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Preface

This book has been written to give a background to the essential theories and
applications of motor vehicle science. It is a suitable companion for readers following
a wide range of motor vehicle courses, or as a text for automobile engineering
students not following a formal course. All the engineering concepts have a specific
motor vehicle application wherever possible. The aim is not to present abstract
theories but to use realistic examples, useful to readers in their studies,

Engineering requires a certain knowledge of mathematics, but the mathematics
here has been kept as simple as possible without sacrificing understanding. It is
expected that as the reader works through the examples and problems, s/he will
develop a greater understanding of the mathematics required for engineering. Great
care has been taken in the explanation and calculation of units, as units tend to cause
a great deal of confusion and mistakes in engineering, particularly mechanical
engineering with its wide range of quantities and multiple factors. The concept of
unity brackets has been followed throughout the text, as this is the only method that
ensures correct analysis of the units through the calculations. Chapter 1 is an
introduction to the book, covering the SI system, background mathematics and
advice on problem solving, particularly exam questions. Chapters 2-5 deal with
mechanics, both statics and dynamics. Chapter 6 covers several aspects of thermo­
dynamics. Chapter 7 is an introduction to control and instrumentation. Chapters 8
and 9 cover metals and electricity.

To help the reader develop a sound grasp of the principles covered there are many
diagrams, examples and problems as an aid to develop knowledge and understand­
ing.

Problem answers are shown at the end of the book.
I should like to thank Christine, Unzie and mum for their help and constructive

comments. Most of all thanks to Denise for all her support and patience.



1 An introduction to motor

vehicle science

1.1 The SI System

Engineering quantities and units
In engineering, we have to make sense of various different quantities, such as force,
mass, acceleration and temperature. The quantities need to be measured with
standard units: for example, if a piston with the same dimensions made in Germany
has a diameter of 100 millimetres then a similar piston made elsewhere should have
the same actual width, otherwise engines would not f't together. In other words
German millimetres must be the same as Italian and Japanese millimetres. An
international agreement defines these various units. This agreement is called the
Systerne International d'Unites, the international symbol for which is SI. We know
this as the metric system.

Besides specifying a quantity by both its number and its unit symbol, in equations
the quantity is replaced by an algebraic quantity symbol which can usually have any
value. The primary quantities met with in this book are shown in Table 1.1.

All other quantities that we need can be derived from these primary quantities.
For example, area can be measured as the product of two lengths. We can then say
that with the unit length of the metre, the unit area is metres x metres which are
called square metres (rrr'). When solving engineering problems, you can enclose the
unit symbol in square brackets to help to keep calculations clear and uncluttered.

In the section on mechanics all units used in measurement will be derived from
length, mass and time. The quantities of length and time you are probably already
familiar with. Mass will be discussed at an early stage in the book. The unit of
temperature, the kelvin, is the absolute version of Celsius and will be used in the
section on thermodynamics. Electrical current will not be required until the section
on electricity. There are two other base units in the SI system (the candela and the
mole), but these will not be of any interest to us in motor vehicle science.

Table 1.1

Quantity Quantity symbol Unit Unit symbol

length metre [m]
mass HZ kilogram [kg]
time I second [s]
electric current f ampere [A]
temperature T kelvin [K]
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Multiples and submultiples
Sometimes the 'standard units will be too large or too small for the required
measurement. For example, you would not want to measure a spark plug gap in
metres as the number would require more digits than is convenient (a typical spark
plug gap is around 0.0006 m). To help simplify measurements and calculations the SI
system uses prefixes with the base units. These are the same whichever base unit they
are applied to. The ranges of multiples and submultiples you are likely to need in
motor vehicle science are shown in Table 1.2.

By using the prefix milli in front of metres, the spark plug gap above may now be
described by: 0.6 mm (== 0.6 x 0.001 m). You may come across some smaller
submultiples in electronic components (nano == x 10-9 and pico == x 10- 12

) but we
won't look at those here. The four multiple and submultiples, hecto, deca, deci and
centi should be avoided if possible as they do not multiply the base unit by 10 to the
power of a multiple-of three. This is important for simplifying calculations as you will
see later.

Only one multiplying prefix is used at anyone time to a given unit: a thousandth
of a millimetre is not described as 1 milli-millimetre but as 1 micrometre
(1 zzrn == 0.000001 m). If you hear the word micron, this is a former name for a
micrometre. Similarly, one thousand kilograms, is a megagram [Mg] and not a kilo­
kilogram. You may have noticed that mass does not quite fit into the system in the
same way as other quantities, as the base unit is the kilogram and not the gram as you
would expect. This does not alter the way in which prefixes are used: masses are still
expressed as multiples of a gram. So 10-6 kg should still be written as 1 mg. When a
prefix is applied to a unit it becomes part of that unit and is subject to any
mathematical functions applied. For instance, to express 1 mm ' in terms of metres:

1 mm == 10-3 m

Remember when working with equations that what you do to one side of the equals
sign you must do to the other. Here, we can raise each side to the power of three:

(1 mm):' == (10- 3 m):'

Powers inside and outside the brackets multiply to give:

13 rnrn ' == 10-9 m'

Table 1.2

Prefix Symbol Factor by which unit is multiplied

giga G lOl) 1000 000 000
mega M 100 1 000 000
kilo k 103 1000
hecto h 102 100
deca da 101 10
deci d 10- 1 0.1
centi c 10- 2 0.01
milli m 10-3 0.001
micro !~ 10-0 0.000001
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Now look at this example.

An engine exhaust valve has a mass, m, of 182 g and a volume, V, of 22957 mm '. Find
the density of the material.

182 g == 182 X 10-3 kg

and

22957 mm' == 22957 x 10-9 m'.

The density, which has the quantity symbol p, can be calculated as follows:

m 182 X 10-
3

[kg]
p == V == 22957 X 10-9 m 3

When a number to the power of a minus number appears as a multiple in the
denominator of a calculation, it may be changed to a multiple of the numerator by
raising it to the power of the same number in a positive form. In this example the 10-9

in the denominator can be moved to the numerator and changed to 109 (see Chapter
1.3 on background maths).

p = m = 182 x 10-
3

x 10
9

[kg]
V 22957 rn'

The power multiples of three can then be added together like this,

10-3 x 109 == 106

to give:

p= m = 182 x lOh[kg]
V 22957 m'

== 7927.86 kg/m '

By using 10 to the power of multiples and submultiples of three with base units
throughout problems, calculations are made simpler and the answer is in a form
ready for a unit prefix. Notice that the units of the answer appear automatically. It is
easy to make a mistake in engineering calculations with all the different units used.
By incorporating the units into the initial calculation and following them through, the
correct units should appear with the answer. Units are multiplied and divided in the
same way as numbers. The standard units of density are kg/rn', Had the expression
been copied down wrongly, for instance as p == V/,n, then the units of the answer
would have been m3/kg and the mistake would have been spotted immediately.

Here is another example:

The sides of a rectangular fuel tank measure 600 mm by 30 em by 0.5 m. The volume
of the tank can be found by multiplying the three sides together. Let's start by
converting the units into standard form rather than trying to do it within the
calculation. The standard unit for length is the metre.

600 mm == 600 X 10-3 m
30 em == 30 x 10- 2 m
0.5 m is already in standard form.
V == 600 X 10-3 m x 30 x 10- 2 m x 0.5 m
(add the -3 and -2 together, i.e. 10-3 x 10-2 == 10-5

)

== 600 m x 30 m x 0.5 m x 10-5

== 9000 X 10-5 m' == 90 x 10-3 m'
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Remember that this does not equal 90 mm', because 1 mm' does not equal 10-3 rrr',
(1 mrrr' = 10-9 rrr'). There are 1000 litres in 1 rrr' though, so we can say that this
equals 90 litres. Again the units provide a good check. If the unit of the answer was,
for instance, m2 a mistake would have been made, since this is the unit of area and not
volume.

The imperial system and unit conversion
For many years in the UK the imperial system was used. Many vehicles around are
dimensioned in imperial units. There are also many people who still use imperial
units. For this reason you need to be able to convert units from one system to the
other.

The imperial system is based on the foot, pound and second. The foot [ft] is one­
third of the imperial yard which is defined as 0.9144 metre. The pound [Ib] is now
defined as 0.4536 kilograms.

For example, if a mass is given as 25 Ib, then to convert this to kilograms you would
multiply this by 0.4536, as follows:

25 [)is] x 0.4536 [kg/pS] = 11.34 kg

Notice how the [Ib] units cancel leaving [kg] for the answer. To carry out the reverse
of this the reciprocal of 0.4536 kg/lb is used:

1
0.4536 [kg/lb] = 2.20461b/kg

The units of the answer are now also inverted. This method can be used for
converting kilograms to pounds:

11.34 [~] x 2.2046 [lb/~] == 25 Ib

Again notice how the [kg] units cancel leaving [Ib] with the answer. The tables of
values for converting from one system to another are commonplace: e.g. wall-charts,
front diaries etc. but mistakes are easily made. It is sometimes not obvious whether
one conversion value should be used, or its reciprocal. Here, units playa major role.
Had we tried to convert 11.34 kg to pounds using 0.4536 kg/lb, then the answer
would have been incorrect:

11.34 [kg] x 0.4536 [kg/lb] == 5.144 [kg] x [kg/lb] (wrong)

The units produced with the answer would not have been [Ib] as the [kg] units are
both numerators and would not cancel. Table 1.3 shows some common conversion
factors between SI and imperial units.

The conversion values 0.4536 kg/lb and 2.2046 Ib/kg are known as unity brackets.
These are a very useful concept, not only when converting between the 51 system and
imperial system but when converting from anyone unit to another, e.g. m ' to mm',

The actual value of a unity bracket may seem strange when there is a number
present other than one. This means that any quantity can be multiplied by a unity
bracket to change the units without altering the value. Using unity brackets will seem
rather awkward at first but, once you are familiar with them, they will save time and
prevent any confusion when converting units. They are easy to calculate and it is
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Table 1.3

Imperial unit

1 inch
1 foot
1 yard
1 gallon
1 pint
1 pound
1 ton
I mph
1 horse power
1 mile

SI unit

25.4 X 10- 3 m
0.3048 m
0.9144 m
4.54609 x 10-3 m' (note 1 gallon = 8 pints)
0.5682613 x 10- 3 m '
0.45359 kg
1.016047 x 10- 3 kg
0.44704 m/s
745.7 W
1.609344 x 103 m

better for you to know how to work them out for yourself rather than having a ready­
made list of them. Consider the units of feet and metres.

1 ft == 0.3048 m

Here it is important to realise that the unit symbol [ft] is not fixed to the number 1.
Both sides are now divided by [ft].

1m]=0.3048[~]
The two [ft] symbols on the left cancel out leaving the value of one, i.e. a unity
bracket:

1 = 0.3048 [~]

This can be inverted if necessary and will still equal one and therefore still be a unity
bracket:

1 == 0.3048 [m] == _1_ [ft]
ft 0.3048 m

You now have two forms of a unity bracket that can be used for converting feet to
metres or metres to feet as follows:

15 [:VI x 0.3048 ~] = 4.572 [m]

1 [ftJ4.572 [¢] x -- rJ == 15 [ft]
0.3048 1"

Again had we tried to use the wrong version of the unity bracket the units of the
answer would not be correct. Here's another one:
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We can now use this to convert [mm '] to [m'] or [m'] to [mm ']. Convert 5000 rnrrr'
to m',

Notice how the unit we want to get rid of is always on the bottom of the unity bracket
and the unit we do want is on the top.

1 rmm3]5 x 10-6[m3] X -_- -- == 5000 [rnm']
10 9 m3

Don't worry if unity brackets are a little unclear at this stage. After a bit of practice
these will present no problem to you at all. Try working through the following
problems before continuing.

Problems 1.1
1. If a petrol tank holds 20 gallons, how much does it hold in cubic metres and

litres?
2. If the engine capacity of a bike is 1200 cc, what is this in m' (cc stands for cubic

centimetres)?
3. An engine block has a mass of 250 lb, what is this in kg?
4. If the width of a car is 63 inches, what is this in m?
5. If the mass of a car is 1784 lb, what is this in kg?
6. If the turning circle of a car is 32.75 ft, what is this in m?
7. If an engine requires 7 pints of lubricating oil, how much is this in litres and in

m'?
8. If the wheel base of a car measures 91.3 inches, what is this in m?
9. The valve clearance on the inlet to a car engine measures 0.006 inches with

imperial feeler gauges. The workshop manual specifies that 0.12 to 0.17 mm are
required. Is the current clearance acceptable?

10. A car travels at 40 mile/h. What is its speed in metres per second?

1.2 Tackling problems

Exam questions
It is assumed that at some stage you will have to solve both theoretical exam
questions and real-life problems. Exam questions are by far the most difficult. You
are usually being pushed for time, and tension and nerves do not help you to think
very clearly. You will have far more success if you work through the questions
carefully and methodically rather than rushing through them as quickly as possible.
Admittedly, this is easier said than done but practice will enable you to break a
problem down into manageable steps. Often, you will be given a choice of questions
and it is best to read through them all carefully before deciding which to tackle first.
As a guide to time, divide the total exam time by the number of questions you have to
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answer. When you have spent your allocated time on one question, leave it and go on
to the next one. It is far better to have two questions two-thirds finished than one fully
completed, and most of the easier marks for a question tend to be at the beginning of
it. You can always go back and finish off questions if you have time later...

On first reading through a problem, you will be presented with a lot of information
at once and it is difficult to visualise what is happening. Always start by drawing a
simple sketch and writing quantities where possible on the drawing.

Look at this example.

The bore of a car engine is 72 mm and the stroke is 82 mm. The clearance volume of
each cylinder when the piston is at top dead centre is 45 117 mm '. Find the
compression ratio.

On reading this, it may seem like a lot of numbers are thrown at you with little
meaning. So, start with a simple freehand sketch like the one shown here.

v= 45 117 rnm"
82mm

o
I
I

10
I
L __

I
I

I

I
____ J

72mm

Don't worry about detail, scale and having to use a ruler. Now the information is in a
more understandable form. Leave the rest of this question as we'll look at compres­
sion ratios .later on in the book. The method required to answer a question is not
always apparent and in an exam it is easy to panic. A simple diagram clarifies the
situation and you will have a better idea about how to tackle the problem. Always
show all of your calculations no matter how trivial. A question with the wrong answer
can still pick up most of the marks for the method of solving it, provided that the
calculations are shown. Marks are awarded for each stage and not just the final
answer.

Electronic calculators
If you do not currently use a calculator then you should buy one. They are cheap,
compact, powerful and reliable. You probably know how to use the main functions
such as add, multiply and divide. It is well worth learning how to use some of the
lesser known functions for engineering calculations as well. This will save you a lot of
time and mistakes. In this section, a calculator function key is represented by
brackets, e.g. the add button would be' (+).

Exponent input (EXP): This is the most useful key to an engineer. It is usually written
as EXP on the button and is short for exponent. This is for multiplying a number by
10 to the power of another number. It is used like this: 555 Mg = 555 X 103 kg and
this number can be entered into the calculator by pressing 555 (EXP) 3. The way of
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making a number negative varies but usually there is a button with a - sign on it that
is pressed before or after the relevant number. So 235 mg == 235 x 10-3 kg and can
be entered by pressing 235 (EXP) (-) 3. Sometimes in data books this would be
written as 235E - 3 and calculators often give answers in this form.

Power key (XV): This is used for raising one number to the power of another number.
To calculate 191.3, press 19 (r") 1.3. This can be used in the same way as the (EXP)
key but not as quickly: 555 x 103can be entered as 555 (x ) 10 (xY) 3. This process c-an
be reversed usually by a separate button (,V), or by using an inverse button marked
(INV) or (2nd) before the (x"), key depending on the type of calculator. So 19 (x")
1.3 (==) 45.96. This is reversed as follows: 1.3Y45.96 == 19 can be calculated by
pressing 45.96 (INV) (xY) 1.3 (==) 19.

Engineering key (ENG): The answer to some calculations will be given by the
calculator in an exponential form. By pressing this key you can convert the exponent
to a multiple of three so that it can easily be expressed by the SI system prefixes. For
example, if the calculator showed 45.8E - 5 ( == 45.8 x 10-5

) , then by pressing
(ENG) this would be changed to 458E - 6, which has the same value but can be
expressed using the micro Lu] prefix. By pressing (INV) (ENG) the reading would be
changed to 0.458E - 3 which also has the same value but can easily be expressed
using the prefix milli [m].

Reciprocal key (l/x) or (X-I): This is another useful function. It simply gives the
reciprocal of a value. For example, 1/47.5 could be calculated by pressing 47.5 (l/x).

The precise way in which these functions are used varies from calculator to
calculator but this should give you the general idea. Other useful functions are (sin),
(cos), (tan) and (0RG) but these will be referred to as they are needed in later
sections.

1.3 Mathematics

In the presentation of theories in this book the aim has been to keep the level of
mathematics as simple as possible, without losing any clarity of the explanations.
Mathematics is one of the principal tools of an engineer and a certain level of
mathematics is necessary for all studies of engineering. Algebraic manipulation of
some sort is particularly necessary for most subjects. This chapter is intended to be a
brief revision of mathematical techniques necessary for understanding the theories in
this book. If you feel confident in basic algebra and such things as basic trigonometry,
then skip this section.

Algebra
There is sometimes an air of mystery surrounding algebra, and often this is created by
the best mathematicians. Someone who can carry out algebraic calculations easily,
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without thinking, will perhaps have difficulty in explaining it to someone else.
Algebra is very simple though, if you stick to a simple set of rules.

Consider a mathematical expression written with specific numbers,

e.g. 3 + 4 == 4 + 3

We are saying here that it does not matter whether four is added to three or whether
three is added to four: the answer is the same. This is not only true of the numbers
three and four though, it is true for any number. One way of showing this is.. with .
algebra. Pick any two symbols you like to represent the two numbers. How about the.
letters x and y? The above expression could be rewritten as follows:

x+y==y+x

The expression can now be applied to any numbers.
This is the principle behind algebra: symbols are used to represent any magnitude

of a quantity.
If a vehicle can travel 30 miles on one gallon of fuel, then we could write this in

algebraic terms as:

M == 30 F

where F represents the fuel quantity in gallons and M represents the distance
travelled in miles. This is usually referred to as a formula. If we have four gallons of
fuel, then F == 4. The miles travelled, M, can then be calculated using the formula:

M == 30 x 4 == 120 miles

Some formulae (plural of formula) in engineering may look very complex, but each
letter or symbol is used to represent any number of a particular quantity, such as F
and M above. Notice also that the multiplication symbol x is missed out. If two
components of an expression are directly next to each other then they should be
multiplied. Sometimes a dot is used in place of the multiplication symbol. Quantities
such as M or F that can vary are sometimes referred to as variables.

The usual operations that can be applied to numbers can also be applied to any
algebra symbols. For example:

y == 4b3

==4xbxbxb

If b == 5 th en y == 4 x 5 x 5 x 5 == 500

If parts of an equation appear in brackets then work out these parts of the calculation
first. For example

The a must be divided by the b and then the c added before any squaring is done.

Therefore s = (~+ c) x (~+ c)

')

not ~~ + c2 as this gives a completely different answer.
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If a square root sign is present, then all the algebra symbols underneath the line must
be calculated first.

t= VJej
Multiply d and e and [first, and then find the square root of that answer for the final
answer. Besides the square root, other roots are sometimes required.

4
If r ==-\IV

then V == r X r X r X r

Roots are sometimes represented in a different way.

4
If r == -\IV

then also: r == 0 1) == 0 0 .25 )

So if V == 7, then

4
r == V7

Try both ways on a calculator:

r == 7 (0) 4 == 1.6256

r == 7 (yX)(1/4) == 1.6256

If a number is raised to the power of a negative number, then treat it as a positive
number and invert the answer.

If w = Q-2.1

h· . h . 1t IS 1S t e same as saying w == ~
Q-"

Or if p == R-O
,5

. . h . 1this IS t e same as sayIng p == ­Ro.5

1 1
Also as 0.5 == - then p == -/-

2 VR

o Example 1.1
If a = 4 and b = 7.9, find c for the expression below.

c = 15(b-a + 0.0(9)

Put the numbers into the equation:

c == 15(7.9-4 + 0.0(9)

= 15(~ + (l.009)
7.9
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== lS( 1 + 0.009)
3895.008

== 15 x 0.009257 == 0.1388

o Example 1.2
Find a, if N == 24 and k == 2.

a == 13 + (N x 10- k
)

Put the numbers into the equation:

a == 13 + (24 x 10-2
)

== 13 + (24 + ~)'
10~'

== 13 + (24 X 0.01)

== 13 + 0.24 == 13.24

One variable can be said to be proportional to another variable rather than equal to
it. The symbol for proportional is ex and this is used in place of the equal sign:

e.g. y ex X

y is proportional to x. This means that y is equal to x multiplied by a constant value
but we do not know what this constant value is. If the constant was represented by C,
then

y==xxC

Transposition offormulae
Transposition of a formula means to rearrange it to a more suitable form. For
example, if

U == 3.9B + 10

and we know the value of U and require the value of B, then the formula is not
suitable in its present form. We can carry out any operation on a formula, provided
that we do exactly the same thing to each side of the equal sign: e.g. add seven to each
side, multiply each side by 100, square both sides, anything you like. The equation
will still balance. This is a useful technique for rearranging a formula. In the above
equation, we could start by subtracting 10 from each side:

U - 10 == 3.9B + l{J - J.{f

As the tens on the right cancel, it leaves:

U-IO==3.9B

If we now divide each side by 3.9:

U - 10 >-:9B
------

3.9 ~
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The 3.9 values cancel on the right leaving:

U -10
B==--

3.9

The value of B can now be found from the value of U.
When transposing any formula, aim to get the unknown value on its own.

Whatever operations are required on one side to achieve this, apply to the other side:

o Example 1.3
Rearrange the formula below for E to find an expression for v.

1 ') ')
£==-m(v~-u~)

2

Multiply both sides by 2 to get rid of the half on the right:

1 ') ')
2 x E = J. x "jm(v- - u-)

2£ == m(v2
- u2

)

Divide both sides by m:

2£ == ¢(v2
- u2

)

m ¢
2£ ') ')- == v~ - u:
m

Add u2 to both sides:

2£ ') ') 2 2- + u: == v~ - ,11+Ji
m

2£ ') ')- + ll" == V""
m

Take the square root of each side:

~vm+ u
2

= v?

Trigonometry
Trigonometry is a widely used technique in many different types of mathematical
problems. The only trigonometry required in this book is that used for calculating the
relationship between different sides of a right angled triangle and one angle. The
sides of a right-angled triangle are named as shown in Figure 1.1.
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Opposite side

()

Adjacent side

Figure 1.1

• The side opposite the right angle is called the hypotenuse abbreviated to 'hyp'.
• The side between the selected angle, e, and the right angle is called the adjacent

side, abbreviated to 'adj'.
• The side opposite the selected angle, (), is called the opposite side, abbreviated to

'opp'.

The three functions of interest to us are called:

• the tangent of the angle, written as tan e
• the cosine of the angle, written as cos ()
• the sine of the angle, written as sin ().

We can define them using ratios of the three sides of the triangle as follows:

tan () == opp
adj

d'
cos e == ~

hyp

sin e == opp
hyp

As we are dealing with triangles only then all the angles considered are less than
90°. The tan, cos, or sin of any angle can be found from any scientific calculator.
Press the button marked (DRG) to set the calculator to 'd' to measure degrees.
Enter the angle, e.g. 45°, and press the required function button, e.g. (sin), to
obtain the sine of 45°. To do the reverse, press the second function button, e.g.
(2nd), and then the sine button (sin) again. This is usually written as sin- l in text
(see the following example). Sometimes there is a separate button on calculators
for this reverse process marked (sin - 1). The same method applies to cosines and
tangents.

o Example 1.4
Look at Figure 1.2. Find the length of the other side shown and the angle, e.

The hypotenuse is the side of length 4.5 m , as this is the one opposite the right
angle. The opposite side is the side of length 3 m , as this is the one opposite the
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()

Adjacent

tan ()

3 m (opposite)

Figure 1.2

unknown angle. The adjacent side is the unknown side, as this is the side between the
unknown angle and the right angle. So, what do we know?

tan () == opp
adj

Since we do not know the angle, e, or the adjacent side, we cannot use this one.

adj
cos e==-

hyp

Again, we do not know the angle, e, or the adjacent side.

sin e == opp
hyp

We know both the opposite side and the hypotenuse so we can use this one to find the
angle, e.

As sin e == opp
hyp

then e == sin - I (oPP) == sin - I (2El) == 41.8°
hyp 4.5 [m]

We can now use either the tan or the cos of the angle, e, to find the other side.

== opp
adj

Therefore adj = °PP = 3 [m] = 3 [m] = 3.356 [m]
. tan () tan 41.8° 0.894
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If we divide the sine of an angle by the cosine of the same angle the result is the
tangent of that angle:

sin () _ opp . adj
cos () - hyp ""7" hyp

== °PP x hyp
hyp adj

== opp == tan ()
adj

sin ()
tan ()==--

cos ()

Consider the problem above involving an angle of 41.8°:

tan 41.8° == 0.894

cos 41.8° == 0.745

sin 41.8° == 0.667

tan () == sin () == 0.667 == 0 894
cos () 0.745 .

Theorem ofPythagoras
Pythagoras' theorem states that: the square of the hypotenuse of a right-angled
triangle is equal to the sum of the squares of the other two sides. For the triangle in
Figure 1.3:

c2 ==a2 + b2

This can be used in place of trigonometry for some problems for any right angled
triangle.

b

a

Figure 1.3
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o Example 1.5
The hypotenuse of a right-angled triangle is 5 m long. One of the other sides is 3 m
long. Find the length of the other side.

If we call the other side x, then:

52 == 32 + x2

Therefore x == YS 2
- 32 == Y2S - 9

==4

Differentiation
One other subject that we must touch on is calculus, specifically differentiation.
There is no differentiation or integration required in this book, but sometimes
quantities are expressed in differential terms, so we will briefly look at this.

Calculus refers to a set of techniques for calculating quantities that vary rather than
being fixed. In engineering, the change of a quantity with respect to time often needs
to be dealt with, i.e. the rate of change. This is most easily explained with a graph
(Figure 1.4).

5

A

Figure 1.4

c

>
B t

The graph shows the distance travelled, S, by a car over a period of time, t. The
velocity of the car is constant. The magnitude of the velocity, v, can be calculated
from:

I
. distance travelled S

ve ocity, v == --.-----
trrne taken

From the graph this is also equal to the slope of the line. If the line is the hypotenuse
of a right angled triangle, ABC, then:

I
. S BC

ve ocity v == - == -
, t AB

In this situation the velocity has a constant value during the journey. Now a different
journey, such as that shown in Figure 1.5, would have a different result. Here the car
does not travel at a constant velocity. The velocity changes with time and so the
question 'what is the velocity of the car?' cannot be answered with one value. The
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s

ds

dt

Figure 1.5

gradient of the curve changes with time. We can calculate the gradient of the curve at
anyone time though by drawing a tangent to the curve and finding the slope as
before. If the tangent to the slope forms part of a right-angled triangle as before, then
the slope of the line can be expressed in terms of the other two sides of the triangle.
Instead of BC we could write dS. The d means 'a small change in'. So dS means a
small change in S. Instead of AB we could write dt meaning a small change in time.
As the changes in distance, S, are not constant with respect to time then we assume
that if the distance travelled is considered over a very tiny time period then it would
be constant during that period. At the point in time represented by where the tangent
touches the curve, we can say that:

I
. distance travelled dS

ve ocity.u' == --.-----
time taken dt

The point where the tangent touches the curve could correspond to time t. This does
not seem very precise: e.g. is it at t or at t + dt. As dt and dS are considered to be very
small and approaching zero then we can say that the velocity, v = dS/dt at a time of t.
In engineering equations, instead of using a v for velocity, when the velocity may
vary with time, dS/dt may be written to mean the velocity at any particular instant in
time.

Consider now the motion of the car represented by the graph in Figure 1.6. This

v

dv

dt

Figure 1.6
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shows the velocity over a period of time. Here the velocity is changing, but not at a
constant rate. For velocity changing at a constant rate, the acceleration a could be
calculated by dividing the change in velocity by the time taken.

Acceleration, a == ~
t

The same principle used above can' be applied to the acceleration that varies with
time. '

Instantaneous acceleration a could be represented by:

dva ==-
dt

dv/dt is then the acceleration occurring at an instant in time. dv is a small change in
velocity occurring in the small time dt. We have already stated above that v == dS/dt.
To express the acceleration in terms of the distance S, we can write:

dv d2S

a - dt - dr

dS is called a first differential coefficient.
dt

d2~ is called a second differential coefficient.
dr

In engineering, a quantity can vary in a complex manner relative to another quantity.
An equation involving the motion of a body with respect to time could involve
several differentials of different order. For example:

d2S dS
F== A.-, + B.- + C.S

dr' dt

where A, B, and C are constants. Equations like this are called differential
equations. Differential equations are used to represent dynamic relationships, i.e..
with quantities that change.

In this book we will not cover how to calculate these differential equations. If you
have never studied calculus before you will at least be aware of these equations'
significance if they are presented in theories. However, no theories or explanations
in this book rely on an understanding of calculus.

Here are some more problems. Make sure you can solve these before continuing.

Problems 1.2
11. If G == 20 and y == 0.053 then find Q, when Q == (7.9G)-Y + 0.3.

28pOol)
12. If p == 17 and a == 0.87 find X, when X == -'-a-'

0.6

13. If a = 3, b = 24.7 and the angle k = 25°, then find P when P = L~ kt

14. If v2 == u2 + 2aS then find an expression for S by rearranging the formula.



15.

16.

17.

18.

19.
20.
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If v = Js.g.r then find an expression for'r by rearranging the formula.
2.h

The hypotenuse of a right-angled triangle is 3.5 m and one of the other sides is
2.5 m. Using the theorem of Pythagoras calculate the length of the remaining
side.
The hypotenuse of a right-angled triangle is 9.6 m and one of the other sides is
5 m. Find the two unknown angles.
The hypotenuse of a right-angled triangle is 0.8 m. One of the angles is 25°. Find
the length of the other two sides and the other unknown angle.
One angle of a right-angled triangle is 55°. What is the other unknown angle?
Find y when x == 14, if y == 2x 2 + 4x + 6.



2 Forces

2.1 Mass, volume and density

This chapter deals primarily with mass. Mass is one of the fundamental quantities. It
is important to understand the effect that the Earth has on a particular quantity of
mass and also to be able to work out how much room this mass takes up. The
quantities of weight, volume and density are also introduced in this chapter, as they
are all related.

Mass
The mass of an object is a measure of the quantity of matter that makes up that
object. This quantity of matter will remain the same wherever and however the
object is positioned. We can squash it, stretch it or do anything to it so long as we do
not chop bits off it: the mass will not change. Therefore the mass of an object is a
constant property, i.e. it will always remain the same.

The unit of mass is the kilogram and the unit symbol is kg. The quantity symbol is
m. So if data is given about a piston for example, and m == 0.5 kg, you know that this
refers to the mass. Another common unit for mass is the tonne which equals 1000 kg.
The kilogram is not the unit of weight and it is not the unit of force. However the units
of weight and force are derived from the unit of mass.

Force
If we push an object, it tends to move. This "push' is an example of a force. A force is
difficult to imagine or define. A common definition is based on its effects. The unit of
force is called the newton and the unit symbol is N.

1 N is the force required to give a mass of 1 kg an acceleration of 1 m/s:', that is an
increase in velocity of one metre per second in each second (see Figure 2.1).

Expressed mathematically,

1 N == 1 kg x 1 m/s"

This relationship between force, mass and acceleration was first suggested by Sir
Isaac Newton and is part of his second law of motion. The quantity symbol for force is
F. It is normally written as follows:

F == m x a (a == acceleration)

Newton's first law of motion suggests a force as: that action which changes or tends to
change the motion of the body on which it acts. A simpler definition could be: the
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III( •
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III(

3 seconds

Figure 2.1

3 m/s

o

action of one body on another. It is Newton's second law, remember, that enables us
to measure a force: F == m x a. The term 'body' is commonly used in science. This
just means a mass or object that is being considered.

Weight
Newton also developed a law which states: that there is an attractive force between
all bodies; the magnitude of the force depends upon the mass of each body and their
distance apart. For two cars that are on the surface of the Earth, the force between
them is very small. However, the attractive force between one of the cars and the
Earth is much larger as the mass of the Earth is so large. This force is what we usually
call weight and it has the same units as force, the newton [N].

Newton's second law of motion (F == m.a) explains that for a mass close to the
Earth's surface there is an acceleration. This acceleration is due to gravity, which is
the Earth's force of attraction, and is represented by the symbol g. For bodies falling
to the Earth the acceleration then is g. The value of g varies slightly over the surface
of the Earth but the value generally used for engineering is 9.81 m/s". The acceler­
ation is always towards the centre of the Earth (see Figure 2.2).

The idea of mass is often confused with that of weight which can be dangerous in
engineering calculations and causes no end of problems. If you asked someone the
weight of an engine because you wanted to lift it out of a vehicle, the answer they

Mass

~
Force produces an
acceleration of 9.81 rn/s"
(F=mxa)

Earth

Figure 2.2
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would probably give would be a mass and not a weight; for example 100 kg. This
would probably not cause any confusion because anywhere on Earth 100 kg has a
mass of approximately the same weight. If you were to transport that engine to the
Moon, the mass would remain the same but the weight would change, because the
Moon has a different mass to that of the Earth. So the attractive force and the
acceleration due to the Moon's gravity are different. The main point of this is that
although the mass remains the same, the weight is not a fixed quantity. If the engine
were then transported into outer space, the mass would still remain at 100 kg but the
weight would be zero, since there would be no gravitational force at all.

To find out the weight of something, remember that the weight is the attractive
force due to the Earth's acceleration and use the formula F == m x a. It might seem a
bit strange talking about acceleration when something could be stationary. With the
Earth the acceleration is g which equals 9.81 m/s", so:

gravitational force == m X a == m X g
The weight of the engine == 100 [kg] x 9.81 [rn/s']

== 981 kg m/s? == 981 N
Notice that 1 kg m/s ' == 1 N.

o Example 2.1
The Moon buggy that was taken on the Apollo Moon landing in July 1971 had a mass
of 699 kg. What did this weigh on Earth and what did it weigh on the Moon? On the
Moon the acceleration due to gravity, gmoon == 1.624 rn/s".

Earth's gravitational force (weight) == m x gcarth

== 699 [kg] x 9.81 [rn/s'']
== 6857. 19 kg m/s '
== 6857.19 N

Moon's gravitational force == 699 [kg] x 1.624 [m/s ']
== 1135.18 kg m/s '
== 1135.18 N

What would the mass of the buggy be in outer space whilst being transported to the
Moon and what would its weight be? Answer: Its mass would be the 699 kg, as mass is
a constant property. The weight however would be zero as there is no gravitational
force.

Area
Area is the measurement of the size of a surface. A linear dimension is a length that
can be measured in a straight line. An area is said to be a measurement in two
dimensions. It is measured as the product of two unit lengths; in the metric system the
unit of length is the metre and so the measure of area is metre x metre which is
known as square metres. The area of a surface in the metric system is the number of
square metres that will fit into this surface (Figure 2.3).

The SI unit symbol for the square metre isrn ' and the quantity symbol for area
isA.
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Figure 2.3

It is important to know the formula for the area of certain common shapes. Most of
them you will probably be familiar with. These are shown as follows:

The square or rectangle: Area == length of one side x length of the other side. This
is usually referred to as length x breadth (Figure 2.4).

Length

Figure 2.4

The triangle can be positioned any way up for this calculation. Measure the side of
the triangle at the bottom and then measure the vertical height. If one of the angles is
a right angle then the vertical height could also be the length of one of the sides. The
area of the triangle is the base multiplied by the vertical height and then divided by
two (Figure 2.5).

Base

Figure 2.5

Base



Science for Motor Vehicle Engineers

A
base x vertical heightrea == -----------.,;~

2

The circle: To measure the area of a circle we need to know the radius. The area is
then equal to 3.142 x radius x radius. The number 3.142 is represented by the
Greek letter n pronounced pi. A more accurate value of pi would be 3.14159265 but
3.142 is accurate enough for most engineering calculations. Most calculators have a
pre-set value available by pressing a separate button which is more convenient than
having to enter the number each time (Figure 2.6).

Diameter

Figure 2.6

A == n X r (r == radius)

Th· · I I nd
2

(d d· )IS IS a so equa to 4 == iarneter

If you wanted to find the area of a flat annular ring (doughnut shape) then find out the
area of the larger circle and then the area of the smaller circle and subtract the smaller
from the larger (Figure 2.7).

