
 
In general 
 

( )0
1 2 4 34i

E GF
E
δ ε ε ε ε= − + −  

 
The active gauge will experience axial, bending and temperature effects: 
 
 1 a b Tε ε ε ε= + +  
 

 
The dummy gauge will experience temperature effects only 
 

2 Tε ε=  
 

Consider the case where the gauges are mounted on adjacent arms of a Wheatstone 
bridge.  Then,  
  
 

[ ] [ ]0
1 24 4a b T T a b

i

E GF GF
E
δ ε ε ε ε ε ε ε ε= − = + + − = −  

 
Axial strain is measured.  Temperature effects are compensated, but bending effects 
remain. 



 
PROBLEM 11.17 

 
KNOWN: Four active gauges mounted on a cylindrical shaft as per Table 11.1 
   
FIND: Show axial, temperature and bending compensation 
 
SOLUTION 
 
Each active gauge will experience torsional, axial, bending and temperature effects: 
 
ε1 = εθ + εa + εb + εT  ε2 = -εθ + εa + εb + εT  
ε3 = -εθ + εa + εb + εT   ε4 = εθ + εa + εb + εT 

 
Then, when mounted on a wheatstone bridge (such as in Figure 11.23), are balanced, and 
a load applied, the output voltage deflection is given by: 
 

The arrangement measures torsional strain. The arrangement compensates for axial, 
bending and temperature effects. Note that this arrangement has a bridge constant of 4. 

θεFG]εεεε[
4

GF
E
Eδ

3421
i

o =−+−=



PROBLEM 11.18 
 
 
KNOWN:  Bridge arrangements of Figure 11.23  
  
FIND:  Bridge constants 
 
SOLUTION:   
Using equation 11.22 
 

( )0
1 2 4 34i

E GF
E
δ ε ε ε ε= − + −  

 
For a single gauge sensing the maximum strain 
 

0
max4i

E GF
E
δ ε=  

 
a) 

( )
( )

1

max

4
1

4B

GF
GF

ε
κ

ε
= =  

 
 
b) 

 
( ) ( )
( )

( ) ( )
( )

1 11 3

max 1

44
4 4

1

p
B

B p

GFGF
GF GF

ε υ εε ε
κ

ε ε
κ υ

 − −−  = =

= +

 

 
 
c) 
 

( ) ( )
( )

( ) ( )
( )

1 11 3

1 1

44
2

4 4B

GFGF
GF GF

ε εε ε
κ

ε ε
− − −  = = =  

 
 
 
 
 
 
 
 



d) 
 

( ) ( )
( )

( )

1 2 4 3

1

2 1 3 4

4
4

      

2 1

B

p p

B p

GF
GF
ε ε ε ε

κ
ε

ε υ ε ε υ ε

κ υ

− + −
=

= − = −

= +

 

 
 
 
 
 
e) 
 

( )1 2 4 3

1

2 1 3 4      
4

B

B
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PROBLEM 11.19 
 

KNOWN: Four active gauges mounted to a diaphragm so as to measure displacement 
R1 and R4  sense tension when R2 and R3 sense compression and gauges are 
mounted as in Figure 11.23 

  GF = 2.0; R = 120Ω; ε = 20µs; Ei = 9V 
 
FIND: δEo 
 
SOLUTION 
 
Each active gauge will experience axial and temperature effects: 
 
ε1 = εa + εT ε2 = -εa + εT  
ε3 = -εa + εT  ε4 = εa + εT 

 
Then, when mounted on a wheatstone bridge, balanced, and a load applied: 

 
Then, 
 

 

εGFGF
=−+−= ]εεεε[

4E
Eδ
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PROBLEM 11.20 
 

KNOWN: Conditions of Problem 11.20. Oops, R2 and R4 wiring is interchanged. 
R1 and R2  sense tension when R4 and R3 sense compression and gauges are 
mounted as in Figure 11.23 

 
FIND: δEo 
 
SOLUTION 
 
Each active gauge will experience axial and temperature effects: 
 
ε1 = εa + εT ε2 = εa + εT  
ε3 = -εa + εT  ε4 = -εa + εT 

 
Then, when mounted on a wheatstone bridge, balanced, and a load applied: 
 

 
The bridge deflection is zero. No load is sensed! 
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PROBLEM 11.21 
 
 
KNOWN:  D = 1 m, Transverse sensitivity = 0.03 = 3% 
  
FIND:  Error due to transverse sensitivity 
 
SOLUTION:   
 
Since 

 14     and     then  
2 4 2

2

t l
t l

a t

PD
PD PD t

PDt t
t

ε σσ σ
ε σ

= = = = =  

From Figure 11.6, the error can be determined as 2.8% of σt. 
 