Figure 2.7
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o Example 2.2
Find the cross-sectional area of the cylinder liner shown in Figure 2.8. To find the
cross-sectional area of an illustrated component, just imagine that it is cut in two
where indicated and consider the chopped surface. Cross-sectional area is normally
abbreviated to CSA and shown shaded on drawings.

\

" ...................

.... .... ",

95mm

Figure 2.8

Jr 2 ..,
Area==-x (D -d~)

4

== ~ X (952
- 832

) X 10-6 [m2]
4

== 1677.610 X 10-6 m2

At this stage we could convert the answer to mrrr' if we wanted but first we need to
find out how many mrrr' there are in 1 rrr'.

1000mm == 1m
(1000 mrnj ' == (1 m)2

106 mrrr' == 1 m2

1 == 106[m~2] == 10-6[ m2?]
rrr mrrr'

Note we have now produced a unity bracket in both its forms for converting mrrr' to
m 2 and m2 to rnrrr'.

[
mm

2
]Area = 1677.610 x 10-0 [~] x 100 ~

== 1677.610 mm"
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Alternatively we could have worked through the entire question in mrrr'. Don't be
tempted to miss out the units at any stage - you will probably go wrong.

If you wanted to find the length of the circumference of a circle then use the
formula n x d. This is sometimes useful for finding the area of the surface of a
cylinder. It is easier when finding the area of curved surfaces ifyou imagine them to
be flattened out first (Figure 2.9).

Circumference

Figure 2.9

Once flattened out the surface of the cylinder can then be calculated as a rectangle,
i.e. length x breadth.

Area == itd x h (h == height)

o Example 2.3
Find the area of the wall of an engine cylinder that is swept by a piston ring. The bore
is 83 mm and the stroke is 73 mm.

Area == nd x h
== JT x 83 mm x 73 mm
== 19.034 x 103 mrrr'

We can convert this to m2 usi~g the unity bracket from before.

Area= 19.034 x 103[p:H112] X 10-6~2]
==19.034 X 10-3 m 2

A trapezium is a four-sided shape with only two sides that are parallel (Figure 2.10).

Figure 2.10

1
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y

c
Q)
Q) en
~ Q)
..... "0
Q) .-
.0 en
Q)~u­c ro
~ (ij
en a.
D



Forces

A sum of the parallel sides di b hrea = x istance etween t em
2

Volume
The volume of an object is a measure of how much space it will fill. Volume is
measured in three dimensions and the unit is the product of three unit lengths. In the
metric system, since the unit of length is the metre then the unit of volume is the cubic
metre. The unit symbol is m' ([m] x [m] x [m] = [m3

] ) and the quantity symbol is V.
The volume of a tank for instance, is the number of cubes with a side length of one

metre that will fit into that tank. If the tank is rectangular in shape then the volume is
the product of the straight sides.

o Example 2.4
Find the volume of a petrol tank that measured 0.4 m by 0.6 m by 0.2 m (see Figure
2.11).

l~

O.4m

Figure 2.11

v = 0.4 [m] X 0.6 [m] X 0.2 [m] = 0.048 m3

As 1 m' == 1000 litres then the unity bracket is:

1 = 1000 rlitr~sl = _1 r~l.
1 m- J 1000 II tresJ

0.048 [Jk'] x 1000 lli;~s] = 48litres
Remember we use the form of the unity bracket so that the unit we want to get rid of
(cancel out) is on the bottom.

If the sides of the tank are not all straight then look for a way that it could be
positioned on a level surface so that all the sides are straight and vertical. The volume
then equals the area of the base multiplied by the height (Figure 2.12).

The volume of this tank is as follows:

base = nr2

volume = n? x h where h = height



Science for Motor Vehicle Engineers

Height, h

Area =nr?

Figure 2.12

7m

3m

4m

Figure 2.13

The volume of this tank is also base area x vertical height:

3 x 4 ~ 1
Volume = -2- [rrr'] x 7 [m] = 42 m

(See Figure 2.13).

o Example 2.5
Find the swept volume of the piston in Example 2.3. To find the swept volume of
something, imagine the piston of an engine at the bottom of its stroke, i.e. bottom
dead centre, and consider the volume in the cylinder above the piston. Now imagine
the piston at the top of its stroke, i.e. top dead centre. The volume above the piston
now is called the clearance volume. The swept volume is the maximum volume minus
the clearance volume, i.e. the cylinder volume that the piston sweeps through. The
sum of all the swept volumes of an engine refers to the capacity of the engine. The
compression ratio of an engine is the ratio of the maximum volume to the clearance
volume (see Figure 2.14).
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Clearance volume
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Figure 2.14
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83mm

Swept volume == nr: x length of stroke

(83)2
== n X -- x 73 [rnrrr'j.jmrn]

4

== 394.9744 X 103 mnr'

If this is a four cylinder engine then the total capacity of the engine is :

4 x 394.9744 X 10J mrn ' == 1579.8976 x 10J mrn'

Most car engine capacities are usually expressed in litres so we could convert mrn' to
litres.

1 m' == 10<) mm'

so the unity bracket == 100 [m~JJ == 10-0
[ m

J
.,J

m mrn

Also 1 rn' == 1000 litres

so the unity bracket == 10J [litr;SJ == 10- J
[ .m

J
J

m litres

So engine capacity == 1579.8976 x 10J [ITlJ'riJ] X 10-0 [ )1'iJ J x 10J [litresJ
r

u

~3 )rt3

== 1579.8976 x 10-3litres == 1.58litres

This would be classed as a 1.6 litre engine.
If the clearance volume is 47.0768 x 103 mm ' then what is the compression ratio?

C . . swept volume + clearance volume
ompresslon ratro == -------------

clearance volume

== (394.9744 X 10J
) + (47.0768 X 10J

) [IJllI1JJ
(47.0768 x 103

) ~3

We can see at this stage that the units of the calculation cancel out, meaning that
there are no units of compression ratio. Also the 103 terms cancel out on the top and
bottom. This leaves us with:

C. . . 394.9744 + 47.0768 9 39ompresslon ratio == == •
47.0768
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This would normally be written as 9.39:1. This tells you how many times bigger the
maximum volume is than the clearance volume.

Density
Equal masses of different materials occupy different volumes. Consider 1 kg of lead
and 1 kg of feathers: they have the same mass but their volumes are very different.
Density is a measure of the ability of a material to pack more or less into a given
volume.

Density is the mass of a unit volume of a material, so

d
. mass of material

ensity = -------
volume occupied

The quantity symbol is p which is a Greek symbol pronounced 'ro'. The units of
density will be mass unit per volume units and are measured in kg/rrr' although you
may come across other units within the metric system, e.g. tonne/m'.

The density of a substance depends on volume. Volume varies with temperature,
so when a density is stated the temperature at which it was determined should also be
stated. With solids and liquids the changes in density are fairly small over normal
motor vehicle operating temperatures, but the density of gas varies greatly, even
with quite small changes in temperature. Intercoolers are often fitted to cool an
engine's inducted air after a turbo charger has compressed and heated it a few
degrees Celsius in order to reduce the density. This can almost account for as much
benefit as the turbo charger itself.

Relative density
Relative density is sometimes quoted as it allows the comparison between the density
of one substance and another:

R
. . density

elative density = ---------
density of fresh water

There are no units of relative density as they cancel out. The density of fresh water is
1000 kg/rn ' and its relative density must be one. The density of mild steel is
7860 kg/rn ' and so its relative density is 7.86. In the past, relative density was called
specific gravity, a term you may still come across.

o Example 2.6
How much does the weight of a van increase by if it is filled up with 75 litres of fuel?
The relative density of the fuel at the filling temperature is 0.9.

Density = relative density x density of fresh water
. = 0.9 x 1000 [kg/rn']

= 900 [kg/m']

m
As p = - then m == p x V

V



Forces

m = 900 [k~] x 75 [litres] x 10-3
[ .m

3

]
m htres

= 67.5 kg

Weight = m x g = 67.5 [kg] x 9.81 [m/s2
]

= 622.175 kg m/s ' = 622.175 N

2.2 Forces

Introduction
In Section 2.1 on mass we looked at the definition of force and its relationship with
mass and acceleration. In this Section we look at forces in more detail and see how
they act on a body and what happens when several forces act together.

A thorough understanding of force is very important. The whole subject of
mechanics is based on how forces act on matter, whether it is stationary or in motion.
In a motor vehicle, a force of some sort acts on every part. The force of gravity acts on
the vehicle, affecting the design of all components. Power is transferred from the
combustion space of the engine through the transmission system to the wheels of the
vehicle, all because of forces (Figure 2.15).

The gas pressure causes a force to act down on the piston crown. This 'push' is
transferred to the connecting rod and to the crankshaft, converting linear motion
into rotary motion.

Pressure

Force

1

Figure 2.15
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Force as a vector quantity
Quantities dealt with in engineering problems can usually be put in one of two
groups: scalar quantities and vector quantities. A scalar quantity can be completely
described by its magnitude and the units. Examples are length, mass and tempera­
ture. Scalar quantities that are measured in the same units can be dealt with by simple
arithmetic, as we have seen with multiplication, division, addition and subtraction on
mass calculations. To describe a vector quantity, the point of application and the
direction need to be specified as well as the magnitude and units. Examples are force,
velocity and acceleration. A vector can best be represented graphically as shown in
Figures 2.16 and 2.17.

p

8
o~-~--------

Figure 2.16 Polar co-ordinates

y

p

y

o x
-x

Figure 2.17 Rectangular co-ordinates

These are called vector diagrams. The direction of the arrows is in the same
direction as the forces. The length of the line is proportional to the magnitude of the
force. For instance if there was a force of magnitude ION and you decided to have a
scale of 10 mm == 1 N, then the line representing this would be 100 mm long. Look at
the polar co-ordinate diagram: when measuring the angle of a vector it is usual to
assume that the three 0 'clock position is zero degrees and angles are measured
anticlockwise. The vector OP can be described by the length, r. and the angle, f), as
reo Now, the rectangular co-ordinate diagram: the same vector, OP, can be
described by the two lengths, x and y, as x,y.

Vector quantities can be multiplied by scalar quantities. The result will be a vector
quantity with direction the same as the initial vector quantity. If we consider a vector
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Figure 2.18

with a magnitude of a and then multiply it by 3 for instance, the result will be a vector
in the same direction but with a magnitude of 3a. See Figure 2.18.

If AB == a then 3a can be represented by CD, which is three times the length of
AB, but in the same direction.

Vector addition
Two vectors can be added up using the parallelogram rule. In this, the two vectors, A
and B, are drawn starting from the same point, O. The magnitude of the vectors is
represented by the length of the lines. A parallelogram is then drawn using the
vectors as the adjacent sides. The diagonal of the parallelogram, C, drawn from the
origin then represents the sum or the resultant of the two forces both in magnitude
and direction (Figure 2.19).

A

c

o
Figure 2.19 Parallelogram rule

B
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The parallelogram law shows an important feature of vectors: it does not matter in
which order vectors are added. Two vectors can also be added using the triangular
rule or "head to tail' rule. The two vectors, A and B. are drawn head to tail in any
order and the resultant vector, C, or their sum is drawn from the tail of the first one to
the head of the second one. A resultant vector is one that has the same effect as
several other forces acting together through the same point. The term 'concurrent
forces' is used to describe forces that act through the same point (Figure 2.20).

c

A

B

Figure 2.20 Triangular rule or 'head to tail' rule
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In fact the head to tail rule can be applied to any number of vectors added in any
order. The resultant vector is drawn from the tail of the first one to the head of the last
one. This type of diagram is known as a force polygon. A polygon is a closed shape
with a number of straight sides; e.g. a triangle is a three-sided polygon and a hexagon
is a six-sided polygon (Figure 2.21).

B

o

Figure 2.21 Force polygon

The same rules apply if vectors are added that act in the same direction (Figure
2.22).

A B
~ >
Resultant

>
Figure 2.22 Addition of vectors acting in the same direction

To subtract a vector then reverse the direction (Figure 2.23).

Resultant

a

< b
>

Figure 2.23 Suhtraction of vectors acting in the same direction

o Example 2.7
Two forces A and B are shown. Draw the vectors of A + B and A-B.

In the example in Figure 2.24, the magnitude of the vectors is unknown but the head

B

Figure 2.24
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B

A+B

Figure 2.25

to tail rule can be demonstrated. Draw the vectors A and B, applying the head to tail
rule (Figure 2.25).

The length of the vector A + B is proportional to its magnitude. The length of this
would depend on the magnitude of A and B and the scale of your diagram. To find the
vector A - B, vector B needs to be subtracted from A. To subtract the vector B, it
goes in the opposite direction and the resultant is found in the same way (Figure
2.26).

-B

B

Figure 2.26

The effects ofa force
To understand that the point of application and the direction are important when
describing a force, think about the small truck shown in Figures 2.27 and 2.28. In
each case a force of the same magnitude is exerted but not always with the same point
of application and direction.

I (a) r- ~(b)1
000

Figure 2.27

(d)

Figure 2.28
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• Truck (a) would move to the left.
• Truck (b) would move to the right.
• The left end of truck (c) would move up and the right end would move down.
• The right end of truck (d) would move down and the truck would tend to move to

the left.

None of the four forces shown is the same. Although they are of the same size, the
J effect of each on the truck is clearly different. This shows that force is a vector
quantity. Because different forces have different effects, it is important to fully
describe each force by its magnitude, units, point of application and direction.

Space diagrams
A space diagram is an illustration of a system of vectors drawn to simplify the
situation. You will often see an exam type problem presented with a space diagram to
show the points of application and direction of forces acting on a body: If one is not
presented with the question, then you should draw one. The diagram usually does
not show objects that are in contact with the body, such as supports, but just the
forces that these exert on the body. If a system of forces has exact points of

. application on a body then it may be necessary to draw the space diagram to some
convenient scale. For a stationary steel block resting on the surface of the Earth the
space diagram could look like that in Figure 2.29.

Weight

Normal reaction

Figure 2.29

The downward force is the weight of the block acting through the centre of gravity.
The upward force is the normal reaction of the surface of the Earth. The normal
reaction may seem a strange idea at first because we are not usually aware of it. For
every action there is an equal and opposite reaction - more of this later. If the block is
stationary the forces acting on it must be in equilibrium and the downward force
caused by gravity is balanced by an upward force from the Earth. The space diagrams
are important for showing the situation in an uncluttered form.

Resolution offorces
It is sometimes useful to think of a single force acting on a point as being split into
other force components. This is really the reverse of adding forces to find one
resultant force. Usually two rectangular force components are the most useful and
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Figure 2.30 Resolution of a force R

also the easiest to work out as we are dealing with a right-angled triangle. Look at the
example in Figure 2.30.

The force R can be split in to two rectangular force components, the vertical
component and the horizontal component.

. opposite side vertical component
Sl Il a == == ----~--

hypotenuse R

Therefore vertical component == R sin a

adjacent side horizontal component
cos a - == ---------

hypotenuse R

Therefore horizontal component == R cos a

After a few examples you will get used to knowing that the side adjacent to the angle
is R cos a and the side opposite the angle is R sin a.

o Example 2.8
A force of 20 N act at an angle of 35° to the horizontal plane. What are the vertical
and horizontal components?

Horizontal component == 20 [N] x cos 35° == 16.383 N
Vertical component == 20 [N] x sin 35° == 11.472 N

Forces in equilibrium
A system of forces acting on a body is said to be in equilibrium if there is no tendency
for the body on which they act to move. This just means that, although there may be
several forces acting on something, their effects cancel each other out. If you hear the
term 'statics', this is the study of stationary forces in equilibrium. (A state of
equilibrium may also exist when a body is in a state of uniform motion.) The term
'kinetics' on the other hand is the study of forces which cause motion. The equilibrant
of a concurrent force system (forces that act through the same point remember) is a
force that, when applied to the system, would place it in a state of equilibrium. The
equilibrant must therefore be a force that has the same magnitude as the resultant but
acts in the opposite direction. It is probably easier to show this with an example.
Look at the force polygon example above again, as shown in Figure 2.31.
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Figure 2.31

The resultant force is the force that produces the same effect as all the other forces
acting together. The equilibrant is a force that acts along the same line of action as the
resultant, but in the opposite direction. If this equilibrant were applied it would bring
the system into a state of equilibrium. A way of defining a system of concurrent forces
in equilibrium is that the force polygon closes.

When a system consists of only three forces that are co-planar, if it is to be in
equilibrium, the three forces must pass through the same point, i.e. they must be
concurrent. Co-planar means that all the forces act in one plane. If we represent the
forces by a closed polygon, it would in this case be a triangle. When the forces do not
act at one point then turning effects are introduced. We will look at turning effects
later, but just remember for now that when several forces all act through the same
point there are no turning effects. It is not necessary for forces acting on a body to all
pass through the same point for equilibrium, when more than three forces are
present. It is just necessary for all components in a given direction to equal zero, e.g.
all the R sin a and R cos a components (resolution of forces) added together must
equal zero. Example 2.9 involves triangles of forces.

o Example 2.9
A man weighing 80 kg stands a ladder on a rough horizontal floor and leans it against
a 'perfectly smooth' wall at an angle of 30° to the vertical. He then climbs half-way up
the ladder. Determine graphically the direction and magnitude of the reaction
between the ladder and the wall, and the floor and the ladder.

Determine graphically means that you work the problem out using diagrams
rather than maths. It helps if you have a set-square and a protractor. The first thing to
do is to draw a space diagram. This will help to clarify the situation. Assuming that
the ladder does not slip, then we can say that this is a system in equilibrium. Also as
this is a triangle of forces all the forces will pas.s through one point, i.e. they are
concurrent. It is important to find the point of concurrency, which will not always be
obvious. This can be done on the space diagram shown in Figure 2.32.

Draw the ladder at 30° to the wall. The ladder's length does not matter. Because in
the question it states that the wall is perfectly smooth then you can assume that the
reaction between the wall and the ladder, which we can call Rw , is normal to the wall,
(i.e. sticks out at 90°). This is an typical assumption made in questions to simplify the
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problem. So draw a horizontal line to represent this at the top of the ladder and
normal to the wall. Next draw the force line of the weight of the man. This will be
vertically downwards half-way down the ladder. Where these two force lines cross is
the point of concurrency, O. The other force, the reaction between the floor and the
ladder, must also pass through this point. The last line on the space diagram can now
be drawn in from the bottom of the ladder through the point of concurrency O. From
this space diagram you cannot determine any value but you now know the direction
of all the forces and can draw a force diagram. Pick a convenient scale. Draw the
weight of the man first.

Weight == mg == 80 [kg] x 9.81 [m/s2
] == 784.8 N

Remember that 1 kg m/s'' == 1 N. So you could make your scale say 20 N == 5 mm to
make the line about 200 mm long. If you can draw the space diagram and the force
diagram on the same piece of paper it makes things easier. See Figure 2.33. Draw 'fd'
to scale parallel to OB, i.e. vertically, and the length proportional to 785 N. At 'd'

d e
Figure 2.33
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draw 'de' parallel to AO, i.e. horizontally. At 'f' draw 'fe' parallel to CO. Do this by
sliding a set-square along a ruler from the space diagram to the force diagram. The
point 'e' completes the triangle. You can now measure the angle with a protractor. It
should be around 74°. If you measure the line 'ef' according to your scale it should.
give a value of 816 N. The direction of this is 74° to the horizontal from 'e' to 'f'. We
usually assume that the 3 o'clock position is zero degrees and measure anticlockwise
from there, so the actual angle of direction would be 106°(= 180°-74°). The line 'de'
should give you an answer of 225 N. The direction of this we know as being normal to
the wall which is an angle of 0°.

Triangle offorces - practical applications
The jib crane: This is used for supporting heavy parts of machinery. In Figure 2.34,
AC is the post, BC is the tie and AB is the jib. If a mass is suspended from B then
there are three forces in equilibrium at B, the crane head. These are the gravitational
force on the mass, mg, the pull in the tie Tand the push in the jib E. The push of the
jib E is the equilibrant of the pull of the tie T and the gravitational effect on the mass
mg. Therefore E is the equal and opposite to the resultant R of T and mg.

c
mg

A

Figure 2.34 The jib crane

The reciprocating engine converts the reciprocating motion of the piston into the
rotary motion of the crankshaft, 0 (Figure 2.35). Think about the forces meeting at
the gudgeon pin (where the top end of the connecting rod is connected to the piston)
when the cylinder is on its power stroke. The piston pushes vertically downwards.
The thrust in the connecting rod appears as an upward resisting force at its top end
inclined to the vertical by a varying angle Q. There is a third force that balances the
horizontal component of the thrust in the connecting rod that acts between the piston
and the cylinder walls. As the piston force is always vertically down and the side
thrust is always horizontal then the force diagram is always a right angled triangle
(Figure 2.36).

This simplifies problems and makes the diagram easy to draw. The angle between
the centre line of the engine and the connecting rod is shown as Q in the space
diagram. This is the same angle between the piston force and the force in the
connecting rod on the force diagram.
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Figure 2.36

When trying the force problems at the end of the chapter, work slowly and
carefully, and try to keep any drawings neat and as large as possible. Refer back to
the last few paragraphs when you need to.

[ 2.3 Moments

Introduction
A moment of a force is the turning effect of a force about a point. It is calculated as
the product of the force and the distance from the pivot point or axis, perpendicular
to the line of action (Figure 2.37).



Science for Motor Vehicle Engineers

o
Figure 2.37

The moment of the force P[N] about the point 0 == P < L, where L is the distance
from 0 perpendicular to the line of action. The moment of a force about a point is
only zero when either the force is zero, or the line of action of the force passes
through the point. To show which way "around the point the force acts, we use the
terms clockwise and anti-clockwise moments. In calculations we use the convention
of positive moments indicating a clockwise direction and negative moments indi­
cating an anti-clockwise direction. The unit of a moment is the product of force and
length, the newton metre, [Nm]. When moments of a force produce a turning
moment or a twisting moment then this is sometimes referred to as torque. This
means that the units of torque are the same as for the moment of a force. This will be
covered in. more detail in the section on torsion later. You may be familiar with the
term torque from engine overhauls or in relation to engine performance. It is
important that some engine nuts are tightened to a certain torque either because the
components need to be pushed together with a certain force or to prevent damage to
the bolt threads. The torque that an engine produces at different revolutions will
affect the clutch and gearing required to give the desired performance of the vehicle.

o Example 2.10
See Figure 2.38. Forces of 60 N, 50 N, 80 Nand 120 N act along the sides of the
square shown which has a side length of 2 m. Find the sum of the moments about
points A and B.

Clockwise moments about A == (80 [N] x 1 [m]) + (50 [N] x 1 [m])
== 130 Nm

Anti-clockwise moments about A == -((120 [N] x 1 [m]) + (60 [N] x 1 [m]))
== -180 Nm

Notice we use the negative sign to indicate anti-clockwise moments.

The resultant moments about A == 130 [Nm] - 180 [Nm] == -50 Nm
Resultant moments about A == -50 Nm, anti-clockwise
Clockwise moments about B == (80 [N] x 2 [m]) + (50 [N] x 2 [m])

== 260 Nm
Anti-clockwise moments about B == zero

Resultant moments about B == 260 Nm, clockwise
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Figure 2.38

Balance of moments
If a body is subjected to a number of forces and is at rest, then there must be a balance
of moments or the resultant moment would cause rotation of the body. For a state of
equilibrium:

clockwise moments == anti-clockwise moments

This is called the principle of moments.
The best way of showing how this principle can be applied to solve problems is by

looking at a few examples. Many problems you will come across will involve a beam
of negligible mass supported on knife edges. It is helpful to think of the beam as
having no mass and being supported on knife edges, to simplify the problem. The
problem is then reduced to forces (including reactions from supports) acting at
precise points along the beam. Many practical problems can be solved by simplifying
them in this way.

o Example 2.11
The beam shown has a negligible mass and is supported on a knife edge 0.75 m from
the left side. Two forces are applied, one of 50 N at the left end and the other of 20 N
at a point 0.5 m to the left of the support (see Figure 2.39). The beam may pivot on

20 N

F

I

I

0.5m I
lII( ~I

\V
I

I

lII(
0.75 m ~

~I

1 m I

lII( I •\V I \VI

50 N

Figure 2.39



[li] Science for Motor Vehicle Engineers

the support. What force needs to be applied at the right end to put the beam in a state
of equilibrium?

To solve this we apply the principle of moments:

clockwise moments == anti-clockwise moments

If F is the unknown quantity then:

(F[N] x 0.25 [m]) == (50 [N] x 0.75 [m]) + (20 [N] x 0.5 [m])
(F[N] x 0.25 [m]) == 47.5 Nm

F == 47.5 [N¢] == 190 N
0.25 [pi]

o Example 2.12
The beam shown in Figure 2.40 has a negligible mass and pivots around the fulcrum
at the far right end. A force of 100 N acts downwards 0.5 m from' the right end. What
upward force applied at the far left end is required to balance the beam?

100 N
I

0.5 m 1

II( ~I

\/ W
I

/1\ I

1

1 m 1

II( .1
1
I
I

Figure 2.40

Again we apply the principle of moments:

clockwise moments == anti-clockwise moments
(F [N] x 1 [m]) == (100 [N] x 0.5 [m])

F == (100 [N] x 0.5 [¢']) == 50 N
1 [¢]

o Example 2.13
A beam rests on two knife-edge supports as shown in Figure 2.41. Find the reaction
forces that the knife-edges apply to the beam.

Consider one end of the beam as a pivot, even though the forces are in equilibrium,
and apply the principle of moments. Take the left end as the pivot:

clockwise moments == anti-clockwise moments

If we represent a reaction force by R then:

(100 [N] x 0.65 [m]) == (R2 x 0.85 [m]) + i«, x 0.15 [m])
65 [Nm] == 0.15R 1 + 0.85R2 (1)
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Figure 2.41

Notice that we ignore the 50 N force as it passes through the fulcrum, as the moment
of the force is zero, 50 [N] x 0 [m] == 0

Now consider the other end of the beam as a pivot and apply the principle of
moments:

clockwise moments == anti-clockwise moments

(R2 x 0.15 [m]) + (R( x 0.85 [m]) == (100 [N] x 0.35 [m]) + (50 [N] x 1 [m])
85[Nm] == 0.85R I + 0.15R2 (2)

Now that we have two simultaneous equations that describe the forces acting on the
beam we can solve R 1 and R2 •

65 [Nm] == O.15R( + O.85R2

85[Nm] == O.85R1 + O.15R2

(1)

(2)

(3)

We need an equation with only one unknown value in it to be able to calculate that
value. If we subtracted one equation from the other the result would still contain two
unknowns. If equation 1 is multiplied by 0.85/0.15,

0.85
0.15 x (65 [Nm] == O.15R( + O.85R2 )

368.333 [Nm] == O.85R 1 + 4.817R2

Call this equation 3. Notice now that both equation 3 and equation 2 contain a O.lSR 1

term. If we subtract equation 2 from equation 3:

(368.333 [Nm] - 85 [Nm]) == (O.85R I - 0.85R 1) + (4.817R2 - O.15R2 )

283.333 [Nm] == 4.667R2

R, == 283.3 [Nm] == 60.710 Nm
~ 4.67

Now we have a value for R 2 , we can suhstitute this back into equation 1 to find a value
for R I .

65 [Nm] == 0.15R 1 + (O}~5 x 60.710 [Nm])

R == 65 [Nm] - (0.85 x 60.7 [Nm]) == 89.310 Nm
I 0.15

(1)
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We can check these answers by applying them to equation 2 and seeing if the
equation is correct:

85 [Nm] == 0.85R 1 +0.15R2

85 [Nm] == (0.85 x 89.310 [Nm]) + (0.15 x 60.710 [Nm])
85 [Nm] == 75.913 [Nm] + 9.107 [Nm]
85 [Nm] == 85 Nm

(2)

A lever is a simple machine that applies a force to a load by taking advantage of
turning moments. It consists of a rigid bar that can pivot about a fulcrum. A force of
effort is applied at one point and the lever then exerts a force against a load (Figure
2.42). The mechanical advantage is the ratio of the load to the effort. Consider a crow
bar as shown.

Figure 2.42

If an effort of 100 N is applied to the end of the handle, what force is applied to the
load and what is the mechanical advantage?

Clockwise moments == anti-clockwise moments
100 [N] x 1 [m] == load force x 0.1 [m]

therefore load force == 100 [N] x 1 [m] == 1000 N
0.1 [m]

. 1000 [N]
Mechanical advantage == == 10

100 [N]

Notice that mechanical advantage has no units as the newtons cancel.
Another example of levers is in a pair of pliers or tin snips, as shown in Figure 2.43.
Here two levers operate about the same fulcrum. The forces of effort are applied

by squeezing the handle causing one lever to act clockwise and the other anti­
clockwise. The two forces act on the load in opposition to grip or snip the workpiece.

Distributed loads
So far all the loads on the beams have been concentrated, i.e. we have assumed that
they are applied at an exact point on the beam and that the beam has a negligible
mass. When the weight of the beam needs to be considered, or if a force does not act
at a precise point, then we must assume a uniformly distributed load. This is a weight
that has a certain value per unit length of the beam. We assume that this acts at its
mid-point.
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o Example 2.14
The beam shown in Figure 2.44 pivots on a fulcrum at the far left end. A uniformly
distributed mass of weight 25 N/m and length 1.5 m sits at the right end. An upward
force of 20 N acts at the mid-point of the beam. Calculate the turning moment.

The weight of the uniformly distributed mass on the beam is calculated from the
weight per length multiplied by the length:

25 [N/m] x 1.5 [m] = 37.5 N

We must assume that the application point of the distributed load is at its mid-point,
i.e. at 0.75 m from the right end where the arrow is. The force is then treated as any
other.

Clockwise turning moment = 37.5 [N] x 2.25[m] = 84.375 Nm
anti-clockwise turning moment = -(20 [N] x 1.5 [m]) = -30 Nm

turning moment = 84.375 [Nm] - 30 [Nm] = 54.375 Nm

As this is positive, then the resultant turning moment is 54.375 Nm acting clockwise.

Uniformly distributed
load W =25 N/m
of length 1.5 m

I

I
I

I
I.'3m

1.5 mI

I..--------~

I

111I(

Figure 2.44 Crowbar
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Centre ofgravity
We already know that the weight of a body is defined as the force of attraction
between it and the Earth. This definition does not say where the point of attraction is.
Any body can be thought of as being made up of a large number of tiny particles.
Each of these will have their own force of attraction to the Earth (see Figure 2.45).

Figure 2.45

The resultant of all these forces is equal to the gravitational force on the body and it
will act through a single point called the centre of gravity. A body acts as if all of its
mass were concentrated at the centre of gravity. You can position the body anyway
you want but the gravitational force will always act through this point.

Finding the position of the centre ofgravity
Figure 2.46 shows a flat bar of negligible weight. On this bar there are various
different masses, m I, m2 and m«, positioned at distances of XI, X2 and XJ from the left
end of the bar.

We want to balance this bar on one support. For this to be possible, the support
must be placed exactly under the centre of gravity. The resultant gravitational force

E

x

.. x
3 ••

x2
,

.. .1 I

I

x1
I

I,.. .,
I

I

I

I

I

m1
I

I

I

I

I

I

I
I

I ..

Figure 2.46
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will act through the centre of gravity and its equilibrant will balance the bar. If we
find the total sum of all the moments of force about one end of the bar then this will
equal the moment of the equilibrant force about that end.

The resultant gravitational force == mig + m~ + m-g
== gem} + m2 + m3)

If the equilibrant force is represented by E, and this acts at a distance of x from one
end, the moment of this force will be Ex. Calculating moments about the left end:

(mlg)xI + (m2g)x2 + (m3g)x3 == Ex
(mlg)xI + (m2g)x2 + (m3g)x3 == gem} + m2 + m3)x

Th f
(mlg)xI + (m2g)x, + (m3g)x?,ere are x == ....

, gem} + m2 + m3)

The numerator of this equation is the summation of the moments of the gravitational
forces, i.e. the weights, and the denominator is the summation of the weights. The
word summation is represented by the Greek letter ~, pronounced sigma. The
formula above can be written in a general form as:

1 moments of force
x == --------

l force

You will notice that g appears as a multiple in the bottom and top of the equation and
can be cancelled out. This leaves the expression:

1 moments of mass
x == --------

2 mass

If all the masses considered are made of the same material or of materials that have
the same density, since mass == density x volume, the density can be cancelled from
every term, leaving volume in place of mass:

l moments of mass
x == --------

l mass

S
- 1 moments of (density x volume)

0, x - ---------=---------
1 (density x volume)

1 moment of volume
x==--------

1 volume

Now imagine that all the masses not only have the same density, but are also made of
plates or sections that all have the same thickness. Since volume == area x thickness,
we can cancel thickness out of every term as well, leaving only area in place of mass:

1 moment of volume
x == --------

1 volume

_ 1 moment of (area X thickness)
1 (area X thickness)

2 moment of area
2 area
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When only an area or a shape of a plate is considered then the answer x will show
where the centre of gravity is. This would usually be called the 'centre of area'
because area has no mass. The term 'centroid' is used when referring to the centre of
area or centre of volume.

There are some common shapes with standard formulae for finding the centre of
area and centre of gravity.

Centroid position of some common shapes
Rectangle
Point of intersection of the diagonals (Figure 2.47).
Triangle
Point of intersection of the medians. A median is a line from one of the vertices
(corners) to the mid-point of the opposite sides (Figure 2.48).
Right-angled triangle
The centroid position is the same as for any triangle but in this case it is also 1/3up and
1/3 along (Figure 2.49).
Circle
Point of intersection of any diameters (Figure 2.50).
Semi-circle
The distance from the diameter along the centre line, X == (4RI3n), where R is the
radius (Figure 2.51).

Figure 2.47
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Figure 2.49
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Centres ofgravity ofsome common shapes
Cylinder or rod
Mid-point of the axis (Figure 2.52).
Solid cone or pyramid
The distance, X == (h/4) (Figure 2.53).
Solid hemisphere
The distance from the diameter, X == (3/8)R, where R is the radius (Figure 2.54).

\/

Figure 2.52

x

Figure 2.53 Figure 2.54
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o Example 2.15
Find the position of the centroid of the plate shown in Figure 2.55.
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Figure 2.55

As this plate is symmetrical about the horizontal axis, straight away you know that
the centroid C will lie on this line. As we are only considering the plate area and not
the volume or mass, the formula to use is:

~ moment of area
x==-------

~ area

Split the plate up into shapes, so that the areas can be easily calculated. In this case it
is simple to split the plate up into a rectangle and a semi-circle. The next step is to
choose one end of the plate as a reference and calculate the moments of the areas
relative to this. We will choose the left hand end and consider the rectangle first.

Area(rcctanglc) == 80 [mm] X 50 [mmJ == 4000 mrrr'

Moment of area(rcctanglc) == 4000 [rnrrr'] x 25 [mm] == 100000 rnrn'

Notice that the units of moment of area are mm ' which are the same as the units of
volume, because moment of area is the product of three units of length.

Now look at the semi-circle. The area is fairly straightforward:

, _ 1 2 _ n( 40)2 2] _ 2
Area(scmi-circlc) - "2 x nr - -2- [mm - 2513.274 mm

To find the moment of area about the left end, we need to multiply the area by the
distance of the centroid of the semi-circle to the left end. From the standard case the
centroid is ~ of the radius from the straight edge and this needs to be added to the
distance from the semi-circle edge to the left end of the plate:

Moment of area(scmi-circlc) = 2513.274 [rnrrr'] x ((3: x 40) + 50) [mm]

== 168330.365 mrn '
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We can now apply the final formula:

I moment of area 100000 [mml] + 168330.365 [mml]
x=-------

~ area 4 000 [~] + 2513.274 [~]
= 41.197mm

U Example 2.16
A vehicle has a wheelbase of 2.3 m and the distance from the front edge of the car to
the front axle is 0.6 m. The load on the front axle is 3600 N and the load on the rear
axle is 5500 N. Calculate the position of the centre of gravity. See Figure 2.56.

CoG
II. x

Figure 2.56

Rear

One method of solving this would be to take a balance of the moments:

clockwise moments == anti-clockwise moments

If the position of the centre of gravity from the front axle is a, and the total weight of
the vehicle is 3600 N + 5500 N == 9100 N, then taking moments about the front axle:

a X 9100 [N] == 5500 [N] x 2.3 [m]

Therefore a == 5500 [W] x 2.3 [m] == 1.390 m
9100 [)(J

Alternatively, if the distance of the centre of gravity to the front edge of the car is b
then using the front edge of the car as an axis:

b == ~ moments of force
~ force

_ (3600 [~] x 0.6 [m]) + (5500 [P(] x 2.9 [m])
- (3600 f)(] + 5500 [N])

== 1.990m

The distance of the centre of gravity from the front axle:

1.990 [m] - 0.6 [m] == 1.390 m, which agrees with the first method.
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o Example 2.17
Find the position of the centre of gravity of the shaft shown in Figure 2.57.

130 mm

Figure 2.57

Split the shaft up into easy to calculate shapes, i.e. three cylinders. Pick one end,
e.g. the left, and calculate the centre of gravity relative to this. We could use the
formula:

~ moments of massx=--------
~ mass

but if we assume that the shaft is made of all the same material then the density will be
the same for all the shaft and so we can use the formula:

~ moment of volume-x = --------
~ volume

We can use the formula v = ;rc:2 X I or ;rcr2 X I for for all three cylinders.

_ n(50)2 _ 3 3
Volume(cylindcr I) - -4- x 80 - 157.080 x 10 mm

Now we can calculate the moment of volume about the left end:

Moment of volume(cylindcrl) = 157.080 x 103 [mrn '] x 40 [mm]

= 6283.185 x 103 mm"

_n(130)2 _ 3 3
Volume(cylindcr2) -. 4 x 130 - 1725.520 x 10 [mm]

1 1 ( 130)Moment of volume(cylindCr2) = 1725.520 x 10- [mm'] x 80 +"2 [mm]

= 250200.366 x 103 mrn"

n(50)2
Volume(cylindCr3) = -4- x 40 = 78.540 X 103 mrn '
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Moment of vo!ume(cylinder3) = 78.540 x 103[mm3] x (80 + 130 + ~) [mm]

== 18 064.158 x 103 mm"

== 18064.158 x 103 rnm"

~ moment of volume
x==--------

I volume

(18064.158 + 250200.366 + 6283.185) x 103 [mm 4
]x - ~-------------~-~--

- (157.080 + 1725.520 + 78.540) x 103 [mrrr']

_ 274547.7 x 103 [mm~]
- 1961.14 x 103 [~]

== 139.994mm

So the position of the centre of gravity is 140 mm from the left end.

I 2.4 Frameworks

Bow's notation
Bow's notation is a method of labelling forces in space diagrams and force diagrams.
In a space diagram the spaces are labelled with capital letters, as shown in Figure
2.58.

Each force can then be referred to by the letters of the two spaces either side of the
force (Figures 2.59 and 2.60).

A

B Force AS

Figure 2.58

C Figure 2.59

Force BC

Figure 2.60

The force is represented on the force diagram by a vector labelled by the
corresponding lower case letters on the ends of the vectors, as shown in Figure 2.61.

This method simplifies problems when dealing with a whole system of forces. The
lettering on the space diagram can be clockwise or anti-clockwise but it is advisable to
stick to one direction.
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b

a

Figure 2.61

Framed structures

c

A framed structure is a structure built of straight bars joined at the ends. The subject
of frameworks is concerned with applying the principles of equilibrium of forces, and
stress and strain, to structures to measure their internal forces. Then the material
dimensions required can be calculated. It is assumed that the ends are joined by
frictionless pins, so that each bar is in direct tension or compression. In practice the
bars may be actually be riveted or welded, but this assumption simplifies the theory.

A bar in compression is called a strut. The compressive force is resisted by an
internal force that 'pushes' towards the ends.

A bar in tension is called a tie and the internal resisting force 'pulls' the ends. It is
assumed that the force acting in any bar acts in the same physical direction as that
bar.

Framed structures are sometimes called light frameworks, as the weight of each
member is a much lower force than the force that the member carries. Frameworks
are generally made up of triangular shaped frames: take a look at bridges, roofs and
cranes. In order that an engineer can design the frame, the forces that act on each
frame member must be known.

So far the force systems we have looked at have mainly considered forces that meet
at one particular node (the crane head of the jib crane and the gudgeon pin of the
reciprocating engine mechanism). In framed structures, the forces that meet at every
node are considered. Some of these forces are internal and others are external such
as loads and reactions. If the forces that meet at any node of a framework are
considered, we have a force system in equilibrium and a closed vector diagram can be
drawn for that node. We will only consider systems of co-planar forces in this
chapter, i.e. frameworks in one plane

To recap, if a body is under the action of a system of co-planar forces and is in
equilibrium then:

• the algebraic sum of the components of the forces in any two directions must be
zero, implying that there is no linear acceleration

• the algebraic sum of the moments of all the forces about any node must be zero,
implying that there is no angular acceleration.
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To make provision for expansion due to temperature changes, one end of the
framework is usually supported by a hinge and the other by rollers. The reaction of a
roller support is always assumed to be at right angles to the surface in contact, as
shown in Figure 2.62.

Contact surface..---------

Reaction

Figure 2.62

The reaction of the hinge can be in any direction but if the external loads are
vertical and the roller reactions are vertical then the hinge reactions will also be
vertical. Framed structure problems can be solved by the following vector diagram
methods if the framework is only loaded at the joints.

Space diagrams are based on the framework layout.

Q Example 2.18
Consider a roof truss. A load of W is supported at the apex. The two reaction
supports are

W
2

Draw the vector diagram for any value of W.

Using Bow's notation we label all the spaces with capital letters, A,B,C and D for
example (Figure 2.63). We will consider the letters in a clockwise direction. If each
node is considered in turn we will have three separate vector diagrams.

w

A

w
2"

Figure 2.63

o

c

8

w
2
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a

w
2

Node ADC

d c

Figure 2.64 Node ADC

Consider node ADC (Figure 2.64). The direction in which the forces act can be
logically determined. The reaction CA must act vertically upwards. The vertical
component of AD must act downwards. AD has a horizontal component acting to
the left. Therefore to keep the system in equilibrium the force of DC must act
horizontally to the right. Similarly for node .ABD (Figure 2.65) and node BCD
(Figure 2.66).

a

Node ABO
d

b

Figure 2.65 Node ABO

c
8

d~--r------------.

w
2

Node BCD

b

Figure 2.66 Node BCD

In anyone member, the arrows on the space diagram are in opposite directions, as
each member is in either direct compression or tension. Because of this, if we want to
combine the above three diagrams then the arrows are omitted as they would be in
opposition to each other (Figure 2.67).
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a

w
"2

(]

(]

w
"2

b
Figure 2.67 Combined diagram

The combined diagram is really diagrams BCD and ADC superimposed on ABD.
After a little practice you will not usually need to draw the vector diagram for each
node: you will be able to go straight into the combined vector diagram for the whole
structure.

o Example 2.19
Draw the complete vector diagram for the framework shown in Figure 2.68.

7 kN 5 kN

Figure 2.68
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To find R1 and R2 :

About R 1

clockwise moments = anti-clockwise moments

(7 [kN] x 1 [m]) + (5 [kN] x 3 [m]) = R2 x 4 [m]

22 = 4 R2

22 [kNJrl]Therefore u, = 4 -Ji( = 5.5 kN

About R2

clockwise moments = anti-clockwise moments

R} x 4 [m] = (7 [kN] x 3 [m]) + (5 [kN] x 1 [m])

26 = 4R}

26 [kNm1Therefore R] = 4 -;;-J = 6.5 kN

Select a suitable scale and draw the space diagram. Show the direction of the external
forces. Use Bow's notation to label the space between the forces.

Look at Figure 2.69. All the external forces act vertically. Draw these first. The
force ab is 7 kN and acts downwards. The force be is 5 kN and acts downwards. The
reaction force CD, 5.5 kN, acts upwards from c to d. So far, this is just a straight line
but the points a, d, band c are known. The adjoining spaces to E are A and D. The
points a and d are already known on the force diagram. Draw a line parallel to AE
through a. Draw a line parallel to ED through point d. The intersection gives the
point e. The line ed represents the force ED and the line ae represents the force AE.

B

3.5 t

A <, F C
0 ~ 6l

~ '<5' (() '<Y". ,;' Cy ,;'

E G

3.75 s 3.10 s

16
.
5

D 15.5

Figure 2.69 All values are in kilonewtons (kN): t = tie; s = strut
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Through e draw ef parallel to EF. Through point b draw bf parallel to BF. The
intersection gives point f.

Through c draw cg parallel to CG. Through d draw line dg parallel to DG. The
intersection gives point g. The line gf can then be drawn parallel to GF (Figure 2.70).

a

e c.s ~d

b

c

Figure 2.70

Measure the lengths of the lines on the force diagram to establish the various
forces. The direction of the forces can be obtained by considering each node in turn
and working clockwise around the node. For example, for node ABFE, see Figure
2.71.

a

e

b

Figure 2.71

Each node forms a closed vector diagram, but the arrow direction can be
determined by following the appropriate force around the combined diagram. You
will then have the magnitude of the forces in all members of the framework and will
know whether they are in tension or compression. Then you can indicate the
magnitude and nature of the forces as shown on the space diagram.
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Method ofsections
The method of sections is used when we just want to find the forces in a particular
member rather than all the members of a framed structure. The framework is imagined
to be divided into two parts, the dividing line cutting the member under investi­
gation. As frameworks are generally made up of triangular-shaped frames, then the
dividing line also cuts two other members. The part of the framed structure to one
side of the dividing line will then only remain in equilibrium if three forces are added
that are normally provided by the rest of the structure. The value of the unknown
force of the member can then be found by taking moments about the intersection of
the other two unknown forces. The other two unknown forces have a zero moment
about a point as they pass through it, leaving one unknown in a moment equation.

o Example 2.20
Consider the last example. Find the forces in members ED and BF using methods of
sections and check your answers with the previous force diagram.

To find the force in ED imagine the structure divided as in Figure 2.72.

7 kN

h

6.5kN

Figure 2.72

z
~_----JI ~I

1 1
1 1

1 1
1

If\Y 1
1 . \ 1

1 1
1 1

: 1 1
I 1

I: x 1

1 j--71 k 2m

The left part of the structure will remain in equilibrium if three forces are added, x,
y and z, previously provided by the members of the structure that the line divides.
The left part of the structure is therefore under the influence of five forces: two
known (7 kN and 6.5 kN) and three unknown (x, y and z) forces. The force x is the
force in ED that we need to find. The other two unknown forces intersect at point ion
the diagram. The value of x can be found by taking moments about the intersection.

clockwise moments == anti-clockwise moments

6.5 [kN] x hi == (x x ij)
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To find length ij,

sin 60° == ~
2

Therefore ij == sin 60° x 2 == 1.732 m

length hi = 2 [m] = 1 m
2

6.5 [kN] x 1 [m] == (x x 1.732 [m])

6.5 [kNmJTherefore x == -- -- == 3.75 kN
1.732 m

To find the force in BF, z ; take moments about the intersection of forces x and y.

clockwise moments == anti-clockwise moments

6.5 [kN] x 2 [m] == (7 [kN] x 1 [m]) + (z x 1.732 [m])

13 [kNm]== 7 [kNm] + 1.732z

(13 - 7) [kNmJTherefore z == -- == 3.5 kN
1.732 m

o Example 2.21
Find the force in member CD in Figure 2.73 using the method of sections.

E G J

A E E

{
D F H

1 m 1 m 1 m

1'1\ C

l10kN

B

13.33 kN'16.66 kN

Figure 2.73

Take moments about the intersection of x and y to find z (Figure 2.74).

clockwise moments == anti-clockwise moments

(6.66 [kN] x 0) == (z x 1 [m])

Therefore z = (6.6~ x 0) [k~m J= 0
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k ~---------4 X

!S.SSkN
Figure 2.74

The force in member DC is therefore zero. A member of a framed structure with a
zero force acting in it is called a redundant member. A redundant member provides
no support to the loaded structure.

Problems 2
1. A car has a mass of 1600 kg. What is the weight on each tyre, assuming that these

are equal?
2. The dimensions of a fuel tank are 0.5 m by 0.3 m by 0.35 m. What mass of fuel

does this hold of relative density 0.75?
3. If the mass of an engine cylinder head is 50 Ib, what is its weight? If the density of

the material is 7900 kg/rn', then what volume material is required to make the
cylinder head? Neglect any extra material that would be machined off during
manufacture.

4. A truck stands at rest. A person with a mass of 75 kg gets into the truck, goes to
fill up with 10 gallons of fuel with a relative density of 0.9 and then loads
0.25 tonne of scrap steel on the back. What is the increase in weight of the
vehicle, neglecting any fuel used in the journey?

5. The weight of a milk float reduces by 1716.75 N during an hour of its morning
round. If all the bottles are 0.5litres in size then how many bottles are delivered
during the hour? Assume the density of the milk to be the same as water and that
the bottles are made of plastic of negligible weight.

6. A car with a mass of 2822 Ib has a flat battery. A person with a mass of 75 kg gets
into the car to steer it and two people apply a force of 400 N to the back of the car
to bump start it. What acceleration does the car have, assuming friction to be
negligible?

7. A car stands at rest on a cold winter morning. A man weighing 90 kg jumps into
the car and drives off. A few minutes later the radiator bursts and he realises that
he's forgotten to put antifreeze into the coolant system. 4.2litres of water leak
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out of the radiator. What is the change in weight of the car from before the driver
got in?

8. The bore of a four cylinder petrol engine is 100 mm and the stroke is 86 mm.
What is the capacity of the engine?

9. A piston has a mass of 0.75 kg. The force on the gudgeon pin at an instant in time
is 650 N. Calculate the acceleration of the piston.

10. A tank holds 0.07 rrr' of oil of relative density 0.8. What volume of petrol would
this tank hold of relative density O. 75?

11. A four wheel vehicle has a mass of 1500 kg. Find the force that acts between the
road and tyres if the force on each tyre is equal.

12. A 27 kN force acts at an angle of 27° to the horizontal. Find the horizontal and
vertical components.

13. A car is towed by a rope. The force exerted by the rope is 1000 kN but is at an
angle of 10°to the forward direction of the car. What is the effective force pulling
the car forward?

14. A motor vehicle has a mass of 1350 kg and rests on a slope of 10°. Calculate the
normal reaction between the road and the tyres. What is the force parallel to the
road surface to keep the car stationary?

15. An engine of mass 200 kg is suspended by a chain from an overhead crane.
Someone leans on the engine and exerts a horizontal force. The crane takes up a
new position 30° to the vertical. What are the forces on the chain and the
horizontal force?

16. A car is pushed by a force of 1000 N. The mass of the car is 900 kg. Find the
resultant force of the weight and the 'push'.

17. A system of co-planar forces acts on a body. The equilibrant force is also applied
to the body. Why does the body not move?

18. A wall crane has a jib AB hinged at the wall at A and is supported by a tie CB.
The angle between the jib and the wall is 140°and the angle between the tie and
the wall is 105°. A mass of 1020 kg issupported from the jib at B. Determine what
forces act in the tie CB and the jib AB. Assume g = 9.81 m/s ',
Hint: Start by drawing the space diagram. Draw a vertical line to represent the
wall and label it AC. Next draw a line representing the jib upwards to the right at
an angle of 140° to AC and label it AB. Then draw a line representing the tie
above this at an angle of 105°to AC. In this case, the scale of the space diagram is
not important because you do not need to measure any angles or positions on the
space diagram to use on the force diagram. Calculate the gravitational force on
the mass using mg and draw a line vertically down from a to represent this. Put
information that you already know on the diagram in an appropriate place, such
as the angles and the weight of the mass. You now have a clear picture of the
situation and can draw the force diagram. Select a scale that makes the weight
mg about half the length of your paper. Draw the force mgvertically on the lower
left part of your paper. Draw a line from the bottom of this at an angle of 140° .
Take it right across your paper because you do not yet know how long it needs to
be. Now you can draw the final line in from the top of the gravitational force line
at an angle of 105°. Take this line right across the paper. You should now have
the force triangle and can measure the force lines of the jib and tie. The
gravitational force on the mass, mg, equals 10.006 kN.
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19. The piston of a reciprocating engine exerts a force of 10 kN at the top of the
piston when the crank is 35°past the top dead centre (TDC). If the stroke of the
piston is ,100 mm and the length of the connecting rod is 165 mm, find the guide
force and the force in the connecting rod.
Hint: Start by drawing a space diagram to scale. You know the length of the
connecting rod. The length of the crank can be found from the stroke length. If
the crank is drawn at an angle of 35°, then the angle between the connecting rod
and the vertical can be measured. This angle can then be used to draw the force
diagram.

20. A petrol engine has a connecting rod 200 mm long and a stroke of 120 mm. When
the crank is 40°past TDC the force on the piston is 5 kN. Calculate the force on
the connecting rod, the guide force, and the angle between the connecting rod
and the line of the piston stroke.

21. A torque of 33.75 Nm is applied to a socket and ratchet. The length of the handle
is 225 mm. If the handle is changed for a longer one of length 350 mm and the
same force is applied to the end of the handle, calculate the new torque
produced.

22. A steel bar is used as a lever to apply a load force. The bar is 1.5 m long. The
pivot is positioned 0.3 m from the load end of the bar. What effort is required to
apply a load force of 700 N?

23. A bar is 500 mm long and carries loads of 20 N, 55 Nand 80 N at distances of
100 mm, 250 mm and 450 mm respectively from the left end. Neglect the weight
of the bar and calculate the position of a single support placed so that the bar
would balance.

24. In an overhead valve engine, the push rod exerts a force of 300 N on the rocker.
The distance from the fulcrum to the push rod centre is 70 mm. The distance
from the fulcrum to the valve centre is 65 mm. Calculate the force on the valve at
this instant.

25. A vehicle has a wheel base of 3.9 m. The load on the front axle is 8000 N and the
load on the rear axle is 9500 N. Find the centre of gravity.

26. A vehicle has a total weight of 12 900 N and the centre of gravity is 1.020 m from
the rear axle. The length of the wheel base is 2.8 m. If the front wheels are to be
lifted clear of the ground by a hydraulic jack placed under the front axle, what
force must the jack exert?

27. A commercial vehicle has a wheel base of 3.5 m. The load on the front axle is
9000 N and the load on the rear axle is 12000 N. A load of 2000 N is placed in the
vehicle at a distance of 2.9 m from the front axle. By how far does the centre of
gravity move when the extra load is added?

28. A beam is 1.25 m long. However, it is not of constant section. 500 mm of the
beam from the left end the way it is positioned acts as a uniformly distributed
load of 120 N/m. The rest of the beam acts as a uniformly distributed load of
70 N/m. Calculate the positionof the centre of gravity.

29. A steel shaft consists of three sections, all concentric, i.e. all have the same axis,
and made of the same steel throughout. As it is positioned the left section is
90 mm long and has a diameter of 65 mrn; the middle section is 65 mm long and
has a diameter of 85 mm; and the right end section is 80 mm long and has a
diameter of 60 mm. Find the position of the centre of gravity.
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30. A plate measures 1.1 m long by 0.75 m wide. A hole of 0.1 m diameter is drilled
on the lengthways centre line 0.3 m from the left end. Calculate how far the
centre of area moves when the hole is drilled.
Hint: As the plate is symmetrical about the lengthways centre line, then youonly
need to consider the position of the centre of area from one edge, x, i.e. in one
direction. Consider that the hole drilled has a negative area and a negative
moment of area and subtract these values from those of the rest of the plate.



3 Distortion of materials

3.1 Stress and strain, and strength of materials

Stress and strain
Stress and strain are common everyday terms but in engineering they have specific
meanings. Stress and strain occur in a material when a load is applied and they are
closely related. A load is any force acting on a body, in tension or compression.
Every component of a vehicle and engine has many loads acting on it. Besides the
component's own weight, there are also loads such as centrifugal forces, frictional
forces and drive forces. The definition of stress is 'the internal resistance set up in a
material when its shape is changed by the application of an external force'. This is not
easy to understand on first reading but you will get a clearer picture of it as you work
through this section.

There are three different types of stress to look at: compressive stress, tensile stress
and shear stress. For the moment we'll consider compression and tension.

When a load tends to squash or shorten material, it is said to be in compression
(Figure 3.1). When a load tries to stretch a material it is said to be in tension (Figure
3.2). Both these loads produce a type of stress called direct stress. It is measured as
the force applied per unit of cross-sectional area. The cross-sectional area must
always be taken perpendicular to the line of action of the force. The quantity symbol
for stress is G. Its units are derived from force per unit area and so are N/m 2

, the same
as the units of pressure.

)

~---~-
4(

Compressive

~ i
force

x
Figure 3.1

I.
(

I :
~

x

Figure 3.2
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.. tensile force F [ N ]
DIrect tensile stress, at = . = -A 2

cross-sectional area m

. . compressive force F [ N ]
DIrect compressIve stress, ac = . = - 2

cross-sectional area A m

When a material is under direct stress like this, a change in shape takes place. A
compressive force will tend to contract a material in the direction of the force and
make it expand perpendicular to the direction of the force, i.e. the force will make
the material shorter and fatter. A tensile stress will tend to expand the material in the
direction of the force and contract it perpendicular to the force, i.e. the stress will
make the material longer and thinner . It is this change of shape that is called strain.

Linear strain is a measure of the deformation that takes place when a material is
loaded in compression or tension . It is the change of length per unit length measured
in the direction that the force acts. The quantity symbol of linear strain is E and has no
units, as length is divided by length.

L
. . change of length x
Inear strain, E = = -

original length I

where x is the change in length and I is the original length. The units of length used for
x and I do not matter, so long as they are the same.

When a material is under stress, a corresponding strain must occur. If the load is
removed and the material returns to its original shape (the strain is totally removed),
then the material is said to be perfectly elastic. This property of a material is known as
elasticity. All of the calculations we will do are based on the assumption that a
material remains perfectly elastic and obeys Hooke's law.

Hooke's law states that: 'stress is directly proportional to the strain produced,
provided that the limit of proportionality is not exceeded'. We'll come back to the
limit of proportionality later. For the moment remember that you can assume that
stress is proportional to strain so long as the force is not too great.

As stress ex:: strain, then stress = strain x constant

stress
and constant = --.­

straIn

This constant is the same value for any given material and the relationship is useful
for calculations. For direct stresses, it is called Young's modulus of elasticity and
usually has the quantity symbol E, so:

direct stress, .... . = Young s modulus of elasticity
dIrect strain

C! = E
E

Young's modulus of elasticity is a measure of the resistance a material has to tensile
and compressive forces. The higher the value of this modulus E the less a material
will extend when a given load is applied. Table 3. 1 shows some typical values of E for
some common engineering materials.
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Table 3.1 Typical values of Young's
modulus of elasticity

o Example 3.1

Material

Mild steel
Phosphor bronze
Grey cast iron
Brass

210
90

117
100

F
a=-

A

A mild steel engine bolt when correctly tightened provides a tensile load of 3 kN.
The bolt is 300 mm long and has a diameter of 15 mm. Calculate the stress on
the material. How much will the bolt extend? For mild steel E = 200 x
lOY N/m2 = 200 GN/m2

.

To calculate the stress we need to know the force and the cross-sectional area of the
bolt.

Area A = nd
2

= ne15 x 10-
3

) 2 [m2l
'4 4

= 176.715 X 10-6 m2

3 x 10
3

[M]
= 176.715 x 10-6 m2

= 16.976 X 10
6[;2]

= 16.976 MN/m 2

As E= xII, then x = E X I. We know I, the original length, so if we can calculate Ewe
can find out x, the extension of the bolt.

As E = ole, then E = olE, We can use this formula for E in the formula for x and
then be able to calculate the extension.

x=Ex/=~xI
E

16.976 X 10
6 [X][¢2]

= 200 X 109 X 300 X 103 ¢2 ~ [m]

We can cancel out the lOx multiples next:

106 x 10-3
_ 103

_ 1 _ -6
---------10

109 lOY 106

Thus 16.976 x 10-
6

x 300 [m] = 25.464 x 10-6 m
200

= 25.564 JLrn or 0.0255 rnrn
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Tensile tests
Tensile tests are carried out to find out how a material behaves under different tensile
loads. A standard test is used so that comparisons can be made. A test piece of a
material of dimensions fixed by a British Standard Specification is gradually pulled by
a testing machine until it breaks. At frequent intervals during the test, the length and
corresponding load are recorded. A graph can then be drawn, called a load­
extension diagram, showing the characteristics of the material. Each metal has a
characteristic graph. The shape of this will depend also on its composition. A typical
diagram for mild steel looks like that shown in Figure 3.3.

B
A

Load

Figure 3.3

c

Extension

o E

The important points on this diagram are as follows:

A is the limit of proportionality that was mentioned earlier. Up to this point Hooke's
law applies. The line to this point is straight and so the basic formula can be
applied.

B is the elastic limit. If the material is stretched any more than this, it will not return
to its original dimensions.

C is the yield point, where a sudden increase in length occurs without any increase in
load.

D is the ultimate load. This is the maximum load recorded during the test.
E is the breaking point. Notice that the load required for this is less than the ultimate

load because the test piece starts to narr-ow at the place where it will break.

Not all materials have the linear relationship up to the limit of proportionality and for
these materials Hooke's law does not apply. Fortunately for us, steels do exhibit this
linearity and the formulae above can be used.

There are various stresses that we need to define for the test:

. . maximum load
ultimate tensile stress == ------

original CSA

where CSA is the cross-sectional area. (Ultimate tensile stress is sometimes called
tensile strength.)
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. . load at fracture
nominal breaking stress = -------

original CSA

lb ki load at fracture
rea rea mg stress = C

SA at fracture

The two different values for breaking stress are used because the cross-sectional area
at fracture is less than the original so the real breaking stress is greater than the
nominal.

The factor of safety is an important consideration for engineering design. It is the
ratio of the ultimate stress of a material to the safe allowable working stress to which
it may be subjected.

F f f
ultimate stress

actor 0 sa ety = -------
safe working stress

The safe working stress is the maximum permissible stress for any component. This is
decided by considering a number of factors, as follows:

1 The type and condition of the material; e.g. are there likely to be any weaknesses.
or flaws?

2 The effect of wear and corrosion.
3 Whether the load is a dead weight, or one gradually applied or one suddenly

applied.
4 The effects of failure.
S How well the component is manufactured.

The factor of safety may vary from about 3 for simple static loads to about 20 or more
for complex shock loads, where the effects of failure may be disastrous.

Two other definitions that are useful factors are percentage elongation and
percentage reduction in area:

I
. length at fracture - original length 1000/

percentage e ongation = x /0

original length

.. original CSA - CSA at fracture
percentage reduction In area = x 100%

original CSA

o Example 3.2
A tie bar 5 m long has a CSA of 415 mrn/ and is designed to support an axial load of
50 kN. If the ultimate tensile strength for the material is 500 MN/m2 and
E = 200 GN/m2

, calculate

(a) the stress in the bar
(b) the strain
(c) the factor of safety at this load.

a = t: = 50 X 10
3

[~] X 106 [mm2
]

A 415 JB1fi2 m2

= 120.482 x 106 [N/m2
] = 120.482 MN/m2
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a a
As E = - then f = -

f' E

e = 120.482 X 10
6 [liJ[nt-J == 0.602 X 10-3

200 X 109 u(2 T>l'

f f f
ultimate stress

actor 0 sa ety = -------
safe working stress

= 500 [MNJ[~J == 4 1
120.482 uf MN ·

Resilience
The work done by a force can be calculated from the product of the average force
applied and the distance the force moves through. As we have seen, if a direct force is
applied to a material then the material deforms. Work is done to strain the material
and the energy is then stored in the material, provided that the elastic limit is not
exceeded. The energy stored is called resilience. This resilience can be estimated by
calculating the work done in straining the material. Consider a load gradually applied
to a material from 0 to F N. The average load is therefore

If the deformation is measured by x m, (compression or tension), then the work done
to strain the material is:

resilience = force x distance

F 1
="2[N] xx[m] =2 Fx [Nm]

M . Faximum stress, a = A

then F = a x A

X
E==-

I

then x == EX/

Resilience = ~ Fx [Nm]

1
==-XaXAXEX/

2

As E == C!
E

a
then E == E
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theref~re resilience = ~ x a X A x !!- x I
2 £

As volume, V = A x I

h ·1· elvt en reSI lence = -
2£

Check units: [(;)1[mj][~] = [Nm]

o Example 3.3
Calculate the resilience in ExarnpleLZ.

.1. elvreSI lence = -
2£

= (120.482 x 10
6

) x 415 X 10-
6

x 5 [(~t][tif][¢]
2 x 200 X 109 ~ J>{

= 75.301 Nm = 75.301 J

Compound bars
A compound bar is any structural component made of two or more materials
arranged in parallel, rigidly connected together at the ends with an axial load. Think
of a rod and a sleeve of the same length but of different materials (Figure 3.4). This
complicates things a bit so we need to adapt the stress and strain formulae.

Sleeve

Figure 3.4 Compound bar

Consider a comprehensive load applied to this compound bar. The load is shared
between the rod and the sleeve. The sum of the loads carried by the rod and sleeve
mustequal the total applied load.

F
As o = - then F == oA. For the compound bar then:

A

Ftotal = Ftubc + Fsleeve

therefore Ftotal = 0tubeA tube + 0sleeveAslccve

Since the rod and the sleeve are initially the same length and they will shorten by the
same amount under the load then their strains are equal:
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xI = Esleeve == Erod

As E == OlE while the loading is within the limit of proportionality then E == ol E, and
so:

0slecve == Orad

Eslccve E rod

Therefore °slccvc == Eslccvc

'Orod E ro d

The stresses induced are in the same ratio as the values of the Young's modulus of
elasticity. The above formulae will enable the different stresses in compound bars to
be calculated. They will also apply to tensile loads.

o Example 3.4
A steel bar and brass bar each have a length of 500 mm and a rectangular
cross-section 13 mm by 12.5 mm. They arc bonded together to form a composite bar
500 mm long with a cross-section 13 mm by 25 mm, so that each section measures
13 mm by 12.5 mm. The bar is suspended vertically and axially loaded in tension by a
mass of 1.5 tonne. Calculate (a) the stress in each material, and (b) the extension.

The values of E for the steel and brass are 207 GN/m 2 and 110 GN/m2 respectively.

CSA of each bar = 13 x 12.5 x 10-6 [m2
]

== 162.5 X 10-6 [m2l
0sA s + 0hAh == F == mg

os(162.5 x 10-6
) + 0 0 (162.5 x 10-6

) = 1.5 X 1{}' x 9.81 [k~2m]

== 14715N (1)

This has two unknown values, Os and 0h' so we need another formula to solve it. Since
the strains are equal in each bar,

and so Os = Es

0h t;

(2)

Now we can substitute equation 2 into equation 1 for a., leaving only one unknown
value 0h:

(1.882 oh)(162.5 X 10-6
) + oh(162.5 x 10-6

) == 14 715 N

0h(305.825 + 162.5) x 10-6 == 14715 N
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o = 14715 [N] = 31.420 X 106 [~]
b 468.325 X 16-6 [m2

] m2

as=1.882 ab =1.882 x 31.420 [~~]= 59.133 MN/m2

This value for ascould now be substituted into equation 1 to check the calculation if
required.

To calculate the extension, we need to know the strain. As the strain for each
material is the same, we can calculate this using values for either the steel or the
brass.

As E = ~ then x = E X f.
f

x = 285.667 X 10-6 X 0.5 [m] = 142.833 X 10-6 m

You can check this calculation using values from the brass rather than the steel.

E = °b = 31.420 X 10
6 [:N][gt] = 285.686

r; 110 x 109
1)1'2 ~

Shear stress and strain
So far we have looked at direct stresses (i.e. those stresses where the area being
stressed lies at right angles to the direction of the line of force), and the materials
either contract or extend. However, materials can deform in other ways.

Shear stress
The applied load may not consist of two forces acting in a straight line but instead of
two forces that are equal and opposite and parallel that do not act in a straight line.
Look at Figure 3.5.

F
<,

A

F
./

Figure 3.5

8

As these two forces F are not direct, there will be a tendency for one part of the
material to slide over or shear from the other part. The cross-sectional area under



therefore A == T X A
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shear stress is measured parallel to the line of action of the forces, e.g. at AB. The
quantity symbol fo~ shear stress is T and the units are the same as direct stress: N/m 2

.

A verage shear stress, T = ~ [~2 ]

o Example 3.5
A steel pivot bolt in a suspension arrangement has a maximum allowable shear stress
of 60 MN/m2 and a diameter of 25 mrn. Find the maximum shear force that can be
applied to the pivot.

F
T ==-

A

nd' n(25 x 10-3) 2 n x 252 x 10-6

Area == - == == ---.---
444

[
N ] n(25)2 [ m2

]Maximum force, F = 60 X 106 r,I- x -4- [¢] x 10-6 I)Hf'P

== 29.452 X 103 N == 29.452 kN

Shear strain
When shear stresses exist, the usual method of measuring the deformation, i.e. linear
strain, cannot be applied and an alternative is required. This is called shear strain.
Think of the block above subject to shear stress (Figure 3.6). As the load is applied, a
deformation takes place as follows.

S S' C C' F
<,

I
:;7'

I
I I
I I

I I
-----I I

I I
I I

a ' I
J I
I I

I I
I I

I I
I I

I I

F I I
./
<,

A 0

Figure 3.6

The square face ABCD is deformed to a parallelogram AB'C'D. Shear strain is
then defined as the movement of the faces in the direction of the force divided by the
distance between the faces.

° BB' diShear strain == -- == tan y == y ra tans
AB
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where y is the angular distortion of the vertical faces. When an angle is very small
tan y :::::: y radians. (See page 104: 3600 = 2n radians). Again there are no units of
shear strain . You can think of strain as an angle of twist. Shearing is often associated
with torques that tend to twist the material. Hooke's law still applies to shear stress
and the relationship between shear stress and strain is called the modulus of rigidity
and has the quantity symbol G.

G=~
y

You can compare this to Young's modulus of elasticity. The values are different but
tend to have the same sort of magnitude, e.g. for mild steel E = 210 [GN/m2

] and
G = 81 [GN/m2

] . Typical values of G for different engineering materials are shown
in Table 3.2.

Table 3.2 Typical values for the modulus
of rigidity

o Example 3.6

Material

Aluminium
Brass
Copper
Steel

25
37.5
50
80

A nickel steel gudgeon pin in an engine piston has an outside diameter of 27 mm and
an inside diameter of 20 mm. The force on the piston is 8 kN. The modulus of rigidity
for the steel is 90 GN/m2

. Calculate the stress and strain in the material.

F
T ==-

A

! dl (I dl)nl): n ~ n D~ - -
A =----=----

444

F 8 X 103 [N]
T - A - (JC«27 X 10-3)24- (20 X 1O-3)2))[rn2]

= 30.960 X 10
6[:2]

T r
As G == - then y == -

y G

= I: == 30.960 X 10
6

[~] = 344 X 10-6

Y G 90XI0t)[~2]
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3.2 Bending of beams

Introduction
A beam is a length of rigid material, usually supported in a horizontal position
carrying vertical loads. These vertical loads tend to do two things: bend the beam,
and shear the beam. If the beam is bent, direct tensile and compressive stresses are
caused, as you will see. When designing a beam, in order to calculate the material
dimensions, both the direct stresses caused by the bending and the shear forces need
to be considered. The theory of bending enables us to calculate the stresses so that
the beam can be designed to carry these loads.

Many components of a vehicle have forces acting at right angles, such as axles and
sections of the chassis, and can be considered as beams. Bending theory can then be
applied. A vehicle chassis has to resist:

1. the weight of the vehicle, passengers and load
2. horizontal forces acting on the end of the chassis due to road shocks; these tend to

distort the rectangular frame shape to a parallelogram
3. vertical forces acting upwards from the wheels due to road shocks; these tend to

twist the frame and cause torsional distortion.

A chassis frame must have a cross-section that resists bending and distortion. The
three usual types are channel, tubular or box, as shown in Figure 3.7.

Channel Tubular Box

Figure 3.7 Chassis frame sections

The first part of this section looks at finding the magnitude of the bending moments
and shear forces that a beam is subject to. The second part looks at the bending
formula that is used to calculate the direct stresses and deflections caused by the
bending moment. In all cases the forces acting on the beam are assumed to be in
equilibrium; i.e. the algebraic sum of all horizontal and vertical forces acting on a
beam is zero, and the algebraic sum of all moments of the forces is zero.

Shearing force and bending moments
Bending moment diagrams are used to find the bending moments that a beam is
subject to along its length. Bending moments are simply moments of a force that tend
to bend the beam. Shear force diagrams show the shear force that a beam is subject to
along its length. In order to design a beam it is important to know the bending
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moment and shear force values at any section. You will sometimes find beams such as
chassis members that vary in dimension along their length to stand the different
forces they are subject to.

Shear forces

x

The definition of a shear force at any point along the length of a beam is the resultant
vertical force of all the vertical forces acting to one side of the beam section. Look at
Figure 3.8.