PROBLEM 11.22 
 
 
KNOWN:  Wheatstone bridge circuit, with all fixed resistances equal to 100 Ω. 
R1 is a strain gauge with a resistance of 100 Ω at zero strain.  The strain gauge senses ε1. 

 2 cm     2 m     2     t D GF= = = Maximum power dissipation in gauge = 0.25 W 
  
FIND:   Maximum allowable static sensitivity, in V/kPa 
  Under what conditions is K constant? 
  
 
SOLUTION:   
 
From problem 11.6, the maximum value of Ei to limit power dissipation to 0.25 W is 
10 V, and the static sensitivity is 2.5 V/Ω, based on the resistance change of the strain 
gauge.  In the present problem, we can write 

    and 
4l l

m

PD
t E

σσ ε= =  

then
4l

m

PD
E t

ε =  

and with R GF
R
δ ε= , then 

4 m

R PD GF
R E t
δ

=  

Taking the derivative of Rδ  with respect to P yields 

 
4 m

RD GF
E t

 

and the static sensitivity is then 

 
4 B

m

RD GFK
E t

  where KB = bridge sensitivity in V/Ω = 2.5 

thus the static sensitivity for input pressure is  

 ( ) ( )
( ) ( ) ( )

( )7

100 2 m
2 2.5 mV/ 0.0000625 V/  or 0.0625 mV/

4 20 10 kPa 0.02 m
Ω

Ω = Ω Ω
×

 



PROBLEM 11.23 
 
 
KNOWN:  A Wheatstone bridge measurement system is to be designed to measure the 
tangential strain in the wall of a pressure vessel.  A reasonable estimate of the resulting 
uncertainty is desired.  The bridge is to be operated in a balanced condition.   
  
FIND:  The bridge input voltage, the fixed resistance values, and the galvanometer 
sensitivity. 
 
SOLUTION:   
 
The following provides an outline for addressing this design problem.  Assuming that 

1 2 3 4 120 R R R R= = = = Ω  at balanced conditions and zero strain, 
The change in R1 with applied strain can be expressed 

 R GF
R
δ ε=  

The mathematical relations for a balanced bridge are  

 2 4

1 3

R R
R R

=   and with the resistances equal, 
( )1

1

g gR

i

I R Ru
R E

+
=  

 
The input voltage must be designed based on a trade-off between static sensitivity from 
the uncertainty, and the power that must be dissipated in the bridge.  The strain gauge 
must dissipate 2

1 1I R , and should serve as the limiting factor for the input voltage. 



PROBLEM 11.24 
 

KNOWN: Steel cantilever beam (fixed at one end) equipped with four active gauges 
  R1 and R4 mounted on top; R2 and R3 on bottom  
  Gauges attached to bridge circuit as per Figure 11.23 
  F = 980N; A = 1000; GF =2; L = 0.1m; b = 0.3m; t = 0.01m, Ei = 5V 
 
FIND: δE0 
 
SOLUTION 
For this arrangement,  

 
ε1 = εa + εb + εT  ε2 = -εa + εb + εT  
ε3 = -εa + εb + εT   ε4 = εa + εb + εT 
 

 
Then,  

 
where the bridge constant κ = 4. 
 
The relation between applied load, F, and strain is 
 

 
or  

 
rearranging, 
 
δEo = 1.0V 
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PROBLEM 11.25 
 
 
KNOWN:  It is desired to design a strain-gauge based scale, using a cantilever beam.  
The beam is 21 cm long, 0.4 cm thick, and 2 cm wide.  The loads are up to 200 g, applied 
20 cm from the fixed end of the beam.  The required uncertainty level is 4%.  
  
FIND:  Design a measurement system, including strain gauge placement, bridge 
characteristics, and signal conditioning. 
 
SOLUTION:  Because this design problem has a wide variety of solutions, a general 
approach and some representative equations and results will be provided. 
 