3 kN 5 kN

4.4 kN

\V \V
/1\ I

2m I /\
3m ./II( 'Ii( ~

5m 5m.... .111( ~

3.6 kN

Figure 3.8 x

Take the section of the beam XX shown. For that portion of the beam to the right
of the section,

resultant force == 5 [kN] ~ + 4.4 [kN] l' == 0.6 kN ~ .

For that portion of the beam to the left of the section,

resultant force == 3.6 [kN] l' + 3 [kN] ~ == 0.6 kN l' .
The section XX is therefore subject to a vertical shearing force of 0.6 kN. This can be
done for any section along the length of the beam.

A beam can be sheared in two ways: positive shear or negative shear (Figure 3.9).
W is the resultant force acting on one side of the section.

X
Positive shear

X
Negative shear

Figure 3.9
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Bending moments
The definition of 'a bending moment at any section along the length of a beam, is the
resultant moment about that section of all the forces acting to one side of that section.
Go back to Figure 3.8. Consider the section XX again. For that portion of the beam
to the right of the section,

resultant moment = (5 [kN] x 2 [m]) - (4.4 [kN] x 5 [m]) = -12 kNm

The negative sign indicates anti-clockwise. For that portion of the beam to the left of
the section,

resultant moment = (3.6 [kN] x 5 [m]) - (3 [kN x 2 [m]) = 12 kNm

The section XX is therefore subject to a bending moment of 12 kNm. Two equal and
opposite moments like this make a bending moment. The magnitude can be found by
calculating the sum of the bending moments to either side of the section. A beam can
be bent in two ways: sagging (positive) and hogging (negative) (Figure 3.10). M is the
resultant moment due to the forces acting on one side of the section.

M

Figure 3.10

y

y

Sagging

M

M

y

y

Hogging

M

Moment ofresistance
When the beam is bent, it stays in a state of equilibrium. When it is subject to a
bending moment, then at any section there is an internal moment caused by internal
forces to balance the bending moment applied at that section. This internal moment
is called the moment of resistance.

Bending moment and shearforce diagrams
There are two types of loads to consider: concentrated loads and distributed loads.
Concentrated loads are where all the forces are assumed to be concentrated at
specific points along the length of the beam. These are shown on sketches by an
arrow at the precise point of application. Distributed loads are loads that are spread
over a length of beam. The commonest type of distributed load is the weight of the
beam itself. We assume that the centre of gravity of the distributed load acts at its
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Distributed load

Figure 3.11 Distributed load

midpoint. Distributed loads are usually shown as a bumpy line on sketches (Figure
3.11).

A bending moment diagram is a type of graph. A horizontal base line is drawn to
represent the length of the beam. Graphs are plotted above this base line. The
vertical axis represents either shear force or bending moments. These diagrams are
most easily explained by examples.

o Example 3.7
A beam which is simply supported at each end is 10 m long, and carries concentrated
loads of 4 kN and 7 kN at 2 m and 6 m, respectively, from the left end. Neglect the
weight of the beam. Draw the shearing fo~ce and bending moment diagrams.

The word 'respectively' just means that the values are taken in order, i.e. the 2 m
refers to the 4 kN and the 6 m refers to the 7 kN. 'Simply supported' means that the
beam is resting on two supports. These supports apply the upward reaction forces to
resist the downward loads and the weight of the beam. Start off with a space diagram
of the beam. See Figures 3.12-3.14.

The unknown forces are the two reaction forces R A and R s . These can be found by
considering the moment first about one end and then about the other. Taking
moments about the left end:

clockwise moments == anti-clockwise moments

(4 [kN] x 2 [m]) + (7 [kN] x 6 [m]) == u; [kN] x 10 [m]

50 [kNm] == Rs [kN] x 10 [m]

. R ==50[kNm]==5kN
.. B 10[m]

(. '. means "therefore', if you didn 't know).

Taking moments about the right end:

RA [kN] x 10 [m] == (4 [kN] x 8 [m]) + (7 [kN] x 4 [m]~

R A [kN] x 10 [m] == 60 [kNm]

. R ==60[kNm]==6kN
.. A 10 [m]

You could also have calculated the second reaction force by:

upward forces == downward forces

5 [kN] + RA == 4 [kN] + 7 [kN]

. '. RA == 4 [kN] + 7 [kN] - 5 [kN] == 6 kN

Start the shear diagram with a base line to represent the length of the beam. The
shear force line level changes suddenly when passing through a load point. The
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d)(a

r
I 2m
I

4 kN 7 kNI~ --
I

I

\V \VI

) (

11\ (b) (c) /1\
RA

~ -
" .

10 m
Figure 3.12 Space diagram

6

!l\

kN
4 kN

\V

If\

7 kN

\V

5 kN

Figure 3.13 Shear force diagram

t
Z
.::£

N

Figure 3.14 Bending moment diagram
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change is equal to the load. At the left end of the beam at (a) there is an upward force
of 6 kN, so draw a line vertically upwards, to scale, to represent the 6 kN. Moving to
the right, there are no up or down forces until (b) at the downward 4 kN force. A line
is drawn to scale to represent this vertically downwards at a scale distance of 2 m from
the end. The tail of the 4 kN line is level with the head of the 6 kN and the line
between them is horizontal. Further to the right there are no forces until (c) at the
downward 7 kN force and so the line continues horizontally up to a scale distance of
6 m from the left end. Then the line is drawn vertically down to represent 7 kN; this
line passes through the base line, and the line continues below it.

The last force of the system is the other reaction force R B at (d) of 5 kN. This line
drawn upwards closes the diagram.

If the shear force diagram does not close off a beam in equilibrium then you know a
mistake has been made on the force calculations. The shear force line above the base
line represents positive shear force and the line below the base line represents
negative shear force.

Now that the shear force diagram is complete, the shear force at any point along
the length of the beam can be determined. For example, at a point 3 m from the left
end, the line is 2 kN above the base and so the shear force that the beam is subjected
to here is +2 kN. The point where the shear force diagram passes through the base
line is where the beam is subjected to the maximum bending moment.

When considering the shear force at a particular section, if you sum the forces to
the left of a section making upward forces positive and downward forces negative, a
positive value indicates a positive shear force and a negative value indicates a
negative shear force. If you consider forces to the right of a section it's the other way
around, with a negative value indicating a positive shear force.

Now draw the bending moment diagram. In order to draw the diagram, you first
need to calculate the bending moment at various points along the beam. We will
calculate bending moments at (a), (b), (c) and (d). Moments can be taken from
either side. When moments are taken to the left of the points, positive values agree
with our convention and indicate sagging. When working to the right of the points,
negative values indicate sagging and positive values indicate hogging. For this
example we will carry out the calculations to both sides to prove the point.

Bending moments to the left:

at (a) bending moments = 0
(There is no beam and therefore no moments to the left of (a), i.e.
R A x 0 = 0)
at (b) (6 [kN] x 2 [m]) = 12 [kN m]
at (c) (6 [kN] x 6 [m]) - (4 [kN]X 4 [m]) = 20 [kN m]
at (d) (6 [kN] x 10 [m]) - (4 [kN] x 8 [m]) - (7 [kN] x 4 [m])

=0
Bending moments to the right:

at (a) (4 [kN] x 2 [m]) + (7 [kN] x 6 [m]) - (5 [kN] x 10 [m])
=0

at (b) (7 [kN] x 4 [m]) - (5 [kN] x 8 [m]) = - 12 kN m
at (c) -(5 [kN] x 4 [m])= - 20 kN m
at (d) bending moments = 0

You would expect the beam to sag. This will not always be obvious though. Notice
that the calculations taken from the left give positive values and all calculations taken
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from the right give negative values. If you stick to the convention when the problem
is more complex, the signs will clearly indicate which way the beam bends. Draw
positive values above the base line and negative values below, as with the shear force
diagram. Select a suitable scale again so that the maximum bending moment will fit
on the page.

You can join the points up with straight lines when all the loads are concentrated.
From this diagram, the bending moment at any point along the beam can be directly
measured. Halfway along the beam the bending moment is +18 kN m. You can
check this by calculation:

(6 [kN] X 5 [m]) - (4 [kN] x 3 [m]) = +18 kN m

Notice that the maximum bending moment occurs at the point where the shear force
diagram crosses the base line. It is easier, if you have room, to draw the space
diagram, the shear force diagram and the bending moment diagram all to the same
scale and directly underneath each other.

After solving a few problems, you will realise that the shear force and bending
moment diagrams follow standard patterns and you will be able to solve them quickly
by finding certain values along the length of the beam and simply by joining them up
with straight or curved lines. Distributed loads cause the joining lines of the bending
moment diagram to be curved.

o Example 3.8
A cantilever is 10 m long and carries concentrated loads of 2 kN and 6 kN at the free
end and at 4 m from the free end, respectively. Draw the shear force and bending
moment diagrams. Neglect the weight of the beam. Determine the shear force and
bending moment halfway along the beam.

A cantilever is a beam that is supported by being fixed into a wall at one end. The wall
is usually drawn on the left of the beam. Start off with your space diagram (Figure
3.15).

c

R

10 m

6 kN

(b)

4m

2 kN

(c)

Figure 3.15

The wall exerts an upward reaction R. In this case this must equal 8 kN, as upward
forces equal downward forces. Finding this value of R by equating moments would
have been more complex. What is not at first obvious is that, for a cantilever, the wall
exerts a fixing moment on the beam represented by C on the diagram. For this reason
it is usually easier if bending moments are calculated to the right. Next draw the shear
force diagram (Figure 3.16).
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/\

6 kN
8 kN

\V

2 kN
\/

Figure 3.16 Shear force diagram

At the section halfway along the beam the shear force is 8 kN. The shear force
diagram does not appear to cross the base line; it does in fact cross it at the immediate
left and the maximum bending moment occurs at the wall. Next comes the bending
moment calculations. Remember to take them to the right and so positive values will
indicate negative bending moments, i.e. hogging.

at (a) (2 [kN] x 10 [m]) + (6 [kN] x 6 [m]) == 56 kN m
at (b) (2 [kN] x 4 [m]) == 8 kN m
at (c) == 0

Draw the bending moment diagram below the base line as the positive values
indicate negative bending moment and the beam is hogging (Figure 3.17).

8 kNm

56 kNm

Figure 3.17 Bending moment diagram

The bending moment halfway along the beam is 16 kN m. You can check this by
calculation:

(2 [kN] x 5 [m]) + (6 [kN] x 1 [m]) == 16 kN m

Distributed loads
As was stated earlier, a distributed load is one which is spread over the length of the
beam. The symbol for a distributed load is w, which is the force per unit length of the
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x

m//2

I

I mN/m

! I
~1/2

x
Figure 3.18

beam, and the unit is N/m. We will assume that all the distributed loads in this book
are distributed evenly, rather than varying from point to point along the beam. Look
at the beam in Figure 3.18; it has no loads placed on it, but its own weight is
considered.

Total load carried = w [~J x I [m]

As the beam is symmetrical, the reaction at the end supports are each (wl/2). The
shear force diagram decreases from +(wl/2) to 0 at the centre of the beam. The shear
force then changes sign and the value increases to -(wl/2). The straight line of the
shear force slope is equal to the loading, w.

The shear force at a section XX == +(wi) - wx
2

See Figure 3.19.

x

m//2

I• .,
X I

I
I
I

I

I m//2
I
I

X

Figure 3.19 Shear force diagram of a simply supported distributed load beam
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The bending moment at any section is found by treating the distributed load as an
equivalent point load acting at the section's centre of gravity. So the moment of the
distributed load to the left of section XX is

x
wx x-

2

The bending moment at a section XX

= (wi) x - wx~
2 2

wx= - (/- x)
2

Look at this last formula: when x = 0 or x = I, the bending moment will equal zero.
The maximum bending moment will occur when x = lI2 (where the shear force
diagram equals zero). If you substitute this into the formula the value will be wf/8.
See Figure 3.20.

x

x
Figure 3.20 Bending moment diagram of a simply supported uniformly distributed loaded beam

Bending moment = w~~) x (t - ~)
w(~) I

=--x-
2 2
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The bending moment diagram is a parabolic curve. A cantilever with a uniformly
distributed load produces shear force and bending moment diagrams as shown in
Figures 3.21, 3.22 and 3.23.

x

Figure 3.21

x

(+)

x
Figure 3.22 Shear force

x

(-)

x

Figure 3.23 Bending moment
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The equivalent concentrated load of the distributed load is col acting downwards at
//2 from the free end. So the reaction force on the beam by the wall is col upwards. At
section XX, to the right, the shear force is -wx which, according to our convention,
is a positive shear force. The maximum shear force is at the wall. The bending
moment at section XX is +wx x x/2 = +wx2/2, which, according to our convention,
(as taken to the right) is hogging and so shown as negative on the bending moment
diagram. The maximum bending moment is at the wall hogging and is equivalent to
the fixing moment applied by the wall on the beam.

M · b d' I I wl
2

aXlmum en lng moment == w x - == -
2 2

")
oix:

i.e. 2 when x == I

o Example 3.9
A simply supported beam is 10 m long and carries a load of 20 kN at 3 m from the
right end. Assume that the weight of the beam is a uniformly distributed load of
5 kN/m. Draw the shear force and bending moment diagrams and determine the
maximum bending moment. See Figure 3.24.

20 kN

0) = 5 kN/m-,
3m

10 m

Figure 3.24

Remember to try to draw the space diagram, the shear force diagram and the
bending moment diagram underneath each other and to the same length scale.

Total distributed weight == 5 [kN/m] x 10 [m] == 50 kN

Take moments about (a) to calculate RB :

(20 [kN] x 7 [m]) + (50 [kN] x 5 [m]) == (R B x 10 [m])

R == (140 + 250) [kNpf] == 39 kN
B 10 [¢]

(R A X 10 [m]) == (20 [kN] x 3 [m]) + (50 [kN] x 5 [m])

R == (60 + 250) [kNp(] == 31 kN
A 10 [P{]
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Check if upward forces equal downward forces:

31 [kN] + 39 [kN] = 20 [kN] + 50 [kN]

= 70 kN in each case.

The number of shear force and bending moment calculations you need to make will
depend on your experience.

To draw the shear force diagram, first work out the slope of the distributed load
according to the scale. In this case, the slope is 50 kN over 10 [m]. Look at Figure 3.25
and you will see how the distributed loads fit in with the direct loads. You can make
calculations of the shear force at any point along the beam if need be.

20 kN

Figure 3.25

Shear force at:

Om from (a) = 31 kN i
2 m from (a) == 31 [kN] i - (5 [kN/m] x 2 [m]) ~ == 21 kN i
4m from (a) == 31 [kN] i - (5 [kN/m] x 4 [m]) ~ == 11 kN i
6 m from (a) = 31 [kN] i - (5 [kN/m] x 6 [m]) ~ = 1 kN i

The points on the bending moment diagram will be joined by a parabolic curve.
Calculate as many points as you feel necessary to draw the diagram accurately. Start
off with the maximum bending moment value and measure the point of zero shear
force down to the bending moment axis. This is at 6.2 m from the left end. The
bending moment at the ends will be zero. Here are six points on the diagram.

Bending moment at:

om from (a) == 0

2 m from (a) = (31 [kN] x 2 [m]) - (5 [kN/m] x 2 [m] x 2 [m]/2) = 52 kN m

4 m from (a) == (31 [kN] x 4 [m]) - (5 [kN/m] x 4 [m] x 4 [m]/2) = 84 kN m

6.2 m from (a) == (31 [kN] x 6.2 [m]) - (5 [kN/m] x 6.2 [m] x 6.2 [m]/2)
== 96.1 kN m
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8 m from (a) = (31 [kN] x 8 [m]) - (20 [kN] x 1 [m])
- (5 [kN/m] x 8 [m] x 8 [m]/2) = 68 kN m

10 m from (a) = (31 [kN] x 10 [m]) - (20 [kN] x 3 [m])
- (5 [kN/m] x 10 [m] X_I0 [m]/2) = 0

See Figure 3.26.

Figure 3.26 Bending moment

Tensile and compressive stress and the bending equation
Think of a rectangular sectioned beam which sags, as shown in Figure 3.27.

The top part of the beam will be compressed while the bottom part will be
stretched. The greatest stress will occur at the outer edges of the beam, the top
having compressive stresses and the bottom having tensile stresses. Towards the
centre of the material the stress reduces uniformly. Where stresses change from
compressive to tensile, there is zero direct stress. The axis along which there is no
stress is called the neutral axis. For a rectangular section or any symmetrical section
this is at the mid-depth. As the greatest stress is at the outer fibres of the beam then a
rectangular section is not always an economical use of the material. An 'I' shaped
sectioned beam is designed so that the top and bottom flanges resist the tensile and
compressive stresses and all the cross-section resists the shearing forces. If the beam

Zero direct stress

Maximum tensile stress

Maximum compressive
stress

Tension

Compression

Figure 3.27
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y

Neutral axis

Figure 3.28 Cross-section of rectangular beam

bends the other way (hogging) then the tensile stresses are at the top of the material
and the compressive stresses are at the bottom. The stress in the material is
proportional to the distance from the neutral axis (NA). We'll call this distance y. See
Figure 3.28. The stress at a distance of y from the NA is such that "v oc y .

. . . Oy == Y x constant., K

o
== constant, K

y

For the section of the beam considered., there is a radius of curvature, R (Figure
3.29).

The constant in the first equation is equal to Young's modulus of elasticity for the
beam material divided by the radius of curvature.

E
- == constant, K
R

S
. a E

0., we can write: - == -
Y R

When a beam is loaded, the bending moment applied, represented by M, is resisted
by an internal moment. This internal resisting moment is equal to the applied
moment.

This can be written as: M = ~ x I
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R

NA

Figure 3.29

I is the second moment of area of the beam section about the neutral axis. More of
this later. The whole equation can now be written as:

MaE
-----
I Y R

The following symbols are used in the bending moment equations:

M == maximum bending moment (== resisting moment) [Nm]
I == second moment of area about the neutral axis [m4

]

a == stress at outer fibes of beam material [N/m 2
]

y == distance from the neutral fibres to the outer fibres [m]
E == Young's modulus of elasticity for beam material [N/m 2

]

R == Radius of curvature to the neutral axis [m].

Assumptions for bending moment equation
The bending moment equation is based on certain relationships between different
quantities such as stress, elasticity, curvature and dimensions. For these relation­
ships to be valid the following five assumptions are necessary:

1. The bending equation assumes that Hooke's law applies to each layer of the beam
and Young's modulus of elasticity has the same value in compression as in
tension.

2. The beam material is uniform throughout its volume.
3. Each cross-section of the beam is symmetrical about the plane of bending and the

loads are applied to the beam in the plane of bending. If a horizontal beam
supports vertical loads, then the plane of bending is vertical.

4. The beam must be initially straight and unstressed.
5. The resultant force perpendicular to any cross-section is zero.
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Second moment ofarea
The amount of bending of a beam depends on the shape of the cross-section. This
shape is expressed by the second moment of area about the neutral axis. The second
moment of area is a measure of the distribution of an area relative to an axis. In the
chapter on moments, the first moment of area is used to find the centroid of a plate.

- l moment of area
x==-------

l area

Remember that the moment of area about an axis is the area multiplied by the
distance from the centre of area to the axis. This is' a difficult concept to visualise
because it does not really physically exist: it is just a convenient measure to assist in
calculations. The small circle in Figure 3.30 has an area of A.

y

x
y

Figure 3.30

x

Area A

x

The first moment of area of A about XX == Ay
The second moment of area of A about XX == A y2

The first moment of area of A about YY == Ax
The second moment of area of A about YY == Ax2

Working out the second moment of area of some larger shapes can be complicated. If
any area is divided up into small bits, like the circle, and each bit multiplied by the
distance to the axis squared, then all these products added up gives the second
moment of area. As with centroids there are some standard cases for calculating the
second moment of area about the neutral axis.

For a rectangular cross-section as shown in Figure 3.31

bd'
INA ==-

12
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b

N A

Figure 3.31

The second moment of area is represented by I and the axis about which moments are
taken shown as a suffix, e.g. I x x or INA

For a circular cross-section (Figure 3.32),

JTD-+ JTr-+
I N A = - - = -

64 4

For any of the shapes shown in Figures 3.33-3.35

BD:' bd:'
I N A = - - - -

12 12

For a hollow circular section (Figure 3.36),

JT -+ -+ JT( -+ -+
INA = 64 (D - d ) ="4 R - r )

N A
a

Figure 3.32
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N

Q

A

Figure 3.33

B

b

a

Figure 3.34

b/2

B

b/2

d Q

Figure 3.35
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a

From this,

Figure 3.36

o Example 3.10
An engine is supported by lifting tackle hung from an overhead beam. The maximum
bending moment M of the beam is 72 kNm. The second moment of area I is
176.68 x 10-0 m" and the beam is symmetrical. The depth of the beam is 276.8 mm.
Calculate the maximum stress a of the beam and the radius of curvature R. Young's
modulus of elasticity == 208 GN/m2

.

Start by writing down the full form of the formula.

MaE
-----
I y R

M
a==/xy

A th beam i . I 276.88 [mm]s e earn IS symmetnca y == 2 == 138.4 mm.

a - 72 x 10
3

[Nm] x -3
- 176.68 X 10-6 [m4] 138.4 x 10 [m]

== 72 x 10° x 138.4 fNm
2

]

176.68 m"

== 56.4 x lOoN/m2

IR==Ex-
M

== 208 X 10l)lN/] x 176.68 X 10-
0

[m
4

]

m 72 x 103 [Nm]

== 208 x lOl) x 176.68 X 10-l) l ~m)t ]

72 rI-,N¢

== 510.409 m so there is not much of a bend
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o Example 3.11
A beam has a rectangular cross-section 100 mm x 25 mm. It is subjected to a
maximum bending moment of 625 Nm. Compare the maximum stress in the material
when the beam is positioned with the widest edge down and with the narrowest edge
down.

Start off with a diagram (Figure 3.37).

Figure 3.37

0.025
Yt == -2- [m] == 0.0125 m

a == M x == 625 [Nm] x 0.0125 [m]
I Y 0.1302 X 10-6 [m4]

== 60 X 106 [N/m 2
]

II = 0.025 X (0. n' [m4] = 2.()83 X 10-6 rn"
12

Y2 = 0~1 [m] = 0.05 m

M
a==-Xy

I
625 [Nm] x 0.05 [m]

2.083 x 10-6[m"]

== 15.002 X 106 N/m 2
.

Notice that the stress is four times greater when the beam is positioned 'flat rather
than 'upright'.

To calculate the second moment of area of shapes where there is a part 'missing',
then the second moment of area of the missing part can be subtracted from the
second moment of area of the overall shape. The second moment of area of different
shapes can be added or subtracted accordingly, provided they are relative to the
same axis. This is probably easier to show with an example.
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o Example 3.12
Look at Figure 3.38. Find the second moment of area about the neutral axis.

60mm

~

50mm ....,

E
E
0
T-
T-

,

E
E
o
C\I

Figure 3.38

BD3 bd3 60 X 1203 50 X 1103
4

INA ==12-12== 12 - 12 [mm]

== 8.640 X 10-6
- 5.546 X 10-6 [m4

]

== 3.094 X 10-6 m"

Parallel axis theorem
The parallel axis theorem is used for finding the second moment of area about an axis
parallel to and other than the axis passing through the centroid, i.e. the neutral axis.
This is also useful for finding the second moment of area of more complex shapes. Let
leG be the second moment of an area A about an axis passing through its centroid.
The distance to an axis parallel to axis CG is h. To find the second moment of the area
about XX, lxx, we can use the formula:

Ix x == leG + Ah2

o Example 3.13
Find the second moment of area about the neutral axis of the cross-section shown in
Figure 3.39.
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40mm

x----

A !~
L.......-- r---

15mm
~

E
B E

0eo

C

100 mm
Figure 3.39

The first problem we have is that we do not know where the neutral axis is. As the
neutral axis passes through the centroid, then we can use the formula:

O· f id f ° xx I 1st moment of area about XXistance 0 centroi rom axis = ~
~ area

Area

A 40 x 10-3 x 15 X 10-3 [rrr'] = 0.6 x 10-3 m2

B 80 x 10-3 x 15 X 10-3 [m2] = 1.2 x 10-3 m2

C 100 x 10-3 X 15 X 10-3 [rrr'] = 1.5 x 10-3 m2

3.3 x 10-3 m2

First moment of area

A 0.6 X 10-3 [m2
] x 102.5 x 10-3 [m] = 61.500 x 10-6 rrr'

B 1.2 x 10-3 [m2
] x 55 x 10-3 [m] = 66.000 x 10-6 rrr'

C 1.5 x 10-3 [m2
] x ~ x 10-3 [m] = 11.250 x 10-6 rrr'

2
138.750 x 10-6 rrr'
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Distance of centroid from axis XX = 138.750 X 10-6 [m3]

3.3 x 10-3 [m2]

= 42.045 x 10-3 m

Hence the centroid lies at a distance of 42.045 mm from XX.
Hence the neutral axis lies 42.045 mm from XX, and we can calculate the second

moment of the individual areas relative to this. These second moment of areas can
then be added up, as they are taken from the same axis.

bd3

A INA(A) = - + Ah2

12

= (0.04 x 0,015
3

) [m4] + 0.6 x 10-3 [m2]

12
x ((102.5 - 42.045) x 10-3

) [rrr']

= 11.25 x 10-9 [m4
] + 2192.884 x 10-9 [m4

]

= 2204.134 x 10-9 m"

bd3

B INA(A) = - + Ah2

12

= (0.15 x 0.08
3

) [m4] + 1.2 x 10-3 [m2]

12
x ((55 - 42.045) x 10-3) [m2]

= 640 x 10-9 [m4
] + 201.398 X 10-9 [m4

]

= 841.398 x 10-9 m"

bd3

C INA(A) = - + Ah2

12

= (0.1 x 0.015
3

) [m4] + 15 X 10-3 [m2]

12
x ((42.045 - 7.5) x 10-3

) [rrr']

= 28.125 x 10-9 [m4
] + 1790.036 x 10-9 [m4

]

= 1818.161 x 10-9 m"

Total, INA = A + B + C

= 2204.134 X 10-9 [m4
]

+ 841 .398 x 10- 9 [m4
] + 1818. 161 x 10- 9 [m4

]

= 4863.693 X 10-9 m"

Remember when solving the beam problems at the end of the chapter not to get
confused between shear stress and direct stress. The bending moment and shear
force can be found at any point along the beam with bending moment and shear force
diagrams. The maximum direct stress and curvature can be calculated' from the
maximum bending moment. Stick to the convention for shear force and bending
moments, as often the sign of the answer will not be obvious.
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I 3.3 Torsion

When the moment of a force is applied to a shaft, it will tend to turn or twist. This is
referred to as a turning moment or torque. Torsion is the twisting deformation
produced when a torque is applied to a shaft. When a shaft twists, if any thin circular
cross-section is considered it will rotate slightly relative to the next section. The
material therefore undergoes shear strain and shear stress, as thin circular cross­
sections of material tend to slide over each other. This is an important subject in
motor vehicle science: consider the number of shafts in a motor vehicle, from the
crankshaft, through the gear box and the drive shafts to the axles. There is a similar
equation for the torsion of shafts as there is for the bending of beams. This equation
relates the applied torque to the shear stress and twisting distortion of the shaft in a
similar manner that the bending equation relates the bending moment to direct stress
and bending distortion of the beam. Torque is the twisting moment applied to the
shaft and is a product of applied force and the distance of the applied force to the
central axis of the shaft. The symbol for torque is T and its units are Nm (see
'moments'). When a shaft is transmitting power, it is subject to a torque at the input
end from the drive such as an engine and gear box, and a resisting torque at the
output from the machinery being driven, such as axle and wheels.

Angle of twist
When a torque is applied to a shaft, it twists. There is a relative movement between
adjacent cross-sections of the shaft. If a straight line is drawn down the shaft parallel
to the axis, when the torque is applied this deforms to a helix. The relative angular
twist between the different cross-sections is called the angle of distortion, a. See
Figure 3.40.

T

T

Figure 3.40

A torque Tis applied to the shaft whilst one end is kept fixed. A point a on the end
section is displaced to a position a l' The angle of twist at the shaft face is () = aoa..
The angle () is measured in radians. If a length of one radius r is laid along the
circumference of the circle, then the angle, (), between each end of this length and the
circle centre is one radian. As the circumference of a circle is equal to nd or Znr, then
in 3600 there are 2n radians. See Figure 3.41.
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o

e= 1 radian

Figure 3.41

To convert from radians to degrees use the following relationship:

3600 = 2n radians

. 2n [radians] 360 [ 0 ]So, for the unity bracket, 1 = - = - .
360 0 Zn radians

Radians are normally indicated by a small letter r after the angle value Of, although
radians do not really have a unit. In engineering you can assume that most angles are
measured in radians rather than degrees. This makes calculations and units much
simpler to deal with than degrees, as you will see.

Shear stress
The value of the shear stress is proportional to the radius, zero shear stress occurring
at the shaft section centre and maximum shear stress occurring at the outer edge.
Mathematically this is:

T = r X constant

If this constant is represented by the letter K then:

!. = K
r



Distortion of materials

Torsion equation
The above constant is used as the basis of the torsion equation. The full equation is as
follows:

T T GO
-----
J r I

You will be probably be familiar with most of these symbols except for the J.

T = Twisting moment or torque
J = Polar second moment of area
T = Maximum shear stress at outer fibres
r = Radius to outer fibres
G = Modulus of rigidity for shaft material
o = Angle of twist
I = Length of shaft under torsion

[Nm]
[m"]
[N/m2

]

[m]
[N/m 2

]

[radians]
[m]

For a shaft, the radius to the outer fibres is simply the radius of the shaft, and this is
where the maximum shear stress occurs.

Polar second moment ofarea
In bending theory for beams, the second moment of area is taken from the neutral
axis. The resistance to twisting depends on the polar second moment of area J. The
polar second moment of area is the second moment of area of the shaft cross-section
about the central point rather than an axis. When you are dealing with shafts there
are usually only two cases: either a solid circular shaft or a hollow circular shaft with
an annular (doughnut shaped) cross-section.

For a solid circular shaft,

J = Jl~4 where D is the diameter

For a holJow circular shaft,

n(D4
- d4

)
J = where d is the inner diameter

32

o Example 3.14
When a torque of 100 Nm is applied to a solid shaft, the angle of twist at the shaft face
is 1°.. The shaft is 1 m long and for the shaft material, G = 83 GN/m2

. Calculate the
diameter of the shaft.

As we are given T, 0, G and I then we can use the expression:

T GO---
J I

to find J and then from that the diameter.
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10 = lOx 2Jr [rads] = 17.453 x 10-3 radians
360 0

I
J =Tx-

GO

1 [m
2

]= 100 Nm x m -
[ ] 83 x 109 x 17.453 x 10-3 [ ] N

= 69.032 X 10-9 m"

nD4

For a solid shaft, J = 32

so D== ie :32) == i(69.032 X ~0-9 X 32) V[m 4]

= 28.958 x 10-3 m = 28.96 mm

4
Notice how the units are subject to the if as well as the numbers.

o Example 3.15
If a drive shaft 2 m long is to be subjected to a torque of 3.3 kN and the maximum
shearing stress must not exceed 48 MN/m2

, calculate the solid shaft diameter
required to satisfy these conditions. G = 80 GN/m 2

. If we use:

T r
J r

it appears as if we have two unknowns, J and r. We can break this formula down
further:

D JrD4

TXr=rxJ~Tx-=rx--
2 32

The diameter D on the left can be cancelled with a diameter on the right.

T JrD3

- = r x -- therefore
2 32

D = 3 T x 32
2xrxn

== 3 3.3 X 10
3

X 32 3/[Nm] [m2
] = 70.482 X 10-3 m

2 x 48 x 106 X ;rr ~ N

A diameter of 70.482 mm would satisfy these conditions of a maximum shearing
stress of 48 MN/m2

. If there were further conditions, such as a maximum angle of
twist, then further calculations would be required. Assume that the maximum angle
of twist permissible for the above shaft is 10

•

10 = 17.453 X 10-3 radians (see Example 3.14)
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. T CO
uSIng - =-

J I

I
then J = Tx­

CO

3.3 X 103 [Nm] x 2 [m]

~ 80 X 109[~2] x 17.453 X 10-3

= 4.727 X 10-6 m"

nD4

J=32'

4FJX32)therefore D = ~ \~-n-)

= 1(4.727 x 10:6 [m
4

] X 32)

= 83.300 x 10-3 m = 83.3 mm

In order to satisfy the maximum shearing stress of 48.MN/m2 and the maximum angle
of twist of 1°, the larger diameter would be required: 83.3 mm.

Torsional resilience
Torsional resilience is the elastic strain energy stored in the shaft when work is done
to twist the shaft. As with direct resilience (see 'stress and strain') this energy is only
stored if the strain is below the elastic limit. If a torque is gradually applied from zero
to T, then the average torque applied is

0+ T T
----

2 2

The work done to twist the shaft is therefore equal to

~ X or
2

Again, as with direct resilience, this can be expressed in terms of stress.

T r
From - =-

J r

=> T= rJ
r

nD4

For a solid shaft, J = 32' and
D

r=-
2
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JrD4 2
then T== T x - x-

32 D

16

T GO
From-==-

r I

o==!i == Tl2
rC CD

Using the formula for torsional resilience:

TO 1 TJlD3 Tl2-==-x--x-
2 2 16 CD

16G
JlD2

The volume, V == - x I
4

TO T
2V

Therefore - == -
2 4G

o Example 3.16
In the last example, assume a diameter of83.3 mm is selected. Calculate the torsional
resilience.

T T

J r

Tr
so r ==-, J

_ 3.3 X 103 [Nm] x 83.3/2 x 10~3 [m]

- (.71(83.3 3~ 10-
3
)4) [m4]

== 3.3 x 41.65 x 10
12 [~]

4726937.9 m2

== 29.077 x 106 N/m 2

T ' 1 'I' r
2
VorSlona reSl lence == -

4G

(29.077 x 106)2[N/m2f x (.71(83.3 : 10-
3
)2) [m2] x 2 [m]

4 x 80 X 109 [N/m2
]
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= 845.472 x5449.792 x2 x10-
3

[N
2

] [m2
] [m3]

4 x 80 m" N

= 28.798Nm

As we know the angle of twist in this case, 17.453 x 10-3 radians, then the problem
could have actually been solved with just the basic formula for torsional resilience:

. IO'r TO
torsiona resi renee = 2

= 3.3 X 103 [Nm] x 17.453T

2

= 28.798Nm

Problems 3
1. Calculate the average shear stress in a solid gudgeon pin of 30 mm diameter. The

load on the pin is 22 kN.
2. A round bar has a length 270 mm and diameter 15 mm. A tensile load is

gradually applied to the bar. A load of 25 kN causes an extension of 0.2 mm.
Find the value of Young's modulus of elasticity for the bar material.

3. A push rod has a diameter of 5 mm. At a certain point in the operation of the
valve, the force on the rod is 2.5 kN. Calculate the compressive stress in the rod.

4. A piston has a force of 4 kN acting on its crown at top dead centre. The cross­
sectional area of the connecting rod is 180 mm". Calculate the compressive stress
in the material.

5. What is meant by the term resilience?
6. A steel bar has a diameter of 50 mm and is 1 m long. The bar supports a tensile

load of 50 kN. Calculate the resilience of the bar, if E = 200 GN/m2
.

7. A cast iron cylinder has an outside diameter of 120 mm and an inside diameter of
100 mrn, and supports a load of 100 kN. Find the compressive stress in the
material.

8. A cantilever is 1.5 m long and supports concentrated loads of 10 kN at the free
end and 15 kN at 0.75 m from the wall. Draw the shear force and the bending
moment diagrams to scale and measure the shear force and bending moment
0.7 m from the wall.

9. A beam of length 7 m is simply supported at each end and carries a concentrated
load at 3 m from one end. If the bending moment is 50 kN m at the section where
the load is concentrated, find the magnitude of the load and the reaction forces.

10. A beam carries a uniformly distributed load over its entire length. The distrib­
uted load plus the weight of the beam equal 65 kN. The beam is 3 m long and
simply supported at each end. Draw the shear force and bending moment
diagrams and find the maximum bending moment.

11. Two cables, one made of steel and one made of copper, are of equal length and
used together to support a mass of 30 kg. The diameter of the steel cable is
1.2 mm and the diameter of the copper cable is 2 mm. Calculate the load taken
by each wire. For steel, E = 200 GN/m 2

, and for copper, E = 98 GN/m2
•
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12. A hole of diameter 5 mm needs to be punched in a plate 2.5 mm thick. The
ultimate shear stress of the plate material is 350 MN/m2

. Calculate the force
required." Hint: The area resisting shear is equal to the hole circumference
multiplied by the thickness.

13. Calculate the maximum thickness of steel plate that can be cut by a guillotine if
the ultimate shear stress of the plate is 300 MN/m2 and the maximum guillotine
force is 150 kN. The plate is 0.8 m wide.

14. How many 10 mm diameter rivets are required for a single lap joint which is to
support a load of 100 kN? The safe working shear stress of the rivet material is
75 MN/m2

.

15. A beam is 200 mm deep by 100 mm wide and subject to a maximum bending
moment of 300 kNm. What is the maximum stress in the beam? The value of E
for the beam material is 200 GN/m2

.

16. A steel rectangular bar is 12 mm thick and is bent to an arc of a circle until the
steel just yields at the top surface. The yield stress of the material is 300 MN/m2

and E == 200 GN/m2
. Find the radius of curvature.

17. A solid steel shaft has a diameter of 300 mm and twists through 1°over a length of
5 m when rotating at 100 rev/min. The value of G = 85 GN/m2

. Calculate the
torque imposed on the shaft.

18. A torque of 100 Nm is applied to a shaft 2 m long. The angle of twist is 0.5°. The
value of G = 85 GN/m2

. Calculate the diameter of the shaft.
19. A beam of length 5 m is simply supported at the ends. It carries concentrated

loads of 100 N, 200 Nand 300 N at distances of 1 m, 2.5 m and 4 m from one end,
respectively. Calculate the reaction forces.

20. Find the twisting moment of a solid shaft of diameter 100 mm when the angle of
twist is 0.75° over a length of 2 m. For the shaft material, G == 100 GN/m2

.

21. A hollow shaft has an outside diameter of 350 mm and an inside diameter of
250 mm. It transmits a torque of 400 kNm. Calculate the shear stress if
G == 90 GN/m2

.



4 Motion

This chapter looks at the way a body moves. Newton's laws of motion are considered
throughout.

4.1 Linear motion

The main quantities of interest to us in motion are velocity, acceleration, displace­
ment and time. As these are all vector quantities, then many problems can be solved
by simple vector diagrams.

Displacement
If a body moves from one point to another then it is displaced. The displacement is a
vector quantity and the magnitude and the direction must be stated. The unit of
displacement is the metre, m. The symbol for displacement is S.

Velocity
The velocity of a body is the rate of change of displacement, i.e. how far it moves in a
unit of time. The symbol of velocity is v and the unit is metres per second (m/s). If a
body moves 10m in one second, the next second moves another 10 m, and the next
second moves another 10 m, then in three seconds the body moves 30 m. The average
velocity is 10 m/s. If the velocity is constant, then the displacement each second
remains constant. If the velocity is not constant then the displacement each second is
different. dS/dt may be written to mean the velocity at any particular instant in time.
Velocity is a vector quantity and so the magnitude and the direction must be stated.
The term speed refers to the magnitude part of velocity as speed is a scalar quantity.
For example, the speed of a car could be 20 mls but the velocity would be 20 mls due
east.

Acceleration
Any change in the velocity of a body will result in an acceleration. Acceleration to
velocity is what velocity is to displacement. Acceleration is the rate of change of
velocity. The symbol for acceleration is a and the units are m/s''. If the velocity of a
body one second is 10 mis, the next second is 15 mis, and the next second is 20 mis,
then the acceleration is 5 mls per second, i.e. +5 m/s'. A negative acceleration
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indicates that the body is slowing down. Linear retardation is negative acceleration.
d2S/dr may be written to mean the acceleration at any particular instant in time.
Acceleration is also a vector quantity and so direction needs to be stated with the
magnitude.

Newton's laws ofmotion
Newton's first and second laws of motion have already been mentioned briefly in the
chapter on mass. All three laws of motion are as follows.

Newton's first law of motion
A body continues in its state of rest, or of uniform motion, in a straight line unless it
is acted upon by an external force.

A body continuing in a state of rest seems familiar enough. If a car stands on a level
road and no force acts on the vehicle, we would not expect it to go anywhere. The
body continuing in a state of uniform motion may seem a bit odd though, as on Earth
we are used to moving things slowing down and finally stopping when the driving
force is removed; this happens because of resistive frictional forces. Without friction,
such as in space, a body will continue in its state of uniform motion in a straight line
until an external force causes it to do otherwise. If a vehicle travels in a straight line at
a constant velocity, then the driving force that the engine provides equals the
resistive forces.of friction and air resistance, and the resultant force is zero. For the
car to accelerate, the driving force must exceed the resistive forces, so the resultant
force acts in the direction of motion. If the driving force is less than the resistive
forces, then the resultant force opposes motion and the vehicle slows down. It is
important to be aware of this law of motion when considering what forces will affect
the motion of a body.

Newton's second law of motion
The external force acting on a body is proportional to the rate of change of
momentum of the body, the change of momentum being in the direction in which
the force acts.

In the Chapter 2 on mass we looked at the relationship between force, mass and
acceleration, i.e. F = m x a, which enables us to measure a force. This, however, is
just one way of changing the momentum of a body.

Momentum = mass x velocity [kg m/s]

The second' law is concerned with the rate of change of momentum:

mv-mu
rate of change of momentum = ----

t

The law mathematically can be written as:

F»: mv - mu
t

This force can change by the mass altering or the velocity altering, and, because
velocity is a vector quantity, then this force can alter either through change in
direction or change in magnitude. If the mass of the body does not change, then the
law can be written as:
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Foc m(v - u)
t

The rate of change of velocity, (v - u)/t, is acceleration a.
So Foc m X a and F= m x a xconstant.
The SI system is arranged so that the constant value is unity, 1, leaving F = m x a.
The velocity of a body can change in magnitude through the acceleration or

deceleration of the body. Its velocity can change in direction, for instance it could
move round in a circle at a constant speed, i.e. the momentum changes because the
direction of the velocity changes.

U Example 4.1
A body moves with a velocity of 10 m/s due east. A force acts upon the body for two
seconds and the body's velocity changes to 10 m/s due south. Find the change in
velocity and the average acceleration. See Figures 4.1 and 4.2.

Change in velocity = final velocity - initial velocity

To subtract a vector quantity on a vector diagram, reverse the vector direction and
add:

The change in velocity = 14.142 m/s

A I
. change in velocity

cce eration =---.---­
time

Initial 10 m/s

Figure 4.1

Force

/

en
E
o
"@
c::
u:
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en
E
o

10 m/s

Figure 4.2

A change in momentum is always accompanied by a force. The value of this force will
depend upon the rate at which the momentum is changed. The force is greater when
the momentum is changed quickly.

A measure of a body's resistance to change in motion is called inertia and is due to
its mass.

Newton's third law of motion
To every action there is always an equal and opposite reaction.

An example of this is someone jumping from a small boat to a river bank. The person
will usually fall in the water, because as they leap forward, the boat moves in the
opposite direction backwards.

Equations ofmotion
There are some basic equations of motion that describe the relationship between
displacement, velocity, acceleration and time. Consider a body that moves between
two points. The distance (in a straight line) between the two points is S metres. Let
the time taken to pass between the two points be t seconds. The body does not move
with a constant velocity though: it moves with a steady increase in velocity, i.e. a
constant acceleration. The velocity as the object passes the first point is u [m/s] and
the velocity as the object passes the second point is v [m/s].

I' u + vAverage ve OCIty == -2-

which is the velocity at the mid-point in time.
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. displacement
We know also that: average velocity == -....::...--.---

time

di I S U + v. .. ISP acement,== -- x t, 2

Acceleration is the rate of change of velocity:

I
. change in velocity

acce eration == -------
time taken

v-u
or a ==--, t

Rearranging this to find v:

... v == u + at

(1)

(2)

This gives us a formula for final velocity in terms of acceleration, time and initial
velocity. Now, if we substitute for velocity from equation 2 into equation 1 we obtain
an equation for displacement in terms of acceleration, time and initial velocity.

u+v
S==--Xl

2

u + at + u
----Xl

2

2u + at
---Xl

2
1 J-=> 5 == ut + - at
2

(3)

If we rearrange equation 2, t == (v - u)/a.

We can now substitute for time into equation 1 to obtain an equation for velocity in
terms of acceleration, displacement and initial velocity:

u+v
S==--Xl

2

rearrange to v2 == u2 + 2aS

o Example 4.2

(4)

A car travelling down the road increases in velocity from 8.9 mls to 17.9 mis, (about
20 milelh to 40 mile/h). This takes 20 s. Calculate the distance travelled during this
period and the acceleration of the car.
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To find out the distance we can use equation 1:

u+v
S=---Xl

2

= 8.9 ~ 17.9 [~ Jx 20 [s] = 268 m

We have enough information to use any of the other formulae to calculate acceler­
ation. Equation 2 looks the simplest.

v = u + at

.. v - u 17.9 - 8.9[mJ [IJrearranging gives a = -t- = 20 ~ ~

= 0.45 m/s2

That is an increase in velocity of 0.45 m/s every second.

Q Example 4.3
A vehicle reduces its velocity to a standstill over a displacement of 500 m with a
retardation of 10 m/s''. Calculate its initial velocity.

We know that S = 500 m, a = -10 m/s ' and v = O. We need to find the initial
velocity., u.

Use equation 4: v2 = u2 + 2aS
. ., ., 2 Srearrange., to grve u: = v: - a

u = Vv 2 - 2aS

= VO - (2 x -10 X 500) [J~ illJ

= 100 m/s

Velocity-time diagrams
A velocity-time diagram is a graph of velocity against time. Time is usually measured
on the horizontal axis and velocity on the vertical. These diagrams are useful for
solving some motion problems and also provide a clear picture of what is happening.
The diagrams do not show direction of the moving body., only its magnitude., and so
we could really call them speed-time diagrams. See Figure 4.3.

A horizontal line on the diagram indicates constant velocity whereas a sloping line.,
as in Figure 4.4., indicates a change in velocity., i.e. an acceleration.

The upward slope from left to right in Figure 4.4 shows an increase in velocity., i.e.
positive acceleration.

A downward slope from left to right (Figure 4.5) shows a decrease in velocity., i.e.
negative acceleration. The area underneath the plotted line, on the diagram rep­
resents the distance travelled. The formulae and theories we deal with assume that
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Figure 4.3

Motion

Distance
travelled

Time

Distance travelled

Velocity

Figure 4.4

Velocity

v

Time

Distance travelled

Figure 4.5
Time
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Distance travelled

Velocity

Time

Figure 4.6

any acceleration is uniform and so there will be no curved lines on the graph as in
Figure 4.6.

As usual the best way of demonstrating these diagrams is with an example.

o Example 4.4
A van accelerates from rest to a velocity of20 mls in 20 s. It then travels at a constant
velocity for 60 seconds before retarding to rest over a period of 40 s. Draw a velocity­
time diagram. Using the diagram calculate the total distance travelled and the
acceleration and retardation.

Mark a few values at even spaces on the vertical velocity axis, including 20 m/s. The
time axis needs to go up to 120 s, the total time taken. Draw in the acceleration as a
straight line from the origin (0,0) to co-ordinates of (20,20). Next draw in the
constant velocity period as a straight horizontal line starting at the end of the
acceleration line, making it 60 s long on the time axis. Finally, draw the retardation
line as a straight line from the end of the constant velocity line down to 0 mls over a
length of 40 s on the time axis. You now have a clear picture of the motion of the van
over its journey. This is shown in Figure 4.7.

As the area under the curve represents the distance travelled, split the diagram up
into shapes whose areas are easy to calculate, such as two triangles and a rectangle.
Now calculate the areas of the individual shapes and add them up.

Areaaccci = 0.5 x 20 [m/s] x 20 [s] = 200 m
Areaconst = 20 [m/s] x 60 [s] = 1200 m

Arearetard = 0.5 x 20 [m/s] x 40 [s] = 400 m
200m + 1200m + 400m = 1800m
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velocity

m/s

20

o
Figure 4.7

20 80

Time

120 s

Acceleration is equal to the slope of the line.

I
. change in velocity

Acce eration = -----....;~-. ----
tIme

V-u

= 20 - 0 [m/s] = 20 [m/s]
20 s 20 [s]

Retardation = 0 - 20 [m/s]
40 s

= -0.5 m/s2

Use of vector diagrams and relative velocity
So far the velocities we have looked at have been the velocities of moving bodies
relative to fixed. points on the Earth. These are called absolute velocities. A relative
velocity is the velocity of a body expressed relative to another body. You will
probably be familiar with this; for example if you are in a car travelling at 70 mile/h in
the middle lane of a motorway and another car goes past you in the outside lane at
100 mile/h, then to you the other car appears to pass you at 30 mile/h. The relative
velocity of the other car to your car is 30 mile/h although the absolute velocity of the
other car is 100 mile/h. The relative velocity of another passenger in your car to you is
zero, although you are both travelling with an absolute velocity of 70 mile/h. These
examples are simple enough as the absolute velocities all act in the same direction.
When the velocities act in different directions vector diagrams are needed to solve
them. A relative velocity is the vector difference of the two velocities.

VBA = VB - VA
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o Example 4.5
A bike travels at 20 mls due north. A car travels at 30 mls due west. Find the relative
velocity of the bike to the car.

See Figures 4.8 and 4.9. The velocity of the bike relative to the car is the velocity of
the bike minus the velocity of the car.

Velocity of the bike relative to the car = 36 m/s.

The angle () = 56°east of north.

car 30 m/s

bike

20 m/s

Figure 4.8

car 30 mls

~
E
o
N
Q)

:::I:.
:0

8

Figure 4.9

8 = 56°east of north

o Example 4.6
A car travels due north towards an overhead rail bridge with a velocity of 40 m/s. A
train travels east over the bridge at 35 m/s. Find the velocity of the car relative to the
train.
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Train 35 m/s

Figure 4.10

Train 35 m/s

Figure 4.11

As we are finding the velocity of the car relative to the train then the vector diagram is
drawn of the velocity of the car minus the velocity of the train. See Figures 4.10 and
4.11.

Velocity of car minus velocity of the train = 53.2 mis, 410 west of north.
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[ 4.2 Impulse, impact and momentum

When two bodies collide, the forces that act may only be effective for very brief
periods but they can cause considerable momentum changes. These forces are called
impulse forces. From Newton's second law:

Force = rate of change of momentum

ite thi F m(v - u)We can wnte t IS as = ---
t

.·.FXt=m(v-u)

The product F x t is the impulse of the force F, when F is applied for a short period of
time t.

The expression m(v - u) represents the change in momentum of mass m in time t.

So, impulse = change in linear momentum

The units of impulse are the same as for the change in momentum kg mis, although
sometimes the unit N s is used as 1 N = 1 kg m/s '. If there is no impulse, then there is
no change in linear momentum. This is expressed by another one of Newton's laws:
the principle of conservation of momentum.

The perfectly elastic collision
To deal with the theory of the conservation of momentum we use the concept of an
elastic body. An elastic body is one that can undergo impact with another elastic
body with no loss of energy through heat or sound, etc. This is known as a perfectly
elastic collision. With an elastic collision, the total energy before the collision is equal
to the total kinetic energy after the collision. This can happen only if the kinetic
energy is not converted into any other form of energy.

Principle ofconservation ofmomentum
Momentum can be destroyed only by a force and can be created only by the action
of a force. If no external force acts on a body or system of bodies, then the
momentum remains constant (in both magnitude and direction).

If two elastic bodies travelling in the same direction collide they exert a force F on
each other for a short period of time t. The force that the first body exerts on the
second is equal and opposite to the force that the second body exerts on the first.
Therefore an impulse, Ft, acts on each body causing a change in momentum in each.
The increase in momentum of one body will equal the decrease in momentum of the
other body. The sum of the momentum before the impact will equal the sum of the
momentum after the impact. Except for perfectly elastic bodies there will always be
some energy converted from kinetic to another form. For perfectly non-elastic
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bodies all energy is converted from kinetic into other forms, and the kinetic energy
after the collision is zero. In reality the collision of the bodies lies somewhere
between these two extremes.

Coefficient of restitution
The coefficient of restitution takes account of the level of elasticity of a body. It is
represented by e and has a value between 0 and 1. For a perfectly elastic collision
e == 1. For a perfectly non-elastic collision e == 0 and there is no rebound. It is used in
calculation as follows:

relative velocity after impact == relative velocity before impact x -e

Vt·- Vz = (Ut - uz) x -e

If the masses and velocities of two moving bodies, A and B, are known then by the
principle of conservation of momentum:

mAuA + mBuB == mAvA + mBvB

This gives one equation with two unknown values, v A and VB' The coefficient of
restitution equation allows the unknown velocities to be determined.

o Example 4.7
A mass of 10 kg moves with a velocity of 20 m/s. This collides with a stationary mass
of 15 kg. After the collision the 10 kg mass is stationary. Calculate:

1. the velocity of the 15 kg mass after the collision
2. the coefficient of restitution
3. the loss of kinetic energy due to impact.

m s; == 10kg; UA = 20m/s; VA = 0

mB = 15 kg; UB = 0 m/s; VB == ?

momentum before impact == momentum after impact

mAuA + mBuB == mAvA + mBvB

(10 x 0) + (15 x VB) == (10 [kg] x 20 [m/s]) + (15 [kg] x 0)

~ 15vB = 200

200 [mJ. ". VB = - - = 13.333 m/s
15 s

relative velocity after impact = relative velocity before impact x -e

e = _ VA - VB

UA - UB

1 == - (0 - 13.333) [tWsJ = 0 668
(20 - 0) mfs ·
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Kinetic energy before impact = ~ (mAui + mBu~)
2

=H(10 [kg] X 20
2

[722J) + (15 [kg] x 0 [722J))

= 2000 [kgs~2J = 2 kJ

Kinetic energy after impact = !(mAvi + mBv~)
2

= ~ ((10 [kg] x 0 [722]) + (15 [kg] x 13.333
2[722]))

= 1333.267 [k~~2J = 1.333 kNm

Loss of kinetic energy = 2 [kJ] - 1.3 [kJ]

= 0.667 kJ = 667 J

o Example 4.8
A mass of 5 kg moving at 10 mls hits another mass of 8 kg with a velocity of 4 mls
moving in the same direction. The coefficient of restitution is 0.8. Calculate the
velocities after the collision and the loss of kinetic energy.

rnA = 5 kg; UA = 10 m/s; vA = ?

mB = 8 kg; UB = 4 m/s; VB = ?

relative velocity after impact = relative velocity before impact x -e

e = _ VA - VB

UA - UB

VA - VB = - e x (UA - UB)

= - 0.8 x (10 --4) [7]
VA - VB = - 4.8 mls (1)

Remember that this is relative velocity, i.e. the velocity of mass A relative to mass B.

Momentum before impact = momentum after impact

5vA + 8VB = (5 [kg] x 10 [7]) + (8 [kg] x 4 [7])
5vA + 8VB = 82kg m/s (2)



If we now multiply equation 1 by 5:

(VA-VB)x5=-4.8X5

5VA - 5VB = -24

Now we can subtract equation 2 from 3 to get rid of the 5vA term:

(5VA - 5VA) + (- 5VB - 8VB) = - 24 - 82

- 13vB = - 106

- 106
... VB = _ 13 = 8.154m/s

Substitute this value back into equation 1:

vA - VB = - 4.8 [7J

V A - 8.154 = - 4.8 [7J

... VA= - 4.8 + 8.154 = 3.354m/s

Kinetic energy before impact = !(mAui + mBu~)
2

Motion 1125 ,

(3)

(1)

= 314.000 [k~~2J = 314.000 [J]

Kinetic energy after impact

1 2 2=Z(mAv A + mBVB)

= ~(( 5 [kg] X 3.354
2[722]) + (8 [kg] X 8.1542[~2]))

== 294.074 [k~~2J = 294.074 J

Loss of kinetic energy = 314.000 J - 294.074 J

= 19.926J
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4.3 Rotational dynamics

So far we have been looking at linear motion, such as the motion of an engine piston.
Another important type of motion is angular motion, such as the motion of a
crankshaft. A set of formulae for angular motion can be derived in a similar manner
to those for linear motion. In the chapter on 'Torsion', we looked at expressing an
angle turned in radians. See Figure 4.12.

A

A'

e

o
Figure 4.12

The crank OA turns in a clockwise direction about O. The displacement of the
crank can be expressed as an angle emeasured in radians. The radian is an especially
useful unit because it is then easy to convert angular motion to linear motion. If the
crank turns 1 radian the end of the crank will move the distance of 1 radius.

Linear displacement, S [m] = r [m] x err]

Angular velocity is the rate of change of angular displacement and is represented by
w.

. e[rad]Angular velocity, W = t -s-

Angular velocity should be expressed in radians per second for calculation purposes,
but information in a problem is normally given in revolutions per minute. Angular
acceleration is the rate of angular velocity and is represented by a.

. w [rad]Angular acceleration a = ~ 7

As with linear acceleration we shall only be concerned with constant acceleration.
Now take one of the linear equations of motion and apply it to the crank OA:



v == u + at

Motion

(2)

and substitute the linear motion variables for rotational ones. The linear velocity of
A can be found from the angular velocity in radians per second multiplied by the
radius of the crank OA:

In the same way:

and a [~] = a [r:2d] X r [m]

So W2r == wIr + art

The radius can be cancelled as it is a multiple of each side:

::} W2 = WI + at

u+v
S==--Xt

2

The radius, r, can be cancelled as it is a multiple of each side:

:::} lJ= WI + W2 X t
2

S == ut + !ar-
::} ()r == cart + !art2

Cancel the radius, r:

::} () == WIt + !af2

v2 = u2 + 2aS

:::} (W2r)2 == (wlr)2 + Zari)»

=> w~ == wT + 2aB

We now have a set of equations for dealing with rotational dynamics.

(1)

(3)

(4)

o Example 4.9
A car accelerates from 9 m/s (about 20 mile/h) to 36 m/s (about 80 mile/h) in 6 s. The
wheel radius is 0.35 m. Calculate the linear acceleration of the car and calculate the
rotational acceleration of the wheels.
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From v = u + at

v-u=?a=-­
t

= 36 [m/s] - 9 [m/s] = 4 5 m/ 2
6[s] . s

The speed of the road wheels can be calculated by dividing the velocity of the car by
the circumference of the wheels (circumference = nd).

nl = 9 [m/s] = 4.093 revls
2 x 0.35 [m] X n

4.093 [7] X 2n [~~] = 25.717 radls

e.g.

36 [m/s]nz = = 16.370 revls
0.7 [m] X n

16.370[~] X 2n[~] = 102.856rad/s

The calculations have been done like this to make the method clear but the quickest
way would have been to divide the vehicle speed by the wheel radius to obtain the
angular velocity directly in radians,

n = 9 [~ = 25.717 radls
1 0.35 [~

from Wz = WI + at

Wz- WIwe get a = --=------'­
t

= 102.856; 25.717 [r:d] [~] = 12.857 rad/s"

When a body undergoes a linear acceleration the external force F is applied to the
centre of gravity G , as shown in Figure 4.13.

aF G
---------:=*_ - - - - +-----1-------7

Figure 4.13

As the force Fhas no turning moment about the centre of gravity G then the body
does not rotate . Every particle of the body moves with the same linear acceleration .
Consider a force F applied to a small mass m on the end of a very light arm r that can



Motion

F

a

o
Figure 4.14

pivot about O. The force acts perpendicular to the arm r. Therefore a torque is
applied to the arm r about the axis, 0 (see Figure 4.14).

The mass at this instant is given a linear acceleration a such that F = m x a. The
linear acceleration a is equal to the angular acceleration a multiplied by the radius r.

a=aXr

.·.F=mxaxr

The moment of the force is the torque T applied to the arm:

T= Fx r

. T = (m x a x r) x r

=mxaxr

=mY2 x a

The term mr: is an important quantity in rotational dynamics. It is the second
moment of mass about 0, commonly called the moment of inertia and given the
symbol I. The units are kg rrr',

The moment of inertia I of a whole body rotating is the sum of the second moment
of mass values of all the individual particles of mass:

T= Ia

The moment of inertia is a measure of a body's resistance to rotational acceleration
and depends upon the mass and the distribution of the mass. It is comparable to mass
in linear motion. The formula:

T=/a

for rotational dynamics is comparable to:

F=ma
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If the mass of a rotating body could be assumed to be concentrated at a particular
radius k from the axis, then I = mk', The radius k of a rotating body is called the
radius of gyration. k is used rather than r to avoid confusion with other radius values
of the body. For calculation purposes a rotating body of any shape could be replaced
by a thin ring of radius k.

Look at Figure 4.15 and at Figure 4.16. In Figure 4.16, the total mass is still m but it
is all concentrated at the radius k. Two different rotating bodies can have identical
masses but completely different values for radius of gyration. A flywheel is designed
so that the mass is distributed as far away as possible to give a higher moment of
inertia I.

o
+

Mass, M

Figure 4.15

Figure 4.16
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o Example 4.10
A flywheel has a mass of 18 kg and a radius of gyration of 0.2 m. Calculate the torque
required to give an acceleration of 10 rad/s',

T= fa

I = mk"

=18 [kg] x 0.22 [rrr'] = 0.72 kg m2

T = 18 [kg] X0.22[ro2] X10 [r:2dJ = 7.2 [kgs~2J
= 7.2Nm

Rotational momentum
Consider a small rotating mass, m. For linear motion:

force = rate of change of linear momentum
and force x time = change of linear momentum

= impulse

The equivalent formula for angular motion is:

torque = rate of change of angular momentum
torque x time = change of angular momentum

As torque = force x distance perpendicular from the force to axis
= moment of force about the axis

then angular momentum = moment of linear momentum about axis

The linear momentum of a rotating mass == mass x linear velocity
=m x v

In rotational terms this is m x oir

When considering a whole body the sum of mr: for all mass particles is the moment of
inertia I.

So, moment of momentum = moment of inertia x angular velocity
or, angular momentum = Iw

[
rad] [kg m

2
]The units are: [kg m2

] X -s- = -s-

Note that the units of angular momentum are different from the units of linear
momentum and so the two cannot be added together in a system to obtain total
momentum. For a rotating body with a moment of inertia I whose angular velocity
changes from W I to W2'

change of angular momentum = 1((1)2 - WI)

For a change in angular momentum occurring in time t:

Txt == change of angular momentum
== angular impulse of the torque, T.
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This gives the relationship between angular impulse and angular momentum. The
angular impulse of a torque acting on a body for a given time t equals the change in
angular momentum of the body in this time. The units of angular impulse are the
same as angular momentum, kg m2/s, or, from torque x time, Nms.

You can check this as follows:

[Nms]=[kg;2]

As 1 [N]= 1 [k~2m]

then [Nms] = [k~2m] x "[m] x [s] = [k
g

sm

2]

The principle of conservation of momentum can also be applied to angular systems.
If the externally applied torque to any system is zero then' the angular momentum
remains constant.

Q Example 4.11
A crankshaft and a flywheel have a total moment of inertia of 4 kg m2 and rotate at
1200 rev/min. Calculate the angular momentum. The clutch suddenly engages the
flywheel to a stationary driveshaft. The driveshaft system has a moment of inertia of
5 kg rrr', Calculate the common velocity of the new system and the impulse of each
shaft.

Velocity of crank.co, = 1200[:] x 2n[:~] x 6~ [~]

= 125.664 [r~d]

Angular momentum of crank = lewe

= 125.664 [r~d] x 4 [kgrrr']

= 502.655 kg m2/s

There is no externally applied torque on the system so the angular momentum before
engagement is equal to angular momentum after engagement. After engagement the
total system moves with a common angular velocity, w. The initial velocity of the
driveshaft system is zero.

So, Ie We + I d Wd = (Ie + Id ) x W

As Id Wd = 0

502.655 [kg
sm

2]
= (4 + 5) [kgm2]

X W
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.'. w = 502.655 [~Sm2] x (4 + 5)\~IP']
= 55.850 rad/s

Angular impulse of crankshaft and flywheel:

angular impulse (T x t) = change in angular momentum

= I c(w2 - (2)

= 4 [kg m2
] x (55.850 - 125.664) [r:d]

= ·-279.25 kg m2/s

Angular impulse of the drive system:

angular impulse (T x t) = change in angular momentum

= I d(w2 - (2)

= 5 [kg rrr'] x (55.850 - 0) [r:d]
= +279.25 kg m2/s

Hence the angular momentum received by each shaft is equal and opposite to the
other (Newton's third law). The crankshaft decelerates as the driveshaft accelerates.

I 4.4 Friction

Introduction
When any two surfaces are in contact a force exists that opposes relative motion
between them. This opposition force is called friction. This is true even if one of the
surfaces happens to be a fluid - a major part of the force required to move a ship
through water is due to friction of the wetted surface.

For vehicles, problems involving friction fall into two groups: first where friction
must be kept to a minimum, and secondly, where the maximum amount of friction is
wanted.

The first group refers to machines such as engines or gearboxes where frictional
forces must be kept to a minimum. Reducing friction reduces power loss and reduces
wear on the bearing surfaces. This is usually achieved by using a fluid lubricant such
as oil. The surfaces in relative movement are kept apart and there is little or no metal
to metal contact. The frictional resistance then becomes a problem of fluid friction.
Engine bearings are lubricted by oil flowing continuously through a system. The oil
flow is caused by apump and carries away heat generated. If the oil pump fails, a
running engine usually seizes rapidly. The frictional resistance increases rapidly
without the oil film and high temperatures develop, resulting in white metal melting
and component surfaces welding. Engine treatments are now available in the form of
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a fluid that is added to the oil system after an oil change. The fluid deposits a
permanent thin film of plastic called polytetrafluoroethylene (PTFE) on the metal
surfaces in the oil system. When the oil is changed the plastic deposit remains on the
surfaces. This has a very low coefficient of friction, reducing frictional forces and
component wear. It also provides some protection to the engine in the event of an oil
pump failure.

For the second class of problems, friction must be kept to a maximum. Lubrication
must be avoided, and the contact surfaces must be kept clean and dry. These are the
types of problems we will be looking at, and they are very important and include such
things as brakes, tyre grip on the road, driving belts on pulley wheels, and clutches.
Consider the disastrous effects of lubrication reducing friction in these situations - oil
on your brake pads or riding a bike through a diesel spillage on the road. The study of
friction here will be restricted to dry surfaces.

Coulomb friction
There are several different types of friction but the main one of interest to us is called
coulomb friction. This is sometimes called dry friction, because it applies to clean dry
surfaces. One way of considering friction is shown in Figure 4.17.

Figure 4.17

Surfaces all have tiny irregularities, (no matter how smooth the surface). When
two surfaces move across one another, these irregularities interlock and cause a force
that resists the motion of the surfaces. The force always acts parallel to the contact
surfaces and in a direction that opposes the resultant motion. The force is called the
force of friction and is usually represented by F;
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mg

Centre
of gravity

Figure 4.18

Mass of block m kg

F

Think of a rectangular block of mass m kg resting on the horizontal ground (see
Figure 4.18). The block will not move unless a force is applied to it. As the block is
not moving then the forces present must be in equilibrium. There are two initial
forces acting on the block. These are the force of gravity mg acting vertically
downwards throughout the centre of gravity and the normal reaction RN of the
ground acting vertically up. In Chapter 2, the idea of a normal reaction was
introduced. This is the upward reaction force that the ground applies to the block.
This balances the gravitational force. If we now pull the block a little in a horizontal
direction (force F) but not enough to actually move it, a fourth resisting force F, is
produced due to the action of the block and the ground trying to rub together - a
frictional force. Remember that the force of friction always acts in a direction to
prevent or resist the motion of the body. If we gradually pull the block a bit harder,
increasing F, then the resisting friction force F, will increase so that F and F, will
remain numerically equal. This process will continue until a maximum value of F, is
reached, beyond which it cannot increase. A further increase in Fwill cause the block
to move in the direction in which Facts.

Admittedly, you will probably not come across a problem involving pushing a
rectangular block across a horizontal surface but this is a useful example to help
simplify the concept and thus make it easier to understand. The frictional force that
prevents the block from initially moving is called 'static friction' (some people call
this 'stiction'). The resisting frictional force that occurs when the block is moving is
called the frictional force of motion or kinetic force of friction. When these two
frictional forces are being represented, static friction is usually written as Ff(s) and the
frictional force of motion as Ff(k). Both static and kinetic friction forces are coulomb
or dry friction. Look at Figure 4.19. This is a plot of the dry or coulomb frictional
force between the block and the ground against the pulling force F.

The highest value of static friction reached just before the block starts to move is
called the limiting friction force. Kinetic friction is slightly lower than this value. This
is why, when a car is made to do an emergency stop, the greatest braking effect is
achieved by braking as hard as possible without letting the tyres skid on the road.
Some braking systems are now designed to exploit this effect and prevent the wheels
from locking completely when the brake pedal is pressed hard.
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Point of limiting friction

.>
Ff(k)

Ff(s)

F
Figure 4.19

Laws offriction
There are some laws of friction you need to be aware of. These were first investigated
by a French scientist in the 18th century called Coulomb, which is where the name
comes from for this type of friction. The laws are only approximate but accurate
enough for most problems. Do not try to learn them off by heart at this stage. Once
you have dealt with a few examples they will become familiar.

1. The frictional force always opposes motion and acts parallel to the surfaces. You
saw this in the sliding block example.

2. The magnitude of the frictional force F, is directly proportional to the perpendicu­
lar force between the two surfaces. With the sliding block this was the force of
gravity mg or the normal reaction RN •

3. The frictional force F, is independent of the area of contact. This means that, if
we turned the block onto one of its smaller ends and pushed in the same way, the
resisting force F, would be the same, provided that the surface of the end of the
block was the same as the original side.

4. The frictional force F, is independent of the speed of motion. Notice in Figure
4.19 that the line is horizontal for Ff(k)' provided that the velocity is not too high.

5. The limiting friction of Ff(s) is greater than the kinetic friction Ff(k) - which you
already knew.

6. The frictional force F, depends on the materials in contact and the condition of
their surfaces.

There are a few exceptions to these rules under extreme circumstances. For example,
if the force between the two surfaces (e.g. mg) becomes too high then the surfaces
can become welded together. These exceptions need not worry us for most prob­
lems.
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The coefficient offriction
There are two coefficients of friction. These are very useful to us. They are the
coefficient of static fricion, Ils' and the coefficient of kinetic friction Ilk. These are
based on law 2 but only apply once the point of limiting friction has been reached.
The coefficient of static friction is the ratio between the maximum frictional force F,
and the normal reaction RN •

Coefficient of static friction, fls = Ff(k)
RN

Once sliding is taking place there is a constant ratio between the frictional force F,
and the normal reaction RN. This is known as the coefficient of kinetic friction, Ilk.

Coefficient of kinetic friction, flk = ~~

Q Example 4.12
A tool box with a flat base which weighs 600 N is dragged across a concrete floor. A
horizontal force of 150 N must be applied to it before it starts to move. After it has
started to move a horizontal force of 120 N is sufficient to keep it moving at a steady
speed. Calculate the coefficients of static and kinetic friction.

When the tool box is on the point of moving, the applied force must equal the force of
limiting friction, i.e. Ff(s) = 150 N.

The normal reaction force exerted by the floor on the tool box is equal to the
weight of the box, i.e.

RN = 600N

Therefore II. =:: Ff(s) = 150 [.M = 0.25
, r-s R

N
600 [P4]

Notice that the coefficient has no units as the newtons cancel in the equation.

- Ff(k) _ 120 [Xl - 0 2
Ilk - R

N
- 600 [Xl - ·

If it takes a maximum pull of 4 N to open an empty drawer in the tool box that weighs
15 N, then how much of a pull is needed to open the drawer after you have put
spanners in it weighing 40 N?

.= Ff(s) = 4 [N] = 0.267
#s RN 15 [N]

The new total weight of the drawer = 15 [N] + 40 [N] = 55 N

Ff(s) = #s X R N = 0.267 x 55 [N] = 14.7 N

So the new force needed to open the drawer is 14.7 N.
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Angle offriction
Go back to the rectangular block on the ground being pushed. You can consider that
two of the forces, F, and RN , are exerted by the ground on the block. The resultant of
these two forces R is the total reaction exerted by the ground on the block.

R

Figure 4.20

In Figure 4.20 the angle ep (pronounced phi) that the resultant reaction makes with
the normal reaction is known as the angle of friction. As F, and RN are at right angles
then:

Ftan ep =_f
RN

You may have noticed that this is the same formula as for Ils and Ilk, so we can say
that:

at the point of limiting friction u, = tan ep
and when sliding takes place /l-k = tan ep

Now the four forces present with the sliding block can be replaced by three forces, R,
F and mg, and a force triangle drawn (Figure 4.21). The tangent of the angle of
friction is equal to the coefficient of friction for the surfaces. Notice that the resultant
of F, and RN, which is R, is inclined in the opposite direction to that in which motion
occurs or is about to occur.



o Example 4.13
A force of 500 N is required to pull an engine of mass 200 kg across a floor at a steady
speed. The force F acts upwards at an angle of 20° to the horizontal. What is the
coefficient of friction between the engine and the floor?