The beam is made of 2024-T4 aluminum, having a modulus of 71 Gpa.  For a cantilever 
beam, the deflection at the free end is  
 
 
 

 
3 3

   where   
3 12m

Wl bhf I
E I

= =  

 
 
 
Here f is the deflection, W is the load, l is the distance from the fixed end to the load, I is 
the moment of inertia, and Em is the modulus.  A representative design may be examined 
by assuming a bridge having a single active gauge sensing the maximum axial strain.   This 
would correspond to a location on the surface of the beam at a location where the load is 
applied.  In this case the deflection f is 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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Then with Em = 71 GPa 
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From these relationships, the output for a bridge excitation of 5 V is about 50 mV, which 
would create an uncertainty from the A/D resolution of about 2.4%.  The bridge can be 
designed in a reasonable manner to meet the uncertainty constraint. 

h 

b 



PROBLEM 12.1 
 

 
KNOWN:  A linear potentiometer having 
 

D = 0.1 mm 
ρe = 1.7 × 10-8 Ω-m 
R = 1 kΩ 
 

 
FIND:   
 
a) for a core diameter of 1.5 cm, determine the range 
b) plot loading error as a function of displacement 
 
SOLUTION: 
 
a) In order to determine the number of turns of wire, N 
 

R L
A

L RAe

c

c

e

= ⇒ =
ρ

ρ
 

with 
 

Ac = × = ×− −π
4

0 1 10 7 854 103 2 9. . m  m2c h  

yields 
 

L =
×

×
=

−

−

1000 7 854 10
1 7 10

462
9

8

  m
 - m

 m
2Ω

Ω

b gc h.
.

 

One turn takes π(1.5) cm of wire, thus 

N =
×

=
462 9804 m

1.5 10  m-2π c h  

 
Then since each turn occupies approximately D = 0.1 mm the range is 
(9804)(0.1 mm) = 0.98 m 



b) The loading error for a voltage dividing circuit is found from (6.37) as 
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In terms of output voltage the length may be written, assuming an infinite meter 
resistance, from (6.8) 

E L
L

E R
R

Eo
x

T
i

x

T
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yielding 
 

deflection scale-full of percentage a aserror  loading 100 =×
i

l

E
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A plot is shown below. 
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PROBLEM 12.2 
 
KNOWN:  Numerous applications for linear displacement sensors.  
 
FIND:  Develop specifications for a selected application for a linear displacement sensor. 
 
SOLUTION:   
 
A list of potential applications is provided in the problem statement.  These applications 
include several measurements that would easily be accomplished by a potentiometric or 
LVDT position sensor having an accuracy of ±1 mm, including seat position and throttle 
position sensors for automotive applications.   
 
There exist applications where errors must be on the order of microns, and a variety of 
sensors exist that can meet such a stringent repeatability requirement, although absolute 
accuracy can be a significant challenge.  Applications include machine tools and rapid 
prototyping systems. 



PROBLEM 12.3 
 
 
KNOWN:  Potentiometers are primarily either wire-wound or conductive plastic in their 
construction.    
  
FIND:   Compare and contrast the design of wire-wound and conductive plastic 
potentiometers.    
 
 
SOLUTION: 
Conductive plastic potentiometers provide continuous analog output, where wire-wound 
potentiometers have resolution limited by the size of the wire that forms the winding.  
However, production of conductive plastic having a constant resistivity, which produces a 
linear relationship between displacement and resistance, is not perfect.   Both designs are 
widely applied in a variety of devices. 



PROBLEM 12.4 
 
 
KNOWN:  LVDT and potentiometric displacement transducers. 
 
FIND:   Compare and contrast the use of LVDT and potentiometric displacement 
transducers. 
 
SOLUTION: 
 
The LVDT has the following positive characteristics: 
 

• Because there is no contact between the movable core and the coil structure, 
friction is extremely low, and provides for essentially infinite life 

• Truly analog behavior, so that resolution is limited only by the output measuring 
system employed 

• Very good repeatability 
• Somewhat greater cost 

 
The potentiometric sensor, has the following positive characteristics; 
 

• Lower cost 
• Good repeatability 

 
 

 
 

 
 
 

 



 
 

PROBLEM 12.5 
 
KNOWN:  

y(t) = 0.2 cos 10t + 0.3 cos 20t 
where y = displacement [in.] 
and t = time [sec.] 

0.7ζ =    
k = 1.2 lb/ft 

FIND:   
a) a combination of m and c which would yield less than 10% amplitude error in 
measuring the input signal. 
b) determine the phase response of the system 
 
SOLUTION: We know  
     2n ck m c kmω = =  
 
 
The amplitude error is evaluated by examining (for cos = 1) 
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The limiting case is for the lower input frequency, and ( ) 0.9r steady
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Solving for nω  yields 
 7.1 rad/snω =  
 
 
and since 



 c
n

kg
m

ω =  



and c is found from  

 2
c

kmc gζ=  

 
yielding 

 ( ) ( )m

m
2

1.2 lb/ft 0.766 lb lb sec2 0.7 0.236 ft lb ft32.174
lb sec

c = =  

b) Phase response is shown below. 
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PROBLEM 12.6 
 
KNOWN:  A seismic instrument has 
 
 20 Hz 40  rad/s      = 0.65nω π ζ= =  
 
FIND:  The maximum input frequency, ω for a vibration measurement such that the 
amplitude error is < 5%. 
 
SOLUTION:  
 
From (12.14) 
 

 1
2 22 2

10.95 or 1.05

1 2
n n

ω ωζω ω

=
        − +               

 

 
 
 
Solving for the input frequency yields 90.5 rad/s. 



PROBLEM 12.7 
 
KNOWN:  A seismic instrument may be designed to measure either acceleration or 
displacement (vibration).   
 
FIND:  Clearly state the requirements for the values of the spring constant, the damping 
coefficient, and the mass in the seismic instrument to achieve the desired output. 
 
SOLUTION:  

 
For vibration measurements, the output of the seismic instrument must accurately provide 

the amplitude of the displacements associated with the vibrations; thus, the desired 

behavior of the seismic instrument would be to have an output that gave a direct indication 

of yh. For this to occur, the seismic mass should remain essentially stationary in an 

absolute frame of reference, and the housing and output transducer should move with the 

vibrating object. To determine the conditions under which this behavior would occur, the 

amplitude of yr at steady state can be examined.. Figure 12.9 shows ( )max
/ry A  as a 

function of the ratio of the input frequency to the natural frequency. Thus, a seismic 

instrument that is used to measure vibration displacements should have a natural frequency 

smaller than the expected input frequency. Damping ratios near 0.7 are common for such 

an instrument. The seismic instrument designed for this application is called a vibrometer. 

 

On the other hand, the measurement of acceleration requires that the seismic mass relative 

position is a direct measure of acceleration.  This requires a magnitude ratio of unity, and 

an appropriate natural frequency. 



PROBLEM 12.9 
 
KNOWN:  A seismic accelerometer has: 
m = 0.2 g 
k = 20 000 N/m 
Very low damping 
 
FIND:  Instrument bandwidth 
 
SOLUTION:   
 
The natural frequency is found as 
 

 
2

-3

kg m20,000 
sec m 10,000 rad/sec

0.2  10  kgn
k

mω = = =
×

 

 
 
 
and with a very low damping.  The bandwidth may be found from Figure 3.16 with the 
allowed frequency range from 0 to 0.4 nω or  0 to 4000 rad/s. 



PROBLEM 12.10 
 
KNOWN:  Integration reduces the effects of noise in a signal. 
A moving average integrates over a fixed time interval, based on a concept called 
windowing. 
Noise in the present case has significant amplitude, but a significantly higher frequency 
than the measured velocity. 
 
FIND:  The effect of employing a moving average on a signal 
 
SOLUTION:   This signal has high frequency noise present.  

 
 
A 5 point moving average has been performed on the signal, and much of the high 
frequency noise removed. 
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PROBLEM 12.11 
 
KNOWN:  Moving coil transducer with  

 dy0.8 cm   2 cm   from 1 to 10 cm/sdtcD l= =  

A/D converter with 8-bit resolution and 0.1% FS accuracy 
 

FIND:  The required magnetic field strength as a function of N for 1% accuracy in the 
velocity measurement. 
 
ASSUMPTION:  Assume that the uncertainty in the magnetic field strength and the 
number of turns are negligible. 
 