See Figure 4.22. In order to simplify the problem the force applied F can be resolved
into its vertical and horizontal components. The vertical component is equal to
F sin 20° (see page 37) and the horizontal component is equal to F cos 20°. The
vertical component of the force will reduce the force between the two sliding
surfaces.

F

Fsin 20°

Feos 20°

mg

Figure 4.22
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Force between surfaces = weight - vertical component

RN = m g - F sin 200

= (200 [kg] x 9.81 [~]) - (500 [N] x sin 20°)

= 1962.000 [N] - 171.010 [N]

= 1790.990 N

The force necessary to overcome the frictional resistance is equal to the horizontal
component of the applied force.

r, = Fcos 200

= 500 [N] x cos 200

= 469.846N

As the block is sliding then we are talking about the coefficient of kinetic friction.

Coefficient of kinetic friction, flk = ::

= 469.846 = 0.262
1790.990

The inclined plane and the screw thread
Imagine a block of mass m resting on a slope. There is negligible friction between the
bottom surface of the block and the slope.

See Figure 4.23. The weight W of the block acts vertically down and is equal to mg.

Wsina

W=mg

Figure 4.23
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The angle of the slope to the horizontal is represented by the angle a. The block
would tend to slide down the slope due to a component of the vertical force, W:

component of W acting down the slope = W sin a

The normal reaction between the block and the slope is equal to the component of
the force W that acts at right angles to the slope:

component of W acting normally to the slope = W cos a

The weight W has two effects, one that tends to move the block down the slope and
another that creates a normal reaction between the block and the slope.

Now, if we take friction into account and pull the block up the slope by a force
parallel to the slope, two forces must be overcome: a force due to gravity and a force
due to frictional resistance. See Figure 4.24.

W=mg

RN= Wcosa

~igure4.24

If Ii = :: then to calculate the frictional force resisting motion,

F, = 11 RN

Remember that the frictional force F,opposes motion and will therefore act parallel
to the slope. We know that the normal reaction between the block and the slope, RN ,

is equal to W cos a. Therefore the frictional force F, is equal to:

F, = fvl W cos a

The reaction of the slope on the block acts at an angle of ¢, which is the angle of
friction, to the normal reaction between the two surfaces. The total force to pull the
block,

F = force to overcome gravity + frictional resistance force.

F = tv sin a + 11 W cos a
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o Example 4.14
A block of weight 50 N is to be pulled up a slope inclined at 30°. The coefficient of
friction between the slope and the block is 0.2. Find the force required to pull the
block up the slope if it acts parallel to the slope.

The total force, F = W sin a + J1 W cos a
= (50 [N] x sin 30°) + (0.2 x 50 [N] x cos 30°)
= 25.000 [N] + 8.660 [N]
= 33.660 [N]

When a nut is turned on a bolt, the problem is similar to a block climbing up a slope.
We will consider a square section screw thread as it makes the example simpler. A
nut is used on the bolt to push against an axial load, W. If the bolt is positioned
vertically the force to turn the nut is assumed to be a horizontal one. The load Wthen
acts vertically.

Imagine one of the screw threads (shown in Figure 4.25) unwound.

Figure 4.25 Square screw thread

The bearing surface of the nut and bolt is like an inclined surface wrapped around
the shaft (Figure 4.26). The length of the slope is equal to the length of the helix of the
thread. The horizontal component of this slope is equal to the mean circumference of
the thread. The vertical component is equal to the pitch of the thread. To understand
how this works, we first need to understand the vertical and horizontal forces
involved when a block is pushed up an incline with a horizontal force.
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Pitch of
thread

Mean circumference of thread

Figure 4.26

Look at Figure 4.27. The total vertical component is the weight W. The horizontal
component X is the force that acts at right angles to the weight. The total angle
between the weight and the reaction of the slope is equal to (cjJ + a). The horizontal
component X necessary to pull the block up the slope can be found from:

(
Al ) opposite side horizontal component, X

tan 'Y + a = = ---------=----
adjacent side Weight, W

Therefore, horizontal component, X = tan(cjJ + a) x W

If you carry out the following calculations but for the horizontal force pulling the
block down the slope you will find that:

horizontal component, X = W tan(cjJ- a)

This is because the frictional resistance acts in the opposite direction.

Horizontal force

Figure 4.27
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Now think back to the unwound screw thread. If the average diameter of the screw
is d then the length of the unwound circumference is Jed. The pitch P is the length
moved along the screw if you follow exactly one turn. The torque required to turn
something is the force required, multiplied by the radius at which it is applied. For a
torque T applied to a screw thread, the force is always applied perpendicular to the
screw, which is the reason why the sliding block was considered with a horizontal
force pushing it. We can now apply the formula for that force to the screw thread.

Tscrew = X x mean radius

d= Wtan(if> ± a) X 2:

if> in this case is still the angle of friction, which is tan -1 Ii and a is the angle of the
slope which is tan- 1(PITld). The coefficient of friction between the nut and the screw
will affect the angle of friction and consequently the torque required to turn the nut.
You will be familiar with how much easier it is to undo a clean lightly greased nut and
bolt compared with the same type of nut and bolt that is corroded and dirty.

Q Example 4.15
A screw jack with a square thread of mean diameter 50 mm needs to lift a load of .
1000 N. The thread is single start and has a pitch of 10 mm. The coefficient of friction
for the nut and the screw is 0.2. Calculate the torque required to turn the nut.

(jJ = tan- 1 u = tan -1 0.2 = 11.31

a = tan- 1(PI.71d) = tan -1(10/.7150) = 3.64

d
Tscrew = Wtan«(jJ ± a) x 2"

= 1000 [N] x tan(11.31 + 3.64) + 50 x 10-
3

[m]
2

= 6.68Nm

The friction clutch
The internal combustion engine produces significant power only at high speeds. The
engine must revolve at a speed that will produce sufficient power before connection
of the drive to the wheelsis made. The clutchallows the drive torque to be taken up
gradually without reducing the engine speed too much, when movement commences
from a stationary position. The drive needs to be disengaged periodically to change
gear. A friction clutch is used in motor vehicles for transmitting torque from the
engine to the gearbox, allowing for disengagement during gear change or when
starting. The friction clutch uses the friction force that is produced when the driving
and driven elements are pressed together by springs to produce torque. When the
driving and driven element are held apart no drive is made. A common arrangement
of a plate clutch is shown in Figure 4.28.

The engine drives the flywheel. The torque of the flywheel needs to be transmitted
to the driven shaft. The driven plate is free to slide along the splined driven shaft. A
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Pressure plate

Driven plate

Figure 4.28

special friction material is riveted to either side of this plate. When the clutch is
engaged, a diaphragm spring in the clutch cover forces the pressure plate onto the
friction material of the driven plate. The driven plate moves along the driven shaft a
short distance and also comes into contact with the flywheel. The driven plate is then
sandwiched between the flywheel and the pressure plate, and the torque is transmit­
ted. When the clutch is engaged the flywheel and the driven plate must rotate at the
same speed without slipping. So there needs to be sufficient force and friction to
cause this. As the clutch pedal is pressed to disengage the clutch, a withdrawal sleeve
allows the clutch forks to push the pressure plate away from the flywheel. Torque can
then no longer be transmitted from the flywheel to the driven shaft. The clutch is
engaged and disengaged gradually by controlling the force that the spring applies,
pushing the plates together. There is a maximum torque that the clutch can transmit.
The torque produced by the friction must be greater than the resisting torque of the
driven shaft. When the maximum torque is exceeded the driven plate slips between
the flywheel and pressure plate. This provides some protection against damage of the
components and allows the drive to be engaged smoothly. This clutch has only one
plate but some can have several.

The torque and power transmitted by a clutch can be calculated as follows:

axial thrust = pressure on friction material x friction material surface area

= p [~2] x A [m2]
The friction material has a maximum pressure that it can be subjected to without
damage. This obviously affects the design of the clutch. For example, to enable a
certain axial thrust to be applied using a material with a low maximum pressure, a
larger contact area of the material must be used than for a material with a higher
maximum allowable pressure.
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The axial thrust acts normally to the friction material surface and so can be
represented by RN •

Using F, = f.1RN, the frictional driving force can be calculated from:

Ff [N] = f.1 x p x A [N]

The torque transmitted equals the frictional force multiplied by the mean radius of
the friction material surface (see page 42).

Torque = F, x r

= u x p x A x r [Nm]

The power transmitted is equal to the torque transmitted, multiplied by the shaft
speed in radians per second.

rrad]Power [W] = T[Nm] x W l-s-

o Example 4.16
A single plate clutch with a mean radius of 0.11 m has a friction material with a
coefficient of friction of0.3 and a contact area of23.5 x 10-3 rrr'. The pressure on the
friction material is 130 kN/m2

. Calculate

(a) the frictional driving force acting at the mean radius
(b) the torque transmitted
(c) the power transmitted when the shaft speed is 2500 rev/min.

The frictional driving force,

Ff [N] = f.1 x p x A [N]

= 0.3 x 130 [~] X 103 [~] x 23.5 X 10-3 [rrr']

= 916.5 N

Torque = F, x r

= f.1 x p x A x r [Nm]

= 916.5 [N] x 0.11 [m]

= 100.815 [Nm]

Power [W] = T [Nm] x to [r:d]
Here we need the shaft speed in radians per second and it is given in revolutions per
minute. Prepare a unity bracket before starting the calculation. Radians are
explained fully on page 104. For the moment though one radian is an angle of about
57°,

In one revolution, i.e. 360°, there are 2n radians.

1 rev = 2n rad
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Divide both sides by seconds:

1[r:v] = 2JT [r:d]
The revolutions per second need to be converted to revolutions per minute:

1 == 2n [ rad/s ] == 60 [rev/min]
60 rev/min 2n rad/s

These are the two forms of the unity bracket for converting rev/min to rad/s or vice
versa. When you are using a unity bracket, the unit that you want to get rid of is
always on the bottom and the unit you want to keep on the top. We want the shaft
speed in rad/s but are given it in rev/min so we use 2n/60[(rad/s)/(rev/min)].

Power [W] == 100.815 [Nm] x 2500 [r~v] x 2n[ rad/~ ]
!)H11 60 rev/~

== 26.393 X 103 Nm/s == 26.393 kW

(1 W == 1 Nm/s == 1 lIs; see page 183)

Disc brakes
A similar approach can be used to solve problems on disc brakes. A number of pads
are pressed onto the rotating cast iron disc to reduce the disc's angular velocity. The
pad assembly is attached to the axle casing or suspension. The brake operating
system is usually hydraulic. When the footbrake is pressed, a master cylinder
pressurises a hydraulic system which transmits the pressure to wheel cylinders acting
on the pads. The force acting on each pad depends upon the area of the piston in the
wheel cylinder: the larger the area the larger the force. When the foot brake is
released, return springs cause the fluid to flow back to the master cylinder. Two
opposed pistons can be used, acting directly on two pads on each side of the disc; or a
single piston can be used, with two pads sandwiched between the action of the piston
and the reaction of the piston housing.

Even four pistons can be used when a greater degree of safety is required.

Force acting per brake pad,

F == hydraulic oil pressure x cross-sectional area of each piston

F==pxA

Frictional force per pad == f.1 x p x A [N]

Total braking force per disc

r, [N] == n X f.1 x p x A [N]

The friction torque acting on each brake disc is equal to the total braking force per
disc multiplied by the mean radius of the pads:

T [Nm] == n x J.1 x p x A x r [Nm]
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The kinetic energy is dissipated as heat at the brake pads.
The work done by the disc is equal to the torque multiplied by the angle turned
through in radians:

work done = T[Nm] x orr]

The power transmitted (work done per second) is equal to the torque multiplied by
the disc speed in radians per second:

power = T[Nm] x (J) [rad/s]

This is equal to the heat generated per second.

o Example 4.17
A disc brake rotates at a velocity of 250 rev/min. A pair of friction pads act at a mean
radius of 0.15 m and the coefficient of friction between the pads and the disc is 0.32.
The diameter of the brake cylinder is 50 mm (= 0.05 m) and the hydraulic oil
pressure is 600 kN/m 2

. Calculate:
(a) the total braking force on the disc
(b) the torque acting on each disc
(c) the heat generated per second.

Total braking force per disc

F, = n x 11 x P x A [N]

The cross-sectional area of the cylinder, i.e. a circle, is .7ld2/4.

r, = 2 x 0.32 x 600 x 103 [:2] x lC x ~.052 [m2]

= 753.982N

T= n x 11 x P x A x r [Nm]

= 753.982 [N] x 0.15 [m]

= 113.097 Nm

Heat generated per second:

power = T [Nm] x (J) [rad/s]

= 113.097 [Nm] x 250 [r~v] x 2.71 [ rad/~ ]
rmn 60 rev/rnin

= 2960.872 Nm/s

= 2.961 kJ of heat generated per second
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4.5 Centripetal and centrifugal forces

Introduction
Newton's first law of motion states that a body will remain at rest or continue in a
straight line with uniform motion unless it is acted upon by an external force. If you
were to tie a large nut to a piece of string and spin it around your head, the nut would
move in a circular path. The string provides an inward pull to keep the nut moving in
the circular path. Let go of the string and the nut will fly off in a straight line. When a
body travels in a circular path like this, the outward force that the body applies in
attempting to travel in a straight lineis called a centrifugal force. The inward pull of
the string to maintain the circular path is called the centripetal force, and is equal and
opposite to the centrifugal force (see Newton's third law of motion). Centripetal and
centrifugal forces occur whenever a body moves in a circular .path. We have
established that a body will accelerate if the velocity changes. The velocity will
change if either its speed or direction changes. It is the direction that changes when a
body moves in a circular path.

Centripetal acceleration
Consider a body moving with uniform speed v in a circular path of radius r. See
Figure 4.29.

B

o

A

Figure 4.29
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c

Final
velocity, B

Figure 4.30

8

Initial
velocity, A

The body moves a short distance from A to B in time t. The velocity at A is v and
acts tangential to the circle at A. The velocity at B is v and acts tangential to the circle
at B. The angular displacement is 0 in radians. Although the speed is constant the
velocity diagram shows that there is a velocity change, C (see Figure 4.30).

This change is normal to the arc A B. The length of the line C can be estimated by
thinking of the triangle ABC as a part of a circle. Consider C to be the arc of a circle.
Its length can then be calculated from the angle 0 and the radius, v. If the angle 0 is
small then we can say that:

change in velocity C = v X 0

(as S = r 0 then C ~ v 0). This is accurate provided that the angle 0 is small,
The rate of change of velocity, i.e. acceleration, is equal to:

change in velocity
time

A d distance hen ti distances spee =, ,t en time = ---
time speed

The distance moved through = rt), The speed is v.

, distance rO
, ", tIme=---

speed v

A I
' change in velocity

cce eration = --~-, ----
tirne

V v2

= vO X - =-
rO r

As v = tor then also acceleration = w 2r

This is special type of acceleration. When a body travels at a constant speed in a
circular path, the acceleration is due to the constantly changing velocity which is due
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to the constantly changing direction. The acceleration acts along the radius towards
the centre of the circle, o. This is called the centripetal acceleration.

Centripetal force
We know from Newton's laws of motion that a body cannot accelerate unless a force
is applied to cause that acceleration. For the centripetal acceleration to occur, a
centripetal force must be applied. This acts in the same direction as the acceleration
of course, which is towards the centre of the circle' (Figure 4.31).

Centripetal
Acceleration

<

Figure 4.31

Centripetal force = mass x centripetal acceleration

v2

= m x - or m x w2r
r

Units check:

[N] = [kg][72] ~] = [k:2m]

Centripetal
Force

<

or [N] = [kgt:~2}m] = [k~2m]

(remember that radians do not count when checking units and that 1 N = 1 kg m/s ').

Centrifugal forces
The centripetal force can be applied in various ways. A simple example is someone
holding a bucket of water and spinning it around at arm's length. The tension in the
person's arm and in-the bucket handle provides the centripetal force. The inward pull
keeps the bucket on its circular path.

According to Newton's third law there must be an equal force in opposition to the
centripetal force. This opposing force is called centrifugal force and as it acts radially
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outwards. This centrifugal force is not applied to the bucket as the centripetal force
is; it is applied by the bucket on the handle and the holder's arm. The magnitude of
the centrifugal force is equal to the centripetal force, marr, but acting in the opposite
direction.

Consider a bike turning a corner at speed; centripetal forces are applied to the
vehicle from frictional effects between the road and tyres. Centrifugal forces are
applied by the bike opposing the centripetal force. If the road and tyre conditions are
poor and cannot create enough centripetal force from friction, then there is not
enough pull to keep the bike on its circular path a~d it will skid.

o Example 4.18
Calculate the centripetal and centrifugal forces that occur when a car takes a corner
at 45 km/h. The radius of curvature is 40 m; the mass of the car is 1150 kg; and the
driver has a mass of 70 kg. Calculate the centripetal acceleration and the centrifugal
force.

2

Centripetal acceleration = ~
r

velocity, v = 45 [~Jx 1000 [;] x 36~0~] = 12.5 [7]
v

2
(12 5)2[m2

] [ 1 ]centripetal acceleration = - =--'- 2 - = 3.906 m/s2

r 40 s m

(acting towards the centre of the arc).

Centripetal force = mass x centripetal acceleration

== (1150 + 70)[kg] x 3.906 [~] == 4765.320 N

As centripetal force magnitude = centrifugal force magnitude then:

centrifugal force = 4765.320 N acting radially outwards.

Vehicle side skidding and stability
Consider a vehicle negotiating a bend in the road. The vehicle moves in a circular
path. The friction forces, within limits, prevent sideways skidding. If the weight of
the vehicle mass m is mg and the coefficient of frictional resistance is /A, then the
maximum horizontal frictional resistance to sideways skidding isumg (see page 137).
This friction force is the 'pull' to keep the vehicle on its circular path, i.e. the
centripetal force. If the force of the vehicle acting on the road, i.e. the centrifugal
force mv']», is greater than the centripetal force umg; then the vehicle will skid. See
Figure 4.32. .

2

For maximum velocity, m ~ = umg
r
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<: JLmg
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mv2,

Therefore v2 =ugr

and v = Viiir
While the velocity of the vehicle is less than this value, Y;iii-, on the particular bend
the centrifugal force is less than the maximum possible centripetal force.

If the maximum velocity possible without skidding, vmax = Viiir, then this can be
rearranged to give a minimum safe radius without skidding:

. . . v2

rmmmum safe radius, rmin =-
J.1g

o Example 4.19
A car of mass 1320 kg travels round the same level bend every day. The radius of the
bend is 32 m. The tyres are new and the coefficient of friction between the tyre and
the road is 0.7. Two years later the tyres have worn and the coefficient of friction
between the tyre and the road is 0.38. Calculate the maximum velocity the car can
take the bend without skidding, when the tyres are new and when they are two years
old.

New tyres,

vmax =Viiir = JO.7 x 9.81 [~] x 32 [m] = 14.824 mls

14.824 ~] x 1~00 [~] x 3600 [~ = 53.366 km/h .



Science for Motor Vehicle Engineers

Two years later,

Vrnax = YJW= )0.38 x 9.81 [~] x 32[m] =1O.922m/s

10.922 [7] x 10~ [~] x 3600 [~] = 39.319 km/h

When a vehicle is at rest the weight is evenly distributed between the two nearside
and two offside wheels. When a vehicle travels round a bend, the weight distribution
will change, although the weight of the vehicle will always equal the sum of the
reactions of the wheels. If the frictional force preventing sideways skidding is
sufficient when a vehicle takes a bend at high speed, then it is possible for the vehicle
to overturn. The vehicle tilts about the wheels, B, that are furthest from the centre of
the circular path (see Figure 4.33).

o G-L .-------0- __

Figure 4.33

mg

s

The vehicle is on the point of overturning when the reaction force RA on the inner
wheels is zero and the reaction on the outer wheels RB is equal to the vehicle weight,
mg. The centrifugal force of the vehicle acts horizontally through the centre of
gravity G. The weight of the vehicle acts vertically through the centre of gravity G.
The height of G above the ground is h. To consider the stability of a cornering vehicle
we can calculate the turning moment about the outer wheels. We assume that the
vehicle is symmetrical and that G is positioned at half the distance between the
wheels S.
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The stabilising moment (anti-clockwise)

= weight x ! distance between the wheels
2

1
= mg x-S

2

The overturning moment (clockwise)

v2

= centrifugal force x h = m- x h
r

At the point of overturning:
overturning moment = stabilising moment

v2 1m- X h = mg x- S
r 2

v2 1-xh=gx-S
r 2

The maximum velocity without overturning:

( )
2 _ Sgr

Vrnax - ~

rsg;
:::} Vrn ax = ~~

We can rearrange this to give a minimum safe radius without skidding:

v2 x h 1
--=gx-S

r 2

~ .. f di 2v
2h

'7' rmrnmum sa e ra IUS, rrnin =--
Sg

For this maximum velocity and minimum safe radius for stability, assume that the
frictional force between the tyres and the road is sufficient to keep the vehicle on its
circular path. If not, then the vehicle will skid before it overturns. The formulae are
useful when considering the design of vehicles; the greater the track width S and the
smaller the height of the centre of gravity h, then the more stable the vehicle will be
on cornering. Notice that racing cars and sports cars tend to be wide and low.

Q Example 4.20
The track width of a vehicle is 1.62 m. The centre of gravity is 0.8 m above the
ground. The coefficient of friction between the tyre and the road is 0.67. The mass of
the vehicle is 960 kg. Calculate the maximum speed with which the vehicle can take a
bend of radius 27 m without overturning or skidding.
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Maximum velocity without skidding:

v = Viiii-

= JO.67 x 9.81 [~] x 27 [m]

;::: 13.322 mls

Maximum velocity without overturning:

v = fSiTvV;
1.62 [m] x 9.81 [m/s ] x 27 [m]

2 x 0.8[m]

= 16.376m1s

Maximum velocity = 13.322 [m] x _1_ [km] x 3600 [~]
s 1000 m h

= 47.959 km/h

If this velocity is exceeded then the vehicle will skid.

Bike skidding and stability on cornering
A bike does not have two lines of wheels, only one, making the width of the track S
equal to zero. Therefore the formulae for stability previously derived cannot be
applied to bikes. There are several forces involved when a bike negotiates a bend.
See Figure 4.34.

The centripetal force to 'pull' the bike round the bend is flmg and the reaction of
the road on the wheel is R. The weight of the bike acts vertically down through the
centre of gravity, G, and the centrifugal force, mv'Lr, acts horizontally outwards
through the centre of gravity, G. The height of the centre of gravity above the ground
can be varied by the bike leaning over through different angles. The bike pivots
about the contact point between the tyre and the road. The distance from the centre
of gravity to the pivot point remains constant: I. As the force of gravity acts vertically
downwards, then the component of this that causes a clockwise turning moment is
mg sin () (see Figure 4.35).

Therefore clockwise turning moment = mg sin () x I. The component of the
2

centrifugal force that causes an anti-clockwise turning moment is mv cos () (see
r

Figure 4.36).
2

Therefore anticlockwise turning moment = m ~ cos () x I
r

For equilibrium,
clockwise turning moment = anticlockwise turning moment

mv":;> mg sin () x I = - cos () x I
r
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Figure 4.34

mg

R

Motion

mv?
r

Figure 4.35

mg
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mv 2 sin8,
mv 2 cos 8,

mv?,

Figure 4.36

2 rg sin e
.'. v = = rgtan e

cos e

8

(as the sin of an angle divided by the cosine of the same angle is equal to the tan of
that angle) .

. ", v = Yrgtan e
The formula for the maximum velocity without slipping is the same as for other
vehicles, i.e. Vrnax = Yjiir.

o Example 4.21
A bike negotiates a level bend of radius 32 m at a speed of 70 km/h. The coefficient of
friction between the tyres and the road is 0.7. What angle must the bike lean over to
take that corner? What might prevent the bike from actually taking the corner at this
speed?

70[km] x 1000[~] x _1 [~] = 19.444[m]k )Qn 36000 s s

Since v = Y rg tan ()

v2

tan e=-
rg

.'.0 = tan-
1
(;;)

19.444
2 [722

]

= tan-I

32 [m] x 9.81 [~]

= tan-I (1.204)

= 50.3° from the vertical

Obviously there is a limit to how far a bike can lean over before something scrapes
the ground, such as the exhaust. Racing bikers can be seen taking bends at very high
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speeds by leaning the bike over as far as possible and then shifting their body weight
further off the seat. This shifts the centre of gravity inwards to the bend centre,
increasing the effective angle, (J.

Balancing ofmachines
If a mass rotates and the centre of gravity is not in the same place as the axis of
rotation, thena centrifugal force acts outwards. This happens when a shaft has a mass
fastened to it or a wheel is not correctly balanced. This eccentric load is very
damaging to components and produces excessive vibration and bearing wear. To
balance the shaft a balancing mass can be placed diametrically opposite in the plane
of rotation. The centrifugal force of the balancing mass must be equal and opposite to
the centrifugal force of the eccentric mass. If Me is the eccentric mass at a radius R
from the centre of rotation, then the centrifugal force Fe is:

Fe = Me X w2 X R .

To provide an equal and opposite centrifugal force, a mass; Mb must be placed
opposite -at a radius, r, as in Figure 4.37.

R + r

Figure 4.37

To balance M cw2R = M bw 2r
MeR = Mbr

The product of MeR or Mbris the moment of mass sometimes referred to as the mass
moment. The centre of gravity of the mass must lie in the plane of rotation, or a
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rocking action will occur. In the chapter on forces we established that, if several co­
planar forces are represented by a force polygon, then the polygon must close for
equilibrium. If there' are several out of balance masses rotating on a shaft at different
radii, all in the plane of rotation, they can be balanced in two ways, either by
arranging them in such angular positions that their vector diagram closes, or by
placing an additional mass so that the vector of its centrifugal force closes the
diagram.

o Example 4.22
Two masses, A and B, are attached to a flywheel. Mass A is 0.5 kg and is placed at a
radius of 0.11 m. Mass B is 1.2 kg and is placed at a radius of 0.13 m and at 90° from
mass A.

A further mass, C, of 0.75 kg is available to balance the flywheel. Where must it be
placed? See Figure 4.38.

I
I
I
I
I
I
I

: 0.5 kg

CD
E :
;: I

--- -~ 0- - ~- /~j ----®-------
O

~ ~ ~ v.>: I .. •

.... ' ........ " 0.13m

0.75 kg

Figure 4.38

Mass moment of A = 0.5 [kg] x 0.11 [m] = 0.055 kg m
Mass moment of B = 1.2 [kg] x 0.13 [m] = 0.156 kg m

Figure 4.39 shows the vector diagram. According to the scale, the mass moment of C
is 0.165 kg m.

Mass moment of C = me x re

. _ mass moment of C
. · re - -------

= 0.165 [kg m] = 0.221 m
0.75 [kg]
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0.156 kg m

0.055 kg m

Figure 4.39

tan ()= 0.055 [kg m]
0.156 [kg m]

. () = -1 (0.055) = 19 40.. tan 0 5 ..1 6

90° + 19.4°= 109.4° anti-clockwise to mass A

A vehicle tyre is manufactured to be balanced but when the complete wheel is
assembled, it will often require the addition of a balancing mass. The wheel can be
balanced in the plane of rotation, as we have seen, by clipping a single mass on to the
rim of the wheel in the correct position. When a wheel requires balancing in this
manner it is referred to as a static unbalance. If the wheel is spun round with a static
unbalance, it will always come to rest in the same position due to the 'out of balance'
mass stopping below the axis. If a wheel is used with static unbalance the tyre will
wear unevenly.

Dynamic unbalance occurs when masses creating centrifugal forces do not act in
the same plane. This is sometimes referred to as wheel shimmy and causes serious
damage. See Figure 4.40.

t
or

Figure 4.40
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Static unbalance can be corrected using simple equipment with the wheel station­
ary and clipping a mass to the wheel rim. More complex equipment is needed to
correct dynamic unbalance as the wheel must be rotated to correct the problem.

I 4.6 Simple harmonic motion

Introduction
Simple harmonic motion is a precise type of periodic motion. 'Many types of motion
in engineering can be considered as being approximately the same as simple
harmonic motion which enables calculations to be carried out. For this chapter we
will abbreviate simple harmonic motion to SHM.

Defining simple harmonic motion
Think of an engine piston and crank mechanism, as shown in Figure 4.41.

A

B

c

Figure 4.41

The piston moves periodically between A and B. The velocity and acceleration of
the piston are not uniform and the formulae we have looked at that deal with motion
cannot be used. As the piston moves down and approaches B, 'itsvelocity reduces. At
B, the piston comes instantaneously to rest before reversing direction. The piston
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then accelerates from rest and the velocity increases. After the piston has passed the
mid-point between A and B, the piston velocity reduces and comes to rest momen­
tarily at A. Then the piston accelerates from rest towards B again and the velocity
increases. After the piston has passed the mid-point between A and B the velocity
reduces as the piston approaches B again. The process is repeated. As the piston
comes to rest momentarily and the direction reverses, the acceleration is at a
maximum and the velocity is zero. The velocity increases towards the mid-point and
is at a maximum at the mid-point. The acceleration at the mid-point is zero. The
motion of a piston can be described approximately by SHM if the crank moves with
constant angular velocity. SHM is defined as a periodic motion in which:

1. the acceleration is always directed towards a fixed point in its path
2. the acceleration is proportional t<? its displacement from a fixed point in its path.

Displacement, velocity and acceleration of simple harmonic
motion
In Figure 4.42, the point D moves with SHM along the circle diameter between
points A and B. The point C moves with constant angular velocity w around the circle
with radius R and centre O. The motion of C is projected onto the diameter AB.

I V
I
I
I
I
I

Wi

~ C
I
I
I
I
I ~I
I
I
I
I
I fJ

B 0 x 0 A
~ ~

Figure 4.42

Think of an object spinning in a circle in the air in a vertical plane that leaves a
shadow on the ground. It is this projected point that is D, moving with SHM. From
this we can derive equations of motion for displacement x, velocity v and for
acceleration a. The displacement of D from 0 is x. We can say that:
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cos () = ~
R

.'. x= R cos ()

As w = Olt then () = wt

then ... x = R cos wt

The linear velocity of C, v = wR around the circular path. A velocity diagram is
drawn for the linear velocity of C when the angular displacement is 0 as shown in
Figure 4.43.

The horizontal component of this diagram represents the velocity of D at that
instant. Therefore:

. 0 veloctty of D
sin =--~--

velocity of C

... velocity of D = velocity of C x sin 0

=wR sin 0 mls

The displacement of D from the mid-point is x. The distance between D and C in
triangle OCD can be found from:

R2=x2 + DC2

DC = YR2 -x2

. DC YR2
- x2

Also sIn f) = - =----
R R

Velocity of D = wR sin ()

YR2 - x2

=wR---­
R

. . v = wYR2 - x2

The maximum velocity will occur when the displacement x is zero.

v(max) = wR

i.e, when () == 90°or 270°.
The centripetal acceleration of a body is equal to w2r acting towards the centre of

rotation. The acceleration of C can be regarded as centripetal acceleration, always
acting towards O. Therefore we can say that the acceleration of C = (1)2r . Another
vector diagram may be drawn of the acceleration of C to give:

() acceleration of D
cos =------­

acceleration of C

.. Acceleration of D = acceleration of C x cos ()

=w 2r cos ()m/s2

x
Also we can say that cos () =R
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Velocityof D

8

Figure 4.43

" Acceleration of D = 0/R ~ = bix

=w2 x displacement from mid-point of travel

This agrees with one of the definitions of SHM, that the acceleration is proportional
to the displacement x from a fixed point. The maximum displacement x is the radius
R and so the maximum acceleration occurs when x = ±R.

a(max) = ±w2R

i.e. when () = 0° or 180°.

So to summarise:

displacement = R cos wt

velocity = wYRz - xZ

maximum velocity = wR

acceleration = w2x

maximum acceleration = (J)2R

Some definitions
Amplitude
The maximum displacement from the centre 0 is called the amplitude of the motion.
If there is no friction, or damping (see later), the amplitude R remains constant.
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Periodic time
The periodic time is the time for one complete oscillation or vibration of D, or one
complete revolution of C. If the velocity of C is Rio in metres per second and the
displacement for one' revolution is 2nR, then the time taken for one revolution is:

° dO ° displacement 2nR [ rad ]perlo IC time = =-- --
velocity Rw rad/s

2:rc
=-s

to

Frequency
The number of complete oscillations, or cycles, occurring in a unit of time is called
the frequency f. This is always the reciprocal of periodic time:

1 w
frequency, f = t = 2:rc

The unit of frequency is the hertz [Hz], which is one cycle per second. As
acceleration, a = w2x , then w = YaiX.

P Od" 2:rc 2:rc 2 lerlO IC time t = - =-- = n - s
, to YaiX a

IIIFrequency, f = - = - - Hz
t 2:rc x

The frequency of an SHM system is also sometimes referred to as the natural phase
rate, natural frequency or resonant frequency.

o Example 4.23
A bike engine revolves with a constant velocity at 1200 rev/min. The speed of a piston
crown at a distance of 25 mm from the centre of oscillation is one half of the
maximum speed. What is the amplitude and maximum acceleration of the piston
crown? Assume that the pistons move with SHM.

The angular velocity of the engine measured in revolutions per second will equal
the frequency of the periodic motion of the pistons.

1200 [re.v] = 1200 [r~v] x ..!- [min] = 20 [rev] =f
mm mm 60 s s

As f= l/t then t = l/f. Periodic time = 1/20 s = 0.05 s.

Velocity, v = wVRz - xZ and maximum velocity = wR.

There are a few unknown values at the moment. We know the displacement x when
the velocity v is half of the maximum velocity. Write down what you know:

v(max)/2 = wYRz - xZ (1)

v(max) = to x R (2)
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Now substitute equation 2, for v(max) into equation 1:

wR = wVR2 _ x2
2

As the w value is a multiple on each side, then it can be cancelled from each side. The
term on the right has a square root. The formula will be easier to deal with if the left
hand term is squared instead:

(~r =R2
- X

2

R2_ R
2

= O.75R2= x2
4

. '. R = J O~;5 = JOO~~~2 [m] = 28.867 X 10-3 m

The amplitude R will also be the same length as the crank radius causing the
reciprocating motion R = 28.9 mm.

Maximum acceleration = w2R

(20[r:v] x 2n [~:~]r x 28.867 x 10-3 [m] = 455.8 m/s2

Remember that to is always measured in radians per second. The units in the above

calculation result in [r~~2] [m] = [~ ].

Vibrating mass on a spring
An interesting and useful application of the theory we have derived above is to a mass
that vibrates on a helical spring. See Figure 4.44.

d

Figure 4.44

r~
9J_~- _-:_-_-_-:_-_-:_-:::_-: :J~~ ..-----..- rK (d + x)

Tmg



Science for Motor Vehicle Engineers

A helical spring hangs vertically and carries a mass, m. To simplify things, we will
assume that the spring is perfectly elastic and obeys Hooke's law, andalso that the
mass of the spring is very small compared with the mass m. The force that a spring can
exert is calculated using the spring stiffness, k, which has units of newtons per metre.
The restoring force can then be calculated by multiplying the spring stiffness by the
length that the spring is stretched or squashed along its length, known as the
deflection d. .For example, if a spring has a stiffness k of 200 N/m and when hung
vertically supports a mass of 3 kg, then it will deflect as follows:

force in spring = gravitational force on mass

kXd=mxg

. · . d= ~g = 3 ~~81 [kgl[~ ][~]

= 147 x 10-3 m = 147m~

In Figure 4.44, the difference between the spring unstretched and stretched by the
mass isd. Imagine that the mass is then pulled down a little further, a distance of x,
and let go. The mass would start to oscillate up and down in a way we could describe
by SHM. As the mass is released the body moves upwards with an acceleration
towards O. This acceleration can be calculated by adding up the different forces:

total downward force on the spring = mg

total extension of the spring = (d + x)

total upward force on the spring = -ked + x)

We put a minus sign in front of this term as x increases downwards and the
acceleration increases upwards. It is important to establish a convention and stick to
it.