SOLUTION:   
From equation 12.19, the emf from the moving coil can be expressed  

 c
dyemf BD lN
dt

π=  

the uncertainty in the velocity can then be expressed, with dyV
dt

=  

 emfV uu
V emf

=  

The uncertainty in the emf has two contributions.  From the resolution of the A/D, the 
uncertainty is ± 7.8 mV plus 1 mV (RSS addition) from the accuracy, yields uemf = 
7.9 mV.  Combining the relations for emf and the uncertainty in V, with an uncertainty in 
V of 1%, yields the plot below 
 



PROBLEM 12.13 
 
KNOWN:  The development of MEMS and MEMS related applications has increased 
the requirements for measuring very small forces. 

 
FIND:  Current state-of-the art in force measurement for very small forces. 
 
SOLUTION:   
 
Numerous journal articles and websites can serve as resources to assess the various limits 
of force measurement.  For biomedical applications, micro-load cells have been developed 
with a range from 0 to 2 N.  MEMS applications are on the order of 0.2 mN.  And the 
Atomic Force Microscope uses forces at the atomic level to provide surface topology. 
 



PROBLEM 12.14 
 
KNOWN:  A proving ring is to be designed to serve as a calibration standard for forces 
over the range from 250 to 1000 N.  

 
FIND:  A suitable design to provide reasonable uncertainty.   
 
SOLUTION:  It is necessary to establish the minimum deflection which can be 
measured with reasonable accuracy.  As an example consider a displacement transducer 
having a range of 0 to 1 mm for an output of 0 to 5 Volts.  If sampled using an 8-bit A/D, 
the resolution would be 19.5 mV, corresponding to 0.004 mm.  If we assumed that the 
proving ring would deflect 1 mm at 1000 N, we can size the ring.   
 
Assuming the cross section of the ring is rectangular, the moment of intertia is 3 12bh ,and 
the deflection is given by 

 
34

2 16
nF Dy
EI

πδ
π

 = − 
 

 

Let’s assume that the ring is steel with a modulus of E = 20 × 1010 Pa.  By varying the 
cross section and the diameter, a suitable deflection can be established.  As an example of 
the process, assume a square cross section, and a diameter of 8 cm.  A deflection of 1 mm 
at 1000 N would be achieved with a dimension of 4.9 mm for the square cross section.  
Then at a load of 250 N the deflection would be 0.25 mm, yielding an output voltage of 
1.2 V, which should yield a reasonable uncertainty. 
 



PROBLEM 12.15 
 
KNOWN:  Power transmission through a drive shaft results in 1800 rpm with a power 
transmission of 40 hp 

 
FIND:  Torque transmitted by the driveshaft.   
 
SOLUTION:   
 
With 
 P Tω=  
 
 

and 40 hpP = , 1800 2 188.5 rad/s
60

πω ×
= = , we find that the torque is 

 

 ( )( )40 hp 550ft-lb sec-hp
117 ft-lb

188.5 rad/sec
T =  

 



PROBLEM 12.16 
 
KNOWN:  A dynamometer can be an integral part of emissions testing for automotive 
applications. 

 
FIND:  Define and discuss the importance of a dynamometer in automotive emissions 
testing. 
 
SOLUTION:   
 
Automotive emissions vary as a function of load and speed.  Engine temperature and the 
temperature of the catalytic converter are also important parameters.   Various levels of 
sophistication are possible for the testing of IC engine emissions.  An engine analyzer 
combined with a dynamometer provides an extensive range of analysis capabilities.  A 
dynamometer will allow monitoring of engine rpm and power output, and may allow a 
variety of measurements including throttle position, individual cylinder vacuum level, 
spark quality, and fuel flow rate.   Clearly, for emissions testing the engine exhaust is 
routed through emissions testing equipment. 
 
 



PROBLEM 12.17 
 
KNOWN:  Linear actuators form an important component for a variety of systems. 

 
FIND:  Research applications for linear actuators.   
 
SOLUTION:   
 
 
The following list represent applications for linear actuators that provide a wealth of 
information online or in refereed journal publications: 
 

• Autonomous vehicles 
• Manufacturing 
• Pick-and place operations 
• Injection molding 
• Positioning in research applications requiring precision positioning 



PROBLEM 12.18 
 
KNOWN:  Pneumatic cylinders provide linear actuation, primarily to yield only two 
positions.    