Net restoring force on the spring = -ked + x) + mg

But kd = mg so,
net restoring force becomes -mg - kx + mg = -kx

Also, using Newton's second law,
force causing acceleration = mass x 'acceleration, ma

-kx
So, ma = -kx, and a =--

m

This indicates a mass moving with SHM as:
acceleration = constant x displacement

We can now work out a formula for the frequency of the vibrating mass:

f f
1 acceleration 1 Jarequency = - = - -

, 2:n displacement 2:n x

Substituti f kxu stitutmg or a =-:
m
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f =l- Jkx l = l- Jk Hz
2n m x 2n m

From the static deflection state we know that mg = kd and so gld = kIm.

Also thenf= ~~HZ

Notice that the frequency of oscillation depends only on the static deflection, which is
itself dependent upon spring stiffness and mass.

Q Example 4.24
For the spring that has a stiffness k of 200 N/m mentioned previously, calculate the
frequency of oscillation for the suspended 3 kg mass vibrating and the frequency and
periodic time for a 2 kg mass vibrating.

For a 3 kg mass:

frequency, f = l- [k = l- fiOO [J N ] = 1.30 Hz
2n vm 2n V3 . m kg

Units check: [~] = (Js:~ :g] = [#] = [Hz]

For a 2 kg mass: __

I ~ 1 ~OO[J N ]frequency, f= - - = - - -- = 1.59 Hz
2n m 2n 2 m kg

Periodic time,

Pendulums

1 1
t = - = -[Hz] = 0.63s

f 1.59

Another interesting and useful application of SHM theory is to a swinging pendulum.
Figure 4.45 shows a mass hanging on the end of a length of string. The other end of
the string is attached to something solid. If the mass is moved sideways and released
then it will swing and oscillate.

The. downward force on the mass is mg. We can split that up into two forces as
shown in Figure 4.46 (see page 170).

The force component mg sin fJ will produce a clockwise torque T about O. For
small angles sin 0 = ()T, making the force component mg OT. Now think back to
rotational dynamics on page 129. For the mass m the moment of inertia about 0,
10 = m12

•

Applying Newton's second law, T= loa

~ -mgOT 1= ml/:« .

Notice the negative sign with the left term. As () increases away from OX, torque
increases towards OX.
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Figure 4.46
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~ -g Of= La

Acceleration, a = angular acceleration x radius

... a = _gOf

Provided that the displacement angle Of is small then we can say again that:
acceleration is proportional to Of, as g is constant, and displacement is proportional
to Ofas Lis constant. Therefore the acceleration is proportional to displacement and
the mass moves with SHM.

We can now work out a formula for the frequency of the swinging pendulum.

Frequency, f = 1.- ~
2n~~

= 1.- fiO = 1.- ~
2n ~W 2n ~l

This shows that the frequency of a pendulum depends upon the length (apart from
variation in the value of g) and not on the mass.

o Example 4.25
A weight suspended from a length of string forms a simple pendulum. The
amplitude, R, is 0.3 m and the periodic time is 4 s. Find the length of the piece of
string, and the maximum velocity and maximum acceleration. When the displace­
ment x is 0.1 m, what are the velocity and acceleration?

If frequency, f = 2~ t then rearrange to get:

g 9.81 [m] [2]
length, I = (2nf)2 = (2n!)2 S2 s = 3.976 m

(remember that f= lit).

Maximum velocity, Vmax = wR = 2n(l/4)0.3 [~] [m]

= 0.471 m/s

Maximum acceleration a m ax = w2R = (2n(l/4)f x 0.3 [~] [m]

= 0.741 [rn/s"]

Velocity, v = wYR2 - x2

= 2n(l/4) VO.32
- 0.12

[7] = 0.444 m/s

Acceleration, a = w2x = (2n(l/4)f 0.1 [:2] [m]

= 0.247 m/s 2
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Q Example 4.26
A pendulum is required to reach the limit of travel each swing every second.
Calculate the length of the pendulum.

If it reaches each limit of travel every second then the total periodic time = 2 s.

1 1
f= t = 2 [8] = 0.5 Hz

f=1.. Ii.
211: ~l

9.81[~]
· · · I = (2;j)2 = (2JrO.5)2

= O.994m

Damping
So far we have ignored friction with SHM. In practice, friction is always there in some
form. A mass vibrating on a spring soon comes to rest if left alone. When energy is
drained from an oscillating system, either by friction or some other method, the
amplitude of oscillation reduces. This is called damping. A system with zero damping
would oscillate indefinitely. Extra damping is sometimes caused intentionally in a
system. Suspension systems are designed to have damping added to them to limit
oscillations of the vehicle. A damper (often called a shock absorber) is fitted to
absorb some of the energy stored in the spring and reduce the number of oscillations
between a wheel hitting a bump and the spring returning to its rest position.
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Instruments are designed to have damping, so a dial needle does not oscillate but
comes to rest in the shortest possible time. When a system just fails to oscillate and
comes to rest in .the shortest possible time, it is said to be critically damped. If it
oscillates before coming to rest it is underdamped. If it does not oscillate but takes
longer to come to rest than if it were critically damped, it is overdamped. Figure 4.47
shows a system with a step input applied to it with different amounts of damping
applied.

Damping is used to control the oscillations of a dynamic system. This is a serious
consideration in design.

Problems 4
1. A car moves with a uniform speed of 50 km/h. How long will it take to travel

50m?
2. A car travels at 50 km/h. It then accelerates at a uniform rate of2 m/s'', How long

is it before the car reaches a speed of 100 km/h?
3. A car travelling at 60 km/h is involved in an accident and stops in a distance of

20 m. Calculate the rate of retardation and the time taken to stop.
4. A vehicle starts from rest and moves with uniform acceleration for one minute to

a speed of 50 km/h. It then continues at this speed for 2 minutes. The vehicle then
slows down with uniform retardation to rest over 20 s. Calculate the total
distance travelled.

5. The velocity of a lorry is 100 km/h due north. A car travels north-west at 50 kml
h. What is the relative velocity of the car to the lorry?

6. A flywheel rotates at a constant angular velocity of 50 rad/s. Calculate the
number of revolutions made by a point on the flywheel rim in one minute.

7. The wheels of a vehicle have a diameter of 0.5 m. Calculate the angular velocity
of the wheels when the vehicle travels at 100 km/h.

8. A truck of mass 1000 kg travelling at a velocity of 3 m/s due north collides with
another truck 1500 kg travelling at a velocity of 1.5 m/s due south. After the
impact the trucks remain locked together. Calculate the velocity of the trucks
after impact.

9. A vehicle of mass 3000 kg moves at 10 km/h on a level road. It collides with a
stationary truck of mass 1500 kg. They move off together after the impact.
Calculate the velocity after the impact.

10. A steel component, 0.5 kg, rests on the horizontal surface of a marking table. A
force of 0.981 N is required to make the component start to slide over the table
surface.· The coefficient of kinetic friction between the two surfaces is 0.24.
Calculate the coefficient of static friction and the force required to keep the
component sliding over the surface at a steady speed.

11. A machine of mass 200 kg is dragged across a horizontal floor. The force
required to keep the machine sliding is 510 N. The machine is partially stripped
down reducing the mass by 27 kg. What is the new force required to keep the
machine moving?

12. A block of mass 20 kg rests on the horizontal ground. The force required to keep
the block moving is 47.088 N. What is the angle of friction?

13. The brakes of a car lock all four wheels. The coefficient of friction between the
road and the tyres is 0.38. What is the maximum slope that the car can rest on
without sliding down the slope?



Science for Motor Vehicle Engineers

Hint: look at the section on the inclined plane. In this case though, as the
potential motion of the vehicle is down the slope the frictional force acts up the
slope opposing the force due to gravity down the slope. The normal reaction
RN is W cos a. The force component acting down the slope due to gravity F is
W sin a. As the vehicle just starts to slide the frictional force is equal to this
force component acting down the slope. The coefficient of static friction, f.J" is
therefore equal to = (Ff/R N ) = (Wsina)/(Wcosa). Asthe sine of an angle
divided by the cosine of that angle is the tangent of that angle, i.e. (sin a)/
(cos a) = tan a, then the value off.J, =' tan a. This is a useful way of determining
the coefficient of friction between two surfaces. At the point where a body just
about slides down a slope the friction force up the slope equals the gravitational
component acting down the slope.

14. Give two examples- in a motor vehicle where friction must be kept to a minimum,
and two examples where friction is useful.

15. A car has a mass of 1350 kg and travels along a horizontal road. The value of the
coefficient of friction f.J, between the tyres and the road is 0.5. What is the
maximum retarding force that can be used without the car skidding?

16. A block with a mass of 20 kg rests on a slope of 10°.The value of the coefficient of
friction Jl for the two surfaces is 0.25. What force acting parallel to the slope is
required to pull the block up the slope?

17. A block with a mass of 15 kg is pulled up a slope of 10°. The value of the
coefficient of friction Jl is 0.2. The surface of the road changes further up the
slope and the value of the coefficient of friction Jl changes to 0.26. Calculate the
force required acting parallel to the slope before and after the change of road
surface.

18. A tool box weighs 18 kg and is dragged along the horizontal ground at a steady
speed by a force of 45 N acting at an angle of 10°upwards from the horizontal.
What is the coefficient of friction Jl?

19. A vice has a spindle with a single start screw thread of mean diameter of 25 mm
and pitch 5 mm. It needs to apply a force of 600 N. The coefficient of friction Jl
between the spindle thread and the housing thread is 0.22. What torque needs to
be applied to the spindle?

20. A load of 1000 N is pulled along the ground at a steady speed by a force of 300 N
at an angle of 65° to and above the ground. What is the coefficient of friction, Jl?

21. A motor vehicle has a single. plate clutch with a mean radius of 0.17 m. The
friction material has a coefficient of friction of 0.3 and a contact area of
3~.5 x 10-3 m2

• The pressure on the friction material is 140 kN/m 2
. Calculate

the torque transmitted and the power transmitted when the shaft speed is
1500 rev/min.

22. The crank pin of an engine is 0.25 m from the crank shaft centre. The engine
rotates uniformly at 2000 rev/min. Calculate the acceleration of the crank pin.

23. A four-wheeled two axle vehicle travels at a uniform speed of 50 km/h around a
curve of 100 m radius. The distance between the wheel tracks is 2 m. The centre
of gravity of the vehicle is 1.3 m above the ground. The total mass of the vehicle
is 3500 kg. Calculate the maximum velocity possible without overturning.

24. A bike negotiates a bend of radius 50 m at a speed of 50 km/h. The coefficient of
friction between the tyres and the road surface is 0.6. What, angle must the bike
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lean over to? What is the maximum speed that the bike can travel around the
bend without slipping?

25. Two masses, A and B, are attached to a flywheel. Mass A is 1 kg and attached at
a radius of 0.05,m. Mass B is 2 kg and attached at a radius of 0.9 m and at 1500

clockwise from 'A'. A further mass of 0.7 kg is available to balance the flywheel.
Where must it be placed?

26. Calculate the length of a pendulum that makes four complete oscillations per
minute.

27. A piston of mass 0.5 kg moves with SHM at a frequency of 15 Hz. The stroke
length is 100 mm. Calculate the acceleration at top dead centre.
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I 5.1 Work

Work, energy and power

The definition of work in engineering is rather different from the everyday meaning,
and more precise:

Work is said to be done when a force is applied to a body and causes it to move. The
quantity of work is measured by multiplying the force by the distance moved in the
direction of the force,

i.e. work = force x distance moved in the direction of force

The units of work are the joule [J]. If you calculate the units you will get
[N] x [m] = [Nm]. The definition of the joule is the work done when one newton of
force displaces one metre along its line of action. So, 1 Nm = 1 J. If Fis the resultant
force acting on a body and S is the distance moved in the direction of the force then:

Work = Fx S[Nm] = FS[J]

CI Example 5.1
Calculate the work done when a car is pushed along a level road in a straight line. The
force applied is constant at 350 N and the distance that the car moves is 50 m (Figure
5.1). '

Work done = F x S

= 350 [N] x 50 [m]

= 17500Nm

= 17.5 kJ

It is important to remember that only movement in the direction of the force counts
towards the work done. This next example will make this clear.

F~

5=50 m
Figure 5.1
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Q Example 5.2
The car in Example 5.1 is pushed again by a force of 350 N in a straight line along
50 m of level road. This time, however, the force is applied at an angle of 300 to the
direction of travel. Calculate the work done (Figure 5.2).

Fsin 30°

Fcos 30°

Figure 5.2

The force Fcan be split into two forces, one Fsin f} at right angles to the line of travel,
the other F cos ()acting along the line of travel. The component F sin ()does no work
at all, as there is no movement along its line of action. The .only component in line
with the motion of the vehicle is F cos ().

Work done = Fcos () x S = 350 x cos 300 [N] x 50 [m]

= 15155.445 Nm = 15.2 kJ

In this case the force is constant throughout the whole distance. If the force varies
uniformly then the average force must be used.

o Example 5.3
A car with mass of 1350 kg is raised 2.5 m on a hydraulic ramp. Calculate the work
done.

Work done = F x S = m x g x S
= 1350 [kg] x 9.81 [m/s''] x 2.5 [m]
= 33109 Nm = 33.1 kJ

If a graph is plotted of force against distance moved, the area under the graph
represents the work done.

Q Example 5.4
Consider a spring with a stiffness of 10 N/mm. The spring is compressed 10 mm.
Calculate the work done.

The first force of 10 N compresses the spring 1 mm, another 10 N (20 N total)
compresses the spring another 1 mm (2 mm total) and so on.

F= kx where k is the spring stiffness and x is the distance compressed

= 10 [:m] x 10 [mm]

= lOON
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0+100
Average force = 2 [N] = 50 N

Work done = average force x distance
= 50 [N] x 10 x 10-3 [m] = 0.5 J

If a graph is drawn to represent this, it will look like that in Figure 5.3.

Force, N

100

50

Figure 5.3

5

Area = Work

10 Displacement, mm

Area under graph is a triangle of height 100 N and base 10 mm.

Area = 100 [N] x 1~ x 10-
3

[m] = 0.5 J

A graphical solution can sometimes be much simpler than calculations when the
force varies with time. It also provides a clear picture. A work diagram can also be
dra~n from torque T versus the angle turned through () for rotating bodies.

I 5.2 Energy

Energy is defined as the ability to do work. It is the quantity of work stored up in a
body. The unit of energy is, therefore, the same as that of work, the joule J. There are
many different ways of storing work and so many different forms of energy. The two
of interest in mechanics are: potential energy and kinetic energy.
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Potential energy
Potential energy is the energy stored up in a stationary body. This can be due to its
position or condition. It is normally abbreviated to PEe

If a body of mass m is raised by a vertical height h then:

work done in raising the mass = F x S
=mxgxh

Potential energy = mgh

Work is done on the mass to change its position. At the height h the body has stored
up in it mgh joules of potential energy. If an engine of weight 1500 N is raised 2 m
with a crane, the work done in this lift is 1500 [N] x 2 [m] = 3000 [Nm]. At this
height the engine has stored up in it 3 kJ of potential energy, because of its position.
If the engine is allowed to fall back to the ground, then it would give up this amount of
work.

Potential energy can be stored up in a body because of other conditions. A loaded
suspension spring possesses potential energy. Pressurised hydraulic oil in a braking
system is another example of potential energy.

o Example 5.5
A mass of 1 kg falls from a height of 10 m onto a vertical pile that is to be driven into
the ground. The resisting force of the ground on the pile is 7 kN. Ten per cent of the
available energy is dissipated on impact as sound, heat, etc. How far is the pile driven
into the ground?

Potential energy = mgh

= 1 [kg] x 9.81 [~] x 10[m]

= 98.1 Nm

As 100/0 of the energy is dissipated then,

energy available for driving = 0.9 x 98.1 [Nm]
= 88.29Nm

88.29 J of energy are available to do work.

Work on pile= force (resisting) x depth (into ground)

work
Therefore depth = --

force

_ 88.29 [Nm]
- 7 x 103 [N]

= 12.613 x 10-3 m = 12.6 mm

Kinetic energy
The kinetic energy of a body is the stored energy it possesses due to its motion. This is
usually abbreviated to KE. Think of a body mass m being pushed by a force that is
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greater than the resistance forces such as friction. The force F will cause an
acceleration in the body. The work done in creating the acceleration will be stored in
the body in the form of kinetic energy:

work done = force x distance

force F = mass x acceleration

I
. change in velocity v - 0 v

acce eration = =-- = -
time ' t t

... F= m x v
t

distance = average velocity x time

0+ v vt
=--Xt=-

2 2

work done = force x distance

kineti 1 2metre energy = - mv
2

The same derivation can be carried out for a force bringing a moving body to rest. In
this case, as the change in velocity is negative, the kinetic energy is found to be
negative. The kinetic energy of a body with only linear motion is referred to as kinetic
energy of translation.

If a moving body of mass m has its velocity changed from v.to V2 due to a resultant
force F acting over a distance S then:

change in kinetic energy = final KE - initial KE

1 2 1 2=- mv2 - -mvI
2 2

If the 1500 N engine raised to a height of 2 m is allowed to fall it gains kinetic energy
as it increases in velocity. The gain in kinetic energy is equal to the loss of potential
energy. As the engine reaches the ground it has fallen 2 m, lost all its potential energy
and gained an equal amount of kinetic energy.

Q Example 5.6

A car with a mass of 1000 kg accelerates uniformly from rest to a speed of 15 mls due
to a resultant force of5 kN. Calculate the work done by the accelerating force and the
increase in kinetic energy.

Work done = force x distance
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We know the force, we need the distance. We could use one of the equations of
motion, for instance v2 = u2 + 2aS, if we knew the acceleration a.

From" force = mass x acceleration

. force 5000 [N] 2
acceleration =-- = = 5 mls

mass 1000 [kg]

If v2 = u2 + 2aS,

v
2

- u
2

15
2- 0 [ni2][S2]then S= = 2"" -

2a 2x5 s m

= 22.5 m

Work done = p'x S = 5000 [N] x 22.5 [m]

= 112.5 x 10~ Nm = 112.5 kJ

As the kinetic energy at the start is zero then:

increase in KE = ! X 1000 [kg] X 152 [m2/s2
]

2

= 112.5 X 103 Nm = 112.5 J

When calculating the units, remember that 1 N = 1 kg m/s2 and so 1 kg = 1 N s2/m.

Hence the work done is equal to the increase in kinetic energy. When the engine
above is allowed to fall the potential energy is converted into kinetic energy; this
brings us on to the next point.

Energy can neither be created or destroyed.
This is the principle of conservation of energy. All forms of energy are transferable.

The work done in accelerating a body reappears as kinetic energy. The potential
energy 'lost' by a falling body reappears as kinetic energy as its velocity increases. All
energy can be converted. It is not always converted into a form that is useful. As
friction is a resistance force, then work is done in overcoming friction, and energy is
converted into heat. Energy is sometimes considered 'lost' when it cannot be
converted into a form to do useful work.

Electricity is a form of energy. An electric fire is designed to convert all of its
electrical energy into heat. When an electrical appliance does not work properly it
can overheat. This is because if the appliance does not work correctly and perform
the energy conversions it is designed to do, the excess electrical energy is converted
into heat.

Work and energy ofa rotating body
Equations on linear motion can be converted into a form for rotational dynamics.
The same is true for the kinetic energy formula. The kinetic energy of a rotating body
is referred to as the kinetic energy of rotation. We know that KE = lmv2 where v is
the linear velocity in metres per second. For a rotating body, the whole mass can be
considered as acting at a radius called the radius of gyration k. Check back to the
chapter on motion if you are not too sure of this bit.

Linear velocity = angular velocity x radius
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Remember that the angular velocity is measured in radians per second.

v=wx·k
v2 = w 2 X ~

We can now substitute this back into the formula for KE.

K·· 1 2metre energy = '2 mv

The moment of inertia for a rotating body I is equal to the mass multiplied by the
square of the radius of gyration:

1= mk2

This can now be substituted back into the equation:

kinetic energy = ~m(w2e) = ~Iw2

You can check the units:

as 1 [N] = 1 [k~2m]

[
rad]2then [kg m2] -s- = [Nm]

The angular equivalent of Newton's second law of motion, F = ma, is T = fa (see the
section on motion). In a similar way, the work done by an angular system is
calculated as follows:

Work done = F[N] x S [m]

As S = yor then

(linear motion)

Work done = F[N] x yO [m]
= T[Nm] x Ofr1 (angular motion)

Q Example 5.7
The bearing surface of a shaft is to be reground. The tool is applied radially and the
cutting force remains constant throughout the operation at 1 kN. The diameter of the
shaft is 56 mm. The operation is completed in 500 revolutions of the shaft. Calculate
the work done.

Torque = cutting force x radius

T= Fx r

= 1 X 103[N] x 56 x 10-
3

[m]
2

=28Nm
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Rotational work done = torque x angle turned through

=TO

[
rad]= 28 [Nm] x 500 [J:&] X 2.71 J,e'9

= 87.965 X 103 Nm = 87.965 kJ

Q Example 5.8
A rotating shaft and flywheel have a total moment of inertia of 5 kg m2 and rotate at
3000 rev/min. If the frictional resistance of the engine is ,2 Nm and that value is
constant over all speeds, find the number of revolutions the engine will turn before it
comes to rest when the fuel is cut.

KE stored in flywheel and shaft = ~Iw2

= ~ x 5 [kg m
2

] x (3000[:;] x 2.71 ~] x 6~ [~]r
= 246.74 x 103 Nm

Rotational work done = torque X angle turned through
= TO

Work for one revolution = 2 [Nm] x 2n
= 12.566Nm

. total loss of KE
Number of revolutions = I I .

KE ost per revo ution

_ 246.74 x 103 [Nm]
- 12.566 [Nm/rev]

= 19635.5 rev

I 5.3 Power

In engineering, the rate at which work can be done is called the power. To calculate
the power of a machine, divide the total work it does by the time it takes:

work done
power = time taken

The unit of power is therefore the newton-metre per second (N m/s) which is equal to
the joule per second (J/s). This unit is given the title of the watt and the symbol W.
One watt is equal to one joule per second.The quantity symbol of power is P. A more
powerful machine can do the same amount of work as a less powerful machine in less
time. Compare two trucks that have to carry the same weight load up a hill. The truck
with the most powerful engine will reach the top first. If the more powerful truck
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reaches the top in half the time then it must be twice as powerful. The old imperial
unit of power that you may come across is the horsepower.

1 horsepower = 745.7 W

As an approximate 'rule of thumb' calculation one horsepower equals 0.75 kW.

Q Example 5.9
The mean torque developed by an engine shaft is 407 Nm when running at
3000 rev/min 0 Calculate the power developed.

Rotational speed = 3000 [;:] x 6~ [~] X 2n ~

= 314.159 [r:d]

power developed = 314.159 [r:d] x 407 [Nm]

= 127.863 x 103 Nm/s = 127.9 kW

Q Example 5.10
A car has a total resistance of 1 kN when driven 100 m in 20 s. What is the power
developed by the engine?

Work = force x distance moved in the direction of force

force x distance moved in the direction of force
power = time taken

_ 1 X 103 [N] x 100 [m]
- 20 [s]

=5kW

In a similar manner, angular power can be calculated. If angular work is equal to
torque multiplied by angular distance:

work done = T[Nm] x olr]

then angular power is equal to torque multiplied by angular velocity:

power = T[Nm] x tu [rad/s]

Calculation of engine power
The force F acting on a piston can be calculated from the pressure p on the piston
multiplied by the area A:

F
p=­

A
.0. F=pA

The pressure varies on the piston throughout the power stroke. In order to calculate
the work done on the piston, the average effective pressure is used. This is called the
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mean effective pressure. If Pm is the mean effective pressure and A is the piston area
then:

average force on the piston, F =Pm X A

If the length of stroke is I then:

work done = force x distance
=Pm X A X I

The power developed is the work done per second. If n is the number of power
strokes per second, then:

work done per second =Pm X A X I X n

. d [rev]engine spee -s-

For a 4-stroke engine, n = 2

For a2-stroke engine, n = engine speed [r:v]

Q Example 5.11
A four stroke engine has a bore of 75 mm and a stroke of 87 mm. The mean effective
pressure at a speed of 3000 revlmin is 4.7 MN/m2

• Calculate the power developed at
this speed.

Power =Pm X A X I X n

= 4.7 X 106 [Nz] X :rr(75 X 1O-
3)z

[mZ] X 87 X 10-3 [m] X 3000 [!]
m 4 60x2s

= 4.7 X n X 7~Z X 87 X 25 X 10-3 [Nsm]

= 45.162 X 103 W = 45.1 kW

Q Example 5.12
A solid wheel of diameter 0.4 m and mass 4.5 kg rolls along the ground at a velocity of
3 m/s. Find the total kinetic energy. Assume that the radius of gyration, k = rlVi.

k - -.!- - 0.4[m] -0141
-Vi-2xVi-' m

Provided that the units of the kinetic energy of rotation and the kinetic energy of
translation are the same, then they can be added together.

v
If v = tor then t» =­

r

. _ 3 [m/s] _
· · w - 0.2 [m] - 15rad/s
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Total KE = KE of translation + KE of rotation

= !mv2 + !/w2

2 2

= !mv2 + !mk2w2

2 2

1 1 [kg m
2
]= - x 4.5 X 32 + - x 4.5 X 0.141 2 x 152 --2-

2 2 s

= 20.250 [Nm] + 10.065 [Nm]

= 30.315Nm

A work diagram for an engine of torque versus angle turned can be drawn. The
energy produced in one revolution is the work done in 2n rad. The torque of an
internal combustion engine varies considerably through a cycle of operation,
depending upon the piston force and the crank leverage. The torque reaches a peak
during the power stroke. During the exhaust, induction and compression strokes
(assuming the engine is a four-stroke one) energy must be supplied to keep the
engine running.

Torque

Figure 5.4

n 2n 3n
Crank angle (rad)

4n

Look at Figure 5.4. Each cylinder of a four-stroke engine fires once every two
revolutions of the engine. The resistance torque due to loading and friction remains
fairly constant. At some parts of the cycle the engine produces more energy than is
required (where the line is above the resistance torque line). The excess energy
produced is absorbed by the flywheel and stored as kinetic energy. When this
happens the engine increases in speed. The flywheel acts as a reservoir of kinetic
energy. When more torque is required than is produced at that time by the engine,
the engine speed drops briefly and the flywheel gives up some of its energy to the
shaft (where the line is below the resistance torque line). The cyclic variation of the
engine is greatly reduced by the flywheel and it can keep the engine speed between
two limits of operation. The greater the inertia of the flywheel, the less variation in
speed occurs. Over one cycle, the energy supplied by the engine must equal the
energy required. The transmission system must be designed to ·..ransmit the maxi­
mum torque, although the average torque is much lower.
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5.4 Lifting Machines

The power of a machine, such as a motor vehicle, is used to overcome:

1. the inertia of the load, i.e. accelerating the load
2. effect of gravitation
3. external resistance forces or loads
4. friction of the machine.

When a motor vehicle runs there are many different energy changes taking place at
once. The energy source is the fuel flowing from the tank to the engine and this is
converted to other forms of energy by the vehicle: the vehicle needs to overcome the
resistance to movement; there are changes in the potential energy of the vehicle as it
travels up and down hills; heat is transferred to the atmosphere, mainly from the
radiator; the energy of the exhaust gases passes to the atmosphere. Also, consider
the brakes. When the speed of a vehicle is reduced by applying the brakes, the
surface of the brake pads is forced onto the rotating surface of the brake disc to create
a frictional force that opposes the relative motion between the two surfaces. The
harder the brakes are applied the greater the perpendicular force between the two
surfaces and the more frictional resistance is caused. The kinetic energy of the
vehicle is therefore converted into heat energy by the braking system and this is
transferred to the atmosphere.

The efficiency of a machine is the ratio of the output to the input:

ffi
. energy out

e clency = .
energy In

The energy out is the performance of a machine. The energy in is what is required for
the machine to operate, the part we usually have to pay for, e.g. fuel. The higher the
efficiency of a machine, the less energy input is required for the same energy output.
The difference between the two represents energy 'losses' such as overcoming
friction and other resistance forces, and should be kept as low as possible. Internal
friction of a machine causes an opposing force and so work is done in overcoming
this. The efficiency then is the energy out of a system measured as a fraction of the
energy in. Usually this is expressed as a percentage:

. energy out
efficiency = . x 100%

energy In

This can also be calculated from the work done by a machine and the work supplied
to the machine.

ffi . useful work done 1000/e clency = x /0
work supplied

Usually though efficiency is calculated in terms of power, i.e.

. power in
efficiency = x 100%

power out

See Figure 5.5.
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Losses

Energy input

Figure 5.5

/~

<, Process or machine <,
/' (energy conversion) /'

\V

Losses

Energy output

A machine is a device that converts energy from one form to another, to make
work easier. This usually involves overcoming a resistance force or load by applying
another force that is more convenient.

The mechanical advantage or force ratio of a machine is the ratio of the load to the
effort. This applies to all lifting machines.

. load
Mechanical advantage = --

effort

The units of the load and the effort are the same and so mechanical advantage has no
units. It is abbreviated to MA.

However, the distances moved by the load and the effort are not the same. If the
load is heavier than the effort, then the effort must be moved through a greater
distance than the load will be lifted. The ratio of the distance moved by the effort to
the distance moved by the load is called the velocity ratio.

V I
· . distance moved by effort a

e ocity ratio =--------...;...---
distance moved by load b

As with mechanical advantage, the units of the distance of theeffort and the distance
of the load are the same and so velocity ratio has no units. Velocity ratio is
abbreviated to YR. Here the mechanical advantage has the same value as the
velocity ratio but this assumes that there are no losses due to friction. In practice, a
machine always has losses and the velocity ratio is not the same as the mechanical
advantage. In fact the efficiency of a machine can be calculated from the mechanical
advantage and the velocity ratio. The efficiency of any machine or system can be
calculated from the ratio of the useful work done to the work supplied:

ffi . useful work done 1000/e clency = x /0
work supplied

= load x distance moved by the load x 1000/0
effort x distance moved by the effort
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N
load _ MA d distance moved by effort - VR

ow --- an -
, effort distance moved by load

so efficiency = MA x _1_ x 100% = MA X 1000/0
VR VR

Pulley systems
A pulley is a simple machine. A rope pulley consists of two pulley blocks, one at the
top and one at the bottom." Each pulley block has several pulley wheels that can turn
freely. There will be either the same number of pulley wheels in each block or there
will be one more in one than the other. A rope is threaded over each pulley in turn.
One end of the rope is fastened to the block opposite the last pulley. The other end is
used to apply the effort. The effort is directed downwards and the load moves up (see
Figure 5.6).

Figure 5.6

When a pulley system is connected like this there are five ropes between the load
block. If we want to lift the load by say one metre, then all of the five lengths of the
rope must be shortened by one metre. To do this, then the effort must pull down by
five metres.

V I it to distance moved by effort 5 5e OCI y ra 10 = = - =
distance moved by load 1

The same calculation can be applied to any number of pulley wheels:

i.e. VR of rope pulley blocks = number of ropes lifting the load block
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VA =1

Effort

Load

Figure 5.7 Simple pulley

Also, the number of ropes supporting the load is equal to the number of pulleys in the
system. Hence, the number of pulleys is equal to the VR (see Figure 5.7). For
example, a system with two pulleys at the top and one at the bottom has a VR of
three; a system with three pulleys at the top end and three at the bottom has a VR of
six.

This is only true when the direction of the effort opposes the direction of the
movement of the load, which is the usual case. If the rope is wound in some way so
that the direction of the effort is the same as that of the load then the velocity ratio
equals the total number of pulleys plus one.

o Example 5.13
A rope pulley system has two pulleys in each block. An effort of 116 N is required to
lift a load of 390 N. Calculate the efficiency of the machine.

There are four pulleys in total and therefore the VR = 4.

. load
Mechanical advantage = -­

effort

= 390 [N] == 3.362
116 [N]

Efficiency = MA x 100%
VR
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Weston differential pulley block
This type of machine uses three pulleys. The velocity ratio depends upon the
diameters of the larger and smaller pulleys. See Figure 5.8.

Effort

Load

Figure 5.8 Weston differential pulley block

Chains are usually used instead of rope so the pulleys have teeth to take the chain
links. When the effort is applied the compound pulley turns. The chain is pulled off
the larger pulley by the effort and onto the smaller one. The load chain is pulled off
the smaller pulley and onto the larger one. The load moves up due to the different
diameters of the compound pulley wheels.

Dis the diameter of the larger pulley and if d is the diameter of the smaller pulley,
then for one revolution of the compound pulley:

distance moved by effort = nl) (length of circumference)

distance moved by load = ~(nD - nd)

VR = distance moved by effort
distance moved by load

circumference of the big pulley
half the difference of the two pulley wheels

nD
~(nD - nd)

2D
---

D-d

2nD
neD - d)
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If the number of teeth is constant then this can be written as:

VR = . 2 x number of teeth in larger pulley
difference in the number of teeth between pulleys

Q Example 5.14
The diameters of the larger and smaller pulleys of a Weston differential pulley block
are 105 mm and 95 mm, respectively. A load of 3 kN is lifted with an effort of 238 N.
Calculate the efficiency.

VR =~ = 2 x 105 = 21
D - d 105 - 95

We can calculate the VR from [mm] lengths as the units cancel:

. load
mechanical advantage =-ff

e ort

= 3 X 10
3

[N] = 12.6
238[N]

efficiency = MA x 100%
VR

I 5.5 Power transmission

The output power of an engine shaft is referred to as the brake power or shaft power.
This is because it is measured by applying a brake to the shaft. The braking force can
be measured and from this the torque calculated. By multiplying the speed of the
engine by the torque applied, the power output P can be calculated from P = Toi.
When power is transmitted by belt of chain from one pulley to another, provided that
there is no slipping, the linear velocity of the rim of each pulley must be the same,
since they are both driven by the same chain. If the radius of the follower pulley is rf

and the radius of the driver pulley is rd then using v = rio:

linear speed of rim of driver = linear speed of rim of follower
rdwd = rfOJf

For a chain drive, the number of teeth of the wheel circumference can be used. If nd is
the number of teeth of the driver (sprocket) circumference and nf is the number of
teeth on the follower (chain wheel) circumference:
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o
~

Figure 5.9

Consider the chain drive in Figure 5.9. The chain tension is different on each side of
the drive. If F,is the tension orforce on the tight side and F; is the tension or force on
the slack side, then the effective driving force available on the follower is F, - Fs.

Therefore the power transmitted,

P = (F, - Fs) [N] x linear speed of the chain [~]

= (Ft - Fs) [N] x cor [~ ]

[
rev] [rad]= (F, - Fs) [N] x n -s- X 2Jr rev x r[m]

= (Ft - Fs ) x Znnr Nm/s or W

VR = distance moved by effort
distance moved by load

If we are considering the distance moved in one second,

VR = revolutions per second of driver
revolutions per second of follower

or VR = Dr
Dd

number of teeth of chain wheel
number of teeth of sprocket
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Gear wheels
Motor vehicles usually use gear wheels for power transmission. Power is transmitted
from one shaft to another, but the teeth are designed to mesh directly. Let Td and T,
be the number of teeth of the driver and follower respectively. Then,

VR = Wd = D f = Tf

Wf o; t;

When two gear wheels are used, a driver and a follower, they rotate in opposite
directions as in Figure 5.10.

Driver

+

Follower

+

Figure 5.10

If an idler wheel is used between the two wheels, the driver and the driven wheels
rotate in the same direction as in Figure 5.11.

Figure 5.11

Driver

+
Follower

+

The number of teeth on the idler wheel does not affect the VR of the driver and the
follower wheel. If wd, Wi and Wf are the rotational speeds of the driver, idler and
follower respectively, and Td , T, and T, are the number of the teeth of the driver,
idler and follower respectively, then, consider the driver and the idler:

wd= T j

Wj' Td
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Consider the idler and the follower:

T· x o).
• Wf == I I

t,

Substitute equation for Wi into equation 2:

Td x Wd
w,==---

I T,

Td X Wd T,
Wf == X -

t, t,

== Td X Wd

t,

. '. Wd == Tf == VR
Wf Td

(1)

(2)

This is the same as the previous derivation without the idler wheel. Therefore the
velocity ratio between the follower and the driver is independent of the number of
teeth on the idler wheel. The only purpose of the idler is to change the direction of
rotation of the follower.

The ratios used in gear boxes are achieved by compound gear trains. Several trains
are used in series, with the driven gear wheel of one train fixed onto the same shaft as
the driver of the next. Any idler wheels in the system have no effect on the velocity
ratio. All of the gear wheels apart from the idlers can be classed as either drivers or
followers. See Figure 5.12.

Consider driver 1 and follower 1:

WdI =!..rr
Wfl Tot

To1 X WoI
· . Wfl·=

Tfl

As d2 is fixed to the same shaft as f1 they must rotate at the same speed.

Consider driver 2 and follower 2:

Wd2 = Tf2

Wf2 Td2
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Substituting for. Wd2 gives

Td2 x Wd2
Wf2=----

Tf2

Td l X Wdl Td2= x-t., Tf2

. . Wf2 = Td l X Td2

Wdl Tn .x Tf2

. '. Wdl = Tn x Tf2 =. VR
Wf2 Td l x Td2

VR = product of all numbers of teeth on follower gears
product of all numbers of teeth on driver gears

o Example 5.15
A gear system has a configuration similar to the compound gear train shown in Figure
5.12. The primary driver and the follower have 16 and 32 teeth, respectively. The
secondary driver and follower have 16 and 30 teeth, respectively. Calculate the
velocity ratio.

Input

12

Output
Figure 5.12

VR = product of all the numbers of teeth on follower gears
product of all the numbers of teeth on driver gears

= 32 x 30 = 3.75
16 x 16

Problems 5
1. A piston moves at a uniform velocity of 3.6 m/s against a resistance of 100 N.

Find the power developed.
2. A vehicle of mass 1250 kg is raised through a height of 2 m in 30 s by a hydraulic

lift. Calculate the work done.
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3. A vehicle travels with a steady resistance to motion of 10 kN at a speed of

100 km/h. What power is required?
4. An engine develops a torque of 100 Nm at 2000 rev/min. What is the power of

the engine?
S. A truck of mass 3500 kg climbs a 15°slope for 1 km. Calculate the work done in

reaching the top of the slope.
6. A bike of mass 400 kg travels at a speed of 115 km/h. The bike then slows down

until the speed is 75 km/h. Calculate the change in kinetic energy.
7. The mass of a flywheel is 17 kg and the radius of gyration is 0.122 m. Calculate

the kinetic energy stored in it when the engine rotates at 900 rev/min.
8. A four cylinder, four stroke internal combustion engine has a diameter of

100 mm and a stroke .length of 115 mm. The mean effective pressure is
750 kN/m 2 when the engine revolves at 2300 rev/min. Calculate the power
produced.

9. A set of rope pulley blocks has three pulleys at the top and two at the bottom. An
effort of 300 N is required to lift a load of 1.341 kN. Calculate the VR, the MA
and the efficiency. .

10. A Weston differential pulley block lifts a load of 500 N. The effort applied is 65 N
and the efficiency is 45%

• The diameter of the larger pulley is 150 mm. Calculate
the diameter of the smaller pulley.

11. A compound gear train consists of a primary driver and follower having 15 and
40 teeth, respectively. The primary follower is keyed to the same shaft as the
secondary driver. The secondary driver and follower have 17 and 52 teeth,
respectively. Calculate the VR of the gear train.

12. A set of rope pulley blocks has four pulley wheels at both the top and bottom.
When lifting a load of 14 kN the efficiency is 65%

• Calculate the effort applied.



6 Thermodynamics

6.1 Introduction to thermodynamics

Thermodynamics is an engineering science that deals with energy conversion,
particularly machines that convert heat into work. Thermodynamics is actually a
general title and refers to a whole range of applications such as refrigeration, internal
combustion engines and steam turbine power systems. An essential aspect of motor
vehicle science is concerned with the efficient use of energy. We need to study this
subject to understand the energy conversions that take place in a vehicle. For
example, in an internal combustion cylinder, a fuel and air mixture is compressed
and ignited. Very high pressures and temperatures are reached inside the cylinder.
The pressure in the cylinder forces the piston down the cylinder and work is done by
the engine mechanism. In this way chemical energy is converted into work.

This chapter looks at the basic principles of thermodynamics. The units involved
have already been covered in previous chapters.

Thermodynamic systems
The term 'system' is commonly used throughout engineering and refers to something
that is being investigated. A mechanical system is a body or a collection of
components whose study involves motion and its causes (e.g. a pendulum moving
with simple harmonic motion), or a state of equilibrium (e.g. forces bending a
cantilever beam). A thermodynamic system is a region in space containing a quantity
of matter whose behaviour is being investigated. For each problem it is necessary to
define this region carefully, the system being separated from its surroundings by the
boundary. The boundary may be fixed or elastic. Everything outside the boundary
that may be affected by the system is known as the surroundings. There are two types
of thermodynamic system: a closed system and an open system. With an open system,
matter (e.g. gas) crosses the boundary as well as work and heat. With a closed
system, the same matter remains within the boundary and only work and heat cross
the boundary. Here are some examples of closed and open systems.

The inner surface of the fire extinguisher in Figure 6.1 is the boundary and its shape
remains fixed. No mass crosses the system boundary (until it is used of course) and so
the system is closed.

Figure 6.2 shows the piston and cylinder arrangement of a four stroke internal
combustion engine. When all valves are closed, during the compression stroke, no
mass crosses the system boundary and so the system is closed. As the piston moves up
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Figure 6.2 Cylinder of a four stroke engine during compression
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during the compression stroke, the boundary is elastic. This is only one of the four
processes that make up the cycle of operation.

The oil filter in Figure 6.3 has a fixed boundary. Dirty oil passes into the system and
clean oil passes out. As the oil flows through the system, the system is open.

The equations used in thermodynamics are based on the principles of conservation
of mass, energy and momentum:

mass entering a system - mass leaving a system
= change of system mass

energy entering a system - energy leaving a system
= change of energy in system

This is the basis of the first law of thermodynamics and there will be more on this
later.

For the principle of conservation of momentum we can apply Newton's second law
of motion to an open system:

rate of change of momentum in - rate of change of momentum out
= external forces

In thermodynamics the term fluid is used to refer to liquids, vapours or gases.

Pressure, temperature, internal energy and the kinetic theory
ofgases
The kinetic theory of gases assumes that a gas is a large number of tiny hard spheres
(molecules). These move about at high velocities at random. We can use this theory
to explain pressure and temperature. Pressure is due to the force of the molecules
hitting the container walls and is the average force per unit area on the container
walls. Temperature is proportional to the average of the squares of the velocities of
the molecules. This is also proportional to their kinetic energy. Internal energy is
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something you may not have come across before. Internal energy is the energy stored
in a substance due to the motion of the molecules and their relative positions. It is the
sum of the internal kinetic energies and potential energies of the molecules, and it
can only increase or decrease if energy crosses the boundary, in or out of the system.
This is a function of temperature. The symbol for internal energy is U and its units are
the same as any energy, joules. There are other more complex theories. that produce
more information but the kinetic theory gives a good explanation of how gases
behave.

Pressure
Thermodynamics usually deals with fluids and rarely solids. Pressure is the force that
a fluid exerts on a specific area: It is defined as:

force [N Jpressure =-- "2
area m

The quantity symbol for pressure is P. The units of pressure are the same as those of
stress in a solid, N/m2

• The pressure of a fluid is really the equivalent of stress of a
solid. Other units you may come across are the pascal [PaJ, and the bar [bar].

1 Pa = 1 N/m2

1 bar= 105 N/m2

F

Figure 6.4

p
A

Figure 6.4 shows a bar pressed against a fixed wall by a force, F. If the area of contact
is A then the pressure P at the contact surface is FIA. This pressure acts normal to the
contact surfact. Figure 6.5 shows a piston and cylinder containing a fluid. As a force F
is applied to the piston, which has cross-sectional area A, then the pressure in the
fluid is FlA. The pressure now acts in all directions at right angles to the retaining
walls.

The bar or millibar is often used in weather forecasts. One bar is approximately the
pressure created by the atmosphere.

The only tricky part of pressure calculations, is the difference between gauge
pressure and absolute pressure. Absolute pressure (Pabs) is measured as you would
expect with a datum of 0 N/m2

. Many pressure gauges do 'not however measure
absolute pressure, but measure using atmospheric pressure (Pat m ) as the datum; this
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is known as gauge pressure (Pgauge). To convert gauge pressure into absolute
pressure you need to add to it atmospheric pressure:

r.; = Pgauge + r«:

Atmospheric pressure varies slightly with time and location (see the weather
forecast), and so for accurate calculations involving absolute pressure the latter must
also be measured at the same time as the gauge pressure. The pressure of fluids and
atmospheric pressure are sometimes expressed as a column of liquid, usually
mercury or water.

Figure 6.6 represents a barometer and measures atmospheric pressure. The top
end of the closed tube has a vacuum. Atmospheric pressure acts on the liquid at the
base of the tube and liquid is pushed up the tube. As this is a system in equilibrium,
the height of this liquid is directly proportional to the pressure at the base of the
column, in this case atmospheric pressure. The.relationship is as follows:

where p is the density of the liquid used for the barometer, g is the acceleration due to
gravity and h is the height of the column of liquid (see Section 6.5). If the top of the
tube were broken and the vacuum lost then the height of the liquid would be the same
as the level in the base, since the same pressure would act on both surfaces.

The V-tube in Figure 6.7 is called a manometer. It works in a similar way to the
barometer, but instead of atmospheric pressure being applied to the tube, the vessel
containing the fluid to be measured is applied; and at the top of the tube instead of
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Vacuum

Patm

Figure 6.6

there being a vacuum, the tube is open to the atmosphere. At the liquid surface level
in the left side of the V, the pressure will equal the pressure in the vessel. As the
system is in equilibrium, the pressure at the same level in the right side of the V must
be the same. This will equal atmospheric pressure plus the pressure due to the
column of liquid. Therefore the manometer measures the pressure of the fluid above
atmospheric pressure, i.e. gauge pressure. The same formula applies (pgh). The
important point to note is that the Uvtube measures the difference in pressure
between the two ends and this difference is represented by the height of the liquid.

If the V-tube manometer were used to measure pressures below atmospheric
pressure, i.e. a vacuum, the liquid levels would look like those in Figure 6.8.

Atmospheric pressure acts at the liquid surface on the right side of the U. As the
system is in equilibrium the pressure must be the same at the same level in the left

Fluid Pressure

Figure 6.7
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Figure 6.8

side of the U. This will equal the pressure in the vessel plus the pressure due to the
column of liquid. Therefore the height of the column of liquid represents the
pressure below atmospheric pressure. In this case,

P abs = Patm - Pgauge

o Example 6.1
The gauge pressure of a gas in a vessel is measured as 5 m of water. Atmospheric
pressure is measured at this time as 760 mm of mercury. Calculate the absolute
pressure of gas. The relative density of mercury IS 13.6.

Palm = 13.6 X 1000[~~] X 9.81 [~] X 0.76[m]

= 101 396 [:2] = 101.40 [~~]

Pgaugc = 1000 [~~] X 9.81 [~] X 5 [m]

= 49050 [:2] = 49.050 [~~]

_ [kN] [kN] _ 2Pabs - 49.05 m2 + 101.40 m2 - 150.45 kN/m

o Example 6.2
In a steam condenser there is a partial vacuum. The gauge pressure is measured as
709 mm of mercury. The barometer reading is 761 mm 'of mercury. Calculate the
absolute pressure in the condenser. The density of the mercury is 13600 kg/rrr'.
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P abs = Patm - Pgauge

= (pgh)at - (pgh)g

As the same liquid is used for each gauge and the value of g is the same for each
reading, the equation becomes:

Pabs = pg(hat - hg)

= 13600[k~] x 9.81 [~] x (761-709) [mrn] x _1_[~]
m s 1000 mm

= 6937.6 N/m2

Temperature
Temperature is a measure of the amount of heat transfer that will take place between
a system and its surroundings. It is important that you do not confuse temperature
with heat. Heat is the process of transferring energy across the boundary. This will
occur when there is a temperature gradient present.

You are probably familiar with the temperature scales of Fahrenheit and Celsius
or centigrade. A more useful scale in science and engineering is the absolute
temperature scale. Think back to the kinetic theory of gases and temperature. If the
temperature drops, the movement of the molecules slows down and the kinetic
energy of the molecules will reduce. If the temperature continues to be reduced there
will come a point where the molecules come to a standstill and have no kinetic
energy. This temperature is known as absolute zero and is the coldest temperature
possible. At this temperature the molecules will no longer hit the walls of the
container and so the absolute pressure will also be zero. On the Celsius scale the
temperature of absolute zero is - 273.l5°C. The unit of the absolute temperature
scale is the kelvin and the unit symbol is K. Absolute zero is 0 K. An increment of 1 K
is equal to lOC. This means that a temperature on the Celsius scale can be converted
to the kelvin scale by adding 273.15. For most problems, adding 273 will be accurate
enough. For example convert 21°C to kelvin,

T(K) = T(OC) + 273 = 2loC + 273 = 294 K

Also a temperature difference in the Celsius scale is the same as a temperature
difference in kelvin. For instance a temperature gradient across a system boundary of
lO°C is the same as a temperature gradient of 10 K.

Q Example 6.3
A fluid enters a heater at 40°C and leaves at 93°C. Calculate the inlet and outlet
temperature in kelvin, and the temperature difference in degrees Celsius and kelvin.

T(K) = T(OC) + 273
40°C + 273 = 313 K
93°C + 273 = 366 K

temperature difference =93°C - 40°C
=S3K

temperature difference = 366 K - 313 K
=S3K
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Thermodynamic properties .and processes
A property is anycharacteristic of a system such as pressure, temperature, and
internal energy. Some properties such as pressure and temperature are independent
of the mass of the fluid within the system. A cup of coffee at 95°C has the same
temperature as a car engine cooling system at 95°C. Properties independent of mass
are called intensive properties. Properties that are dependent upon mass are called
extensive properties. Examples of extensive properties are volume and internal
energy. The volume of 2 kg of a fluid will be twice that of 1 kg of the same fluid under
the same conditions. This can sometimes make calculations a little tricky. For this
reason some properties are stated in specific terms. This means that the value of the
property is related to a unit of mass. In the metric system, specific units are per
kilogram. For example, if the volume of a gas is 2.61 m3 and the mass of this gas is
3 kg then the specific volume is 2.61/3 [m3/kg] = 0.87 m3/kg.

When a fluid undergoes a process, the change in the values of a property is a
function of its initial and final values and has nothing to do with the process itself. For
example, if a fluid undergoes a process and its temperature is raised from 300 K to
360 K, we know that the change in temperature is 60 K. We do not needto know
about the process that caused the change, just the initial and final values.

When analysing thermodynamic systems, we assume that the fluid is in thermo­
dynamic equilibrium. This means that the fluid is stable and the way changes occur is
predictable. You will be familiar with a mechanical system in equilibrium, when all
forces on a body balance. It is similar for a thermodynamic system. There are three
requirements for the fluid to be in equilibrium:

1. The fluid must have internal thermal equilibrium. Although the fluid may
undergo temperature changes as part of the process, the temperature throughout
the fluid must be constant. If different temperatures exist within the fluid at the
same time then this will cause heat transfer within the fluid and fluid movement
within the boundary.

2. The fluid must be in chemical equilibrium. If the fluid changes chemically, it
would be very difficult to analyse a situation.

3. The fluid must have pressure equilibrium. Different pressures within the fluid at
the same time would cause unbalanced forces and a lack of mechanical equilib­
num,

A thermodynamic process is the process through which fluid moves from one
equilibrium .state to another.

If a fluid goes through a series of processes and returns to its initial state, it has
gone through a thermodynamic cycle. There are many ideal types of cycles used for
analysing industrial processes and engines. These are usually divided into gas cycles
or vapour cycles, depending upon the main working fluid. The internal combustion
engine is usually defined as a gas cycle, since the main working fluid is combustion
air. An example of a vapour cycle is a boiler steam cycle, which is described shortly.

Reversible processes
A fluid undergoes a process. If that fluid can then be taken back through all the stages
of the process in a reverse order to reach the original state of the system and
surroundings then the process is said to be reversible. This never happens in practice
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but it is often useful to assume some processes are reversible to simplify problems.
Processes are always irreversible because of things like friction or churning within the
system. There is a precise set of conditions that must be fulfilled to achieve a
reversible system and this is always impossible.

Heat and work
Work is a form of energy transfer that takes place between a system and the
surroundings due to the movement of a boundary (e.g. piston movement) or the
rotation of a shaft. You will be familiar with the symbol for work, W. As it is an
energy transfer process, its unit is the joule (J). In specific terms (i.e. for a unit of
mass), the symbol is wand the units are J/kg.

Heat is also a form of energy transfer that takes place between the system and
surroundings due to a temperature difference. Do not get confused between heat and
temperature. The symbol for heat is Q and it is measured in joules, (J). In specific
terms, the symbol is q and the unit is J/kg.

It is important to note that heat and work are not energies but ate energy transfer
processes. A system cannot possess heat or work. Heat or work can occur during a
process. The usual terminology is heat transfer and work transfer. Heat and work are
not properties either. A property depends only on initial and final values and is
independent of the type of process. However, the magnitudes of heat and work do
depend on the type of process the system undergoes.

The first law of thermodynamics
We will look initially at the first law of thermodynamics applied to closed systems. It
will be applied to open systems in Section 6.4. Consider a steam power plant where a
steam turbine drives a generator, as shown in Figure 6.9.

The whole plant is the process and so it is a closed cycle. Do not get confused by the
fact that fluid is passing from one part of the process to another. No matter crosses
the boundary of the process. Heat is applied to water in a boiler to produce steam and
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Figure 6.9 Steam power plant
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so heat is transferred from the surroundings to the system. The steam is then used to
drive a turbine and work is transferred' to the surroundings. The steam is then
condensed back to water and heat is transferred to the surroundings. The water is
then pumped back into the boiler and work is transferred from the surroundings to
the system. There are two main differences, as far as thermodynamics are concerned,
between the cycles of an internal combustion engine and a steam power plant such as
this one:

1. For an internal combustion engine the heat is supplied to the working fluid (air)
inside the engine, whereas in the steam power plant the heat is supplied to the
working fluid (steam) outside of the engine (the turbine).

2. The internal combustion engine is an open system since the working fluid flows
through the system, whereas the steam power plant is a closed system and the
working fluid is reused.

For each process that makes up the cycle, heat or work transfer may occur. As the
fluid finishes the cycle in the same state that it started, there is no change of energy
within the system. For a complete cycle of this process, the net heat transfer to the
system is equal to the net work transfer to the surroundings.

This is the first law of thermodynamics when applied to a cycle. When a closed
system undergoes a complete cycle, the algebraic sum of the work transfer is equal to
the algebraic sum of the heat transfer, Qnet= Wnet . The term net means that all the
individual heat or work transfers for each process are added up. This is sometimes
written as (~W)cycre = (IQ)cycie. The symbol ~ means that all the individual values
are added up. At this point we need to establish some conventions for heat and work.
These are the standard sign conventions used in thermodynamics:

• for heat transfer to the system, Q is positive
• for heat transfer from the system, Q is negative
• for work transfer to the system, W is negative
• for work transfer from the system, W is positive.

The above form of the first law of thermodynamics applies only to cycles. If a system
undergoes a change of state that is not a cycle then the summation of energy transfers
across a boundary is not necessarily zero. Go back to the principle of conservation of
energy:

energy entering a system - energy leavinga system = change of energy in system

If we denote the change of system energy as ~E, then the above statement can be
written:

Q - W= ~E

~E can be assumed to be kinetic energy, potential energy and internal energy. Also,
in a closed system the changes in kinetic and potential energies can be assumed to be
negligible. In this case, the above equation becomes:

Q- W=~U

When ~U is positive the system gains internal energy; when it is negative the system
loses internal energy. The usual form of the equation is:

Q= W+~U
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This is known as the non-flow energy equation (because it only applies to closed
systems) and is true whether the processis reversible or not.

Q Example 6.4
800 J of heat is transferred to the gas in a piston and cylinder system. If the gain in
internal energy of the gas is 660 J, is the process an expansion or a compression? If
the piston stroke is 0.2 m, what is the resistive force on the piston?

As the heat is transferred to the gas then Q is positive. As the change in internal
energy is a gain then dU is positive.

W= Q - AU
= 800 [J] - 660 [J]

= 140J

As the answer is positive the work is transferred from the system to the surroundings
and so the gas expands. The work done also equals the piston force multiplied by the
stroke, I:

W=Fxl

W
F=-

I

= 140 [J] = 700N
0.2 [m]

Remember that 1 J = 1 Nm.

Q Example 6.5
A piston compresses air in a cylinder using 400 J of external work. The piston is
insulated so that any heat transfer is negligible. What is the change of the internal
energy?

Work is done on the system, so according to the convention the value is negative. The
value. of Q is zero.

AU= Q - W

= 0 - (~400 [J]) = +400J

The change of internal energy is an increase of.400 J.

I 6.2 Heat and temperature

When heat is transferred to mass, changes in its temperature and state can occur. It is
important to know the relationships between heat, temperature and the state of
different substances. In a motor vehicle, many temperature changes and heat
transfers occur involving structural components, liquids and gases.
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Specific heat capacity
Specific heat capacity is used to measure the amount of heat required to cause a
change in temperature of a body. Heat that causes a change in temperature is called
sensible heat. The specific heat capacity of a substance is the heat required to cause a
unit temperature rise of a unit mass. In the metric system the units of specific heat
capacity are J/kgK and its symbol is c. As this is concerned with the change in
temperature then instead of the unit for kelvin, K, degrees Celsius could be used
giving J/kgOC. This results in an identical calculation.

The formula we need to use is:

Q= m C dO

Unit check: [1] = [kg][k:K][K]

where dO is the change in temperature
c is the specific heat capacity
m is the mass.

The actual value of c depends on the temperature at which it is measured. The
variation is only slight, however, and it can be ignored for most calculations. The
term specific means that it applies to a unit of mass. You may come across a heat
capacity of a body rather than a specific heat capacity. This has the symbol C and the
units are J/K. This means that the mass of the body has already been considered as
part of the value. The formula to use then is:

Q = cso
Heat capacity is sometimes referred to as thermal capacity.

o Example 6.6
A piston has a mass of 0.5 kg. How much heat is required to raise the temperature of
the piston from 15°C to 120°C?The piston consists of 0.2 kg of aluminium and 0.3 kg
of steel.

The specific heat capacity of the steel, CSt = 880 [_J_]
kgK

The specific heat capacity of the aluminium, CAl = 510 [_J_]
kgK

Q = mcSi)

= IiO«ms t x CSt) + (mAl x CAl))

= (120 - 15)[K] x [(0.2 [kg] x 510 [k: K]) + (0.3 [kg] x 880 [k:K])]

= 105 [K] x [102[~] + 264[~]]

= 38430J = 38.4kJ
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Latent heat
As you will know, there are three forms a substance can take: solid, liquid and gas.
These different forms are called phases. If heat is supplied to matter in the solid
phases and the temperature increases, then eventually, the melting point will be
reached. Further heat must be supplied to the solid for it to melt, during which time
no further temperature rises occur.

Q)

:s
co
'-
Q)
0.
E
Q)

r-
Solid

Melting

Liquid

Time

Figure 6.10 Temperature changes with time for a solid melting, with a steady heat
input

. The graph in Figure 6.10 shows temperature against time as a solid is heated
through the melting point. The melting process is a flat horizontal line. This energy is
used to provide the increased molecular energy that the liquid phase has and it is
called latent heat. This is different from the heat used to cause a temperature rise.
Once the solid has completely melted to a liquid then further additions of heat will
cause an increase in the temperature of the liquid. The graph here is typical of a
substance going through a phase change.

Latent heat is also required to convert a substance from the liquid phases into the
gas phase. This change causes a large increase in volume and requires a much higher
value of latent heat than the solid to liquid conversion. The molecules need sufficient
energy to break free from the liquid phases and become a gas. The temperature at
which this happens depends on the pressure on the surface of the liquid. Think of a
pan of water on the stove. The molecules of a water surface are held back by the air
pressure in contact with the surface. As the temperature rises and the water
molecules try to break free they exert a pressure at that surface known as vapour
pressure. When the vapour pressure overcomes the pressure of the air in contact with
the surface, the ability of the air pressure to hold back the molecules of water
reduces. If atmospheric pressure increases, the temperature at which the water boils
increases as a higher vapour pressure is needed to allow molecules to escape. If
atmospheric pressure reduces, so will the boiling temperature. Water boils at
approximately lOOoe on Earth at sea level because of the value of atmospheric
pressure. Atmospheric pressure reduces with increased height above sea level, and
so a lower vapour pressure is required for water to boil. Water therefore boils at a
lower temperature up high mountains and climbers have difficulty making a pot of
tea hot enough.

Engine cooling water can circulate at a temperature of 110°Cwithout any problem
if the system has sufficient pressure to increase the boiling temperature to above
110°C.
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Even when a liquid is at a temperature that is much lower than boiling tempera­
ture, some vapour pressure is present and some molecules will escape causing
evaporation. This is why clothes can dry out at relatively low temperatures on a
washing line. The steam vapour that is produced from a liquid water surface such as a
pan of water is actually a mixture of gas and water droplets. This is called wet steam.
The mass of liquid present in the wet steam is measured with a dryness fraction from 0
to 1 so, for example, wet steam that is half comprised of water droplets would have a
dryness fraction of 0.5. When the steam is a pure gas with no liquid present then the
dryness fraction is 1. When water just reaches the boiling point and the dryness
fraction is zero, this is known as a saturated fluid. Vapour that is completely dry with
a dryness fraction of 1 is known as saturated vapour. There is more about this on page
222.

We need to be able to calculate the latent heat values. This can be done using the
following:

Specific latent heat of fusion of a solid ..... The heat required to convert a unit of mass of
the solid to liquid at the melting point without any temperature changes.
Specific latent heat of vaporisation of a liquid - The heat required to convert a unit of
mass of the liquid to gas at the boiling point without any temperature changes. This
value, like boiling temperature, depends on the pressure acting on the liquid surface.

The units of specific latent heat of vaporisation and fusion are kJ/kg.

Q Example 6.7
1 kg of water is at atmospheric pressure and at boiling point, i.e. it is a saturated fluid.
2 MJ of heat is supplied. How much liquid is changed into a gas? If all the fluid is
converted into wet steam what is the dryness fraction? The latent heat of vaporisa­
tion of water at this pressure is 2257 kJ/kg.

Let us represent the latent heat of vaporisation by the letter h. The heat required for
the change of phase can be calculated from:

Q=hxm

.'. mass, m = ~

= 2 X 10
3

[kJ] = 0.886 kg

2257 [~~]
So 0.886 kg of the water is converted into steam. If all of the 1 kg of water becomes
wet steam, 0.886 kg is steam and (1 - 0.886) = 0.144 kg is water droplets. The
dryness fraction is therefore:

0.886 [kg] = 0.886
(0.886 + 0.114) [kg]

An example where the latent heat of phase change is, put to good use is in a
refrigerator. The refrigerator uses a vapour cycle and the commonest type of
refrigerator uses vapour compression. The system comprises an evaporator, a
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Figure 6.11 Refrigeration cycle

compressor, a condenser and an expansion valve (see Figure 6.11). The refrigerant
enters an evaporator situated inside the refrigerator cabinet. At this point the
refrigerant is a very wet vapour at a lower temperature than the inside of the
refrigerator. Heat is taken from the refrigerator contents and the refrigerant leaves
the evaporator as a much drier vapour. It then passes through a compressor which
causes the pressure to rise and the temperature to rise above that of the surrounding
room. The compressor also acts as a pump for the system. The heat from the
refrigerant is passed to the surroundings by a condenser. The refrigerant is then
changed to a wet vapour by an expansion valve and the cycle is repeated.

Heat transfer
Sofar we have talked about heat transfer without looking at how this happens. Heat
transfer across a boundary can take place In three different ways: convection,
conduction and radiation. All three are different but they all depend on a tempera­
ture difference for the transfer of energy.

Thermal conduction
Thermal conduction is heat transfer that takes place through a material. All
materials can conduct heat in any state but it is only usually significant in solids.
Energy is passed from one molecule of the material to the next. As an example of
thermal conduction, think of touching the cylinder head of a running engine: it feels
hot. This is because heat generated inside the engine is transferred to the surround-
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T

Figure 6.12 Single layer wall

x
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ings by conduction through the cylinder head material. This is the easiest form of
heat transfer to measure.

Usually heat transfer calculations involve heat transfer rate rather than just heat
transfer because in engineering the rate of energy supply is important. In this case,
the symbol for heat has a dot above it to show that time is involved. Heat transfer Q is
expressed in joules (1). Heat transfer rate Qhas units of joules per second (lis) or
watts (W). Consider heat flow through a flat wall (see Figure 6.12).

The temperature difference, ~ T (= T2 - T1) , is the driving force of the heat
transfer.

Heat transfer through some materials is easier than through others. How well a
material conducts heat is a property called thermal conductivity. The symbol for
thermal conductivity is k and the units are W/mK. Heat transfer rate also depends
upon the thickness of the wall and the area through which the heat transfer takes
place.

The basic thermal conduction equation, known as the Fourier equation, is as
follows:

Q= -kA~T
x

A is the area through which the heat is transferred and x is the thickness of the wall.

Units check: m= [:1<] x [~ x [~] = [W]

The minus sign is to keep to a convention. In equations, when the difference of two
values is being calculated, the final value would be subtracted from the initial value.
So, since the heat must flow from the higher temperature to the lower temperature
across the wall, this would result in a minus sign for ~T. This convention is
maintained and the minus sign added to the equation to give a positive value of heat
transfer rate.

Consider a wall made up of two layers of different materials of thermal conduc­
tivity, k 1 and k 2 . If the temperature between the two layers is T, the temperature
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difference for the two materials is (T2 - nand (T - T1) . Heat that passes through
one layer must also pass through the other layer, so the heat flow through each layer
is the same:

Rearranging these gives:

T = T, - QXt and also
Ak1

· T - Qx t = T + QX2
•• 1 Ak

1
2 Ak

2

· (T - T) = QX
2 + Qx]

.. I 2 Ak
2

Ak
1

= Q(X2 + XI)
A k2 k,

. Q= A(T] - T2)

. . (~: + ~~)

Notice that this has resulted in (TI - T2) , i.e. the warmer temperature minus the
cooler temperature, and that there is no minus sign at the front of the equation. The
term xlk is called thermal resistance. The higher this value then the better the
material is as an insulator. For any multi-layer wall consisting of n layers:

where T I is the inner warmer temperature and Tn is the outer cooler temperature
(see Figure 6.13). In some situations a high heat transfer rate is wanted; an example is

T X1 X2 X3
• ..c .• ~

Figure 6.13 A wall consisting of three layers



12161 Science for Motor Vehicle Engineers

through the walls of an engine cooling system radiator. For this, a material must be
used that has a high thermal conductivity. If a material were used with a low thermal
conductivity, the cooling system would not be very efficient. A material that is used
because of its high thermal conductivity is called a conductor. Most metals are good
conductors. A material that is a good electrical conductor is usually a good thermal
conductor, e.g. copper and aluminium. Sometimes a material is needed with a low
thermal conductivity. If you wanted to lag pipes to reduce their heat loss, a material
that had a high thermal conductivity would not be much use. A material used because
of its low thermal conductivity is called an insulator. Most non-metals are insulators.
Particularly good insulators are asbestos, foam plastic and glassfibre.

Q Example 6.8
A house wall consists of three layers. The outer layer is brick 100 mm thick with a
thermal conductivity of 0.8 W1m K. The middle layer is cavity wall insulation 150 mm
thick and has a thermal conductivity of 0.08 W/m K. The inner layer is breeze block
200 mm thick with a thermal conductivity of 0.6 W/m K. The temperature inside the
house is 21°C. The temperature outside is 1°C. Calculate the heat loss through awall
of the house measuring 3 m by 4 m. Which layer is the best insulator?

· A(TI - T3)
Q=---

(
X l + X2 + X3)
k, k2 k3

_ (3x4)[m2]x(21-1)[K]

- (0.2 + 0.15 + 0.1)[ [m] ]
0.6 0.08 0.8 [W/m K]

= 12 [m2
] x 20 [K]

(0.333 + 1.875 + 0.125) [in:K]

= l02.857W

The cavity wall is the best insulator, as it has the highest value of thermal resistance:
1.875012 K/W.

Thermal convection
Thermal convection is a form of heat transfer that occurs due to the movement of a
fluid (gas or liquid). In an engine, heat is transferred from hot parts of the engine to
the radiator by the circulation of the coolant. This is convection. Fluids usually move
through pressure differences caused by a pump or because of density changes caused
by temperature differences.

Consider an engine cooling system, as shown in Figure 6.14. The pump creates a
pressure increase and forces the cooling water to circulate around the engine
cylinders. The water is at a lower temperature than the engine and so heat is
transferred from the engine to the water. The water then flows around the system to
the radiator tubes. Here, air flowing around the tubes takes heat from the water. The
cooling water then flows back to the pump for another lap. Heat is transferred (from
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Figure 6.14 Engine cooling system

the engine to the radiator) because the pressure difference created by the pump
causes the particles of fluid to move.

Consider now a water heater and radiator (Figure 6.15). When water undergoes a
temperature increase, its density reduces (except at very low temperatures). The
water leaves the heater at a higher temperature than the water in the rest of the
system. It therefore has the lowest density and the water rises to the radiator. At the
radiator, the water loses heatand the temperature of the water reduces. The density
of the water then increases and it flows down back to the heater. Heat is transferred
as particles of fluid move from the heater to the radiator due to the changes in
density.

Radiator

III I I I I Ii

I I
I Heater I
I I

Figure 6.15

Thermal radiation
Thermal radiation can take place without a transfer material, unlike conduction and
convection. Radiation is energy emitted by electrons vibrating at the surface of a
body. A good example of this is heat from the Sun reaching the Earth. There are no
materials between the Earth and the Sun but plenty of energy reaches us. Radiation
can pass through matter (but not as well as through space); the extent of this depends
upon the properties of the material. With thermal conduction, the amount of heat
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transferred depends upon the temperature difference. With thermal radiation, the
heat transferred mainly depends upon the absolute temperature of the emitting
surface. All materials emit or absorb radiation to some extent, provided that their
temperature is above absolute zero. A body with a surface that absorbs all radiant
heat it receives is called a black body. 'Black body' is a thermal name and has nothing
to do with colour. As well as absorbing energy a black body also emits the maximum
amount of radiation possible. A black body is an ideal theoretical concept and in
reality, bodies always absorb or emit thermal radiation at a lower level than a black
body. The level of energy absorbed or emitted relative to a black body is accounted
for in calculations by an emissivity factor, which is between 0 and 1. A black body has
an emissivity factor of 1. A rough surface has an emissivity factor of around 0.7-0.8',
and a shiny surface has an emissivity factor of around 0.1.

Table 6.1 Typical emissivity values of some common
materials

Material

Polished aluminium
Dull aluminium
Polished steel
Dull steel
White paint
Matt black paint

Emissivity

0.06
0.1
0.35
0.6
0.8
0.95

From Table 6.1 you will see that colour has less to do with emissivity than texture.
A white car on a hot summer's day will not necessarily remain cooler than a black car.
The car that has the shiniest smoothest paint surface will have the lowest emissivity
factor and will absorb the least thermal radiation. Generally smooth shiny surfaces
have low emissivity factors and rough shiny surfaces have high ones. Mirrors or
polished copper have low emissivity and absorptivity factors and so are good
reflectors of radiant heat.

6.3 Gases

With most subjects in science and engineering, we have to make various assumptions
tosimplify calculations and apply theory. In thermodynamics, we assume a fluid is in
thermodynamic equilibrium or sometimes that a process is reversible. With gases, a
useful concept is a perfect gas. A perfect gas is a simplified version of real gases to
make calculations easier. Gases obey various laws and have properties that we shall
be looking at. A perfect gas obeys these laws and has constant property values, such
as specific heat capacities that do not vary with temperature. The assumptions made
are:

1. the gas is homogeneous (this means it is the same throughout; it is perfectly mixed
up)

2. the gas is made up of lots of very tiny rapidly moving molecules that are perfectly
elastic (when hitting container walls or each other) and take up negligible space

3. the gas will spread to fill whatever container it is in.
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For these assumptions to be made, the gas must be at a temperature well above the
saturation temperature. At extreme pressures and temperatures the molecules
themselves may take up too much room for assumption 2 to be applied.

Boyle's law and Charles' law
Boyle's law states that, if a mass of gas is kept at a constant temperature then the
pressure is inversely proportional to the volume. Pressure is represented by P and
volume by V. Mathematically then this is:

1poc-
V

1or v ee ;

P

or P x V = constant

So if a gas following Boyle's law changes from pressure PI and volume VI to pressure
P2and volume V2 at a constant temperature then:

PI x VI = P2 X V2

o Example 6.9
A cylinder contains air at a pressure of 100 kN/m2

. The volume is 0.05 rrr'.The piston
moves to reduce the volume to 0.025 nr' whilst the temperature is kept constant.
What is the new pressure