 
FIND:  Research the range of displacement and force that can be provided by pneumatic 
cylinders.   
 
SOLUTION:   
 
Representative ranges for pneumatic cylinders would be: 
 

• Bore sizes from 0.5 to 15 inches 
• Stroke length up to 24 inches 
• Operating pressure up to 500 psig 
• Single or double acting cylinders 

 



PROBLEM 12.19 
 
KNOWN:  Flow through a control valve, at a flow rate of 32 SCFM, and an associated 
pressure drop of 10 psi.  The line pressure (the pressure at the inlet side) is 100 psig, and 
the temperature and relative humidity are 68°F, 36%, respectively. 

 
FIND:  Research the range of displacement and force that can be provided by pneumatic 
cylinders.   
 
ASSUMPTIONS:  The effect of relative humidity on the result would be very small, 
and will be neglected in this analysis.   
 
SOLUTION:   
 
Continuity is applied to find the flow rate at the inlet of the valve in ACFM. 
 
 ( ) ( )1 21 2

AU AUρ ρ=  
where 1 represents the standard conditions (T = 77°F, 1 atm) and 2 represents actual 
conditions.  Employing the ideal gas model, we compute the two densities as 
 

( )( )
( )( )

3
1 m

14.7 144
0.074 lb ft

53.34 537
P

RT
ρ = = =  

 
and  
 

( )( )
( )( )

3
2 m

100 14.7 144
0.586 lb ft

53.34 528
P

RT
ρ

+
= = =  

 
Then with  
 

 1

2

ACFM SCFMρ
ρ

=  

 
we find that the flow rate in ACFM is 4 CFM.  The flow coefficient for the valve is 
 

 
ACFM

4 0.106
10 144

v

v

C P

C

= ∆

= =
×

 



PROBLEM 12.20 
 
KNOWN:  A low profile control valve is employed for a filling and exhaust process.  
The volume to be filled is 500 mL.  During filling the valve has 

0.82 ms/cc, with a lag time of 8 msF = .  During exhaust, the valve has 
0.7 ms/cc, with a lag time of 8 msF =  

 
FIND:  The time required for the filling and exhaust processes.   
 
SOLUTION:   
 
The time is given by 
 

90t m FV= +  
 
So for fillinf 
 

( )( )8 ms 0.82 ms/cc 500 cc 418 msfillt = + =  
 
and for exhaust 
 

( )( )8 ms 0.7 ms/cc 500 cc 358 msexhaustt = + =  



PROBLEM 12.21 
 
KNOWN:  Research the design of a totalizing flow meter. 

 
SOLUTION:   Totalizing flow meters currently allow for remote reading of meters, and 
subsequent billing in many applications.  For most residential applications, positive 
displacement meters allow for very accurate metering even at very low flow rates; designs 
include disc meters with either oscillating disk or piston.  At commercial installations, 
turbine or propeller type flow meters are often employed.  See also Plumbing Systems and 
Design, July/August 2003 pp. 70. 
 



PROBLEM 12.23 
 
KNOWN:  Research the design of a residential thermostat. 

 
SOLUTION:    
 
The two key elements of a mechanical thermostat are a mercury switch and a bimetallic 
thermometer, as shown below.  The mercury switch is oriented so that electrical contact is 
created when the mercury flows from one end of the glass bulb to the other.  The 
deadband is created by the angle of the bulb relative to gravity required to overcome 
friction and allow the mercury to flow. 
 

 
 



PROBLEM 12.24 
 
KNOWN:  Show that a proportional controller has a steady state error.   Develop an 
expression for the steady state error when a proportional controller acts on a first-order 
plant. 

 
SOLUTION:    
 
 
Let the desired value of the controlled variable be represented as ( )d t , and the error 

signal be ( )e t , with the Laplace transforms of these two quantities represented as 

( ) ( ) and D s E s , respectively.  Then with the plant transfer function ( )G s , the feedback 

transfer function ( )H s , we can state 
 

( ) ( )
( ) ( ) ( )1

D s
E s

H s G s C s
=

+
 

 
where ( )C s represents the control function.  For proportional control, ( )C s =Kp.  And 
from the final value theorem,  
 

( )
1steady-state error = 

1+ pG s K
. 
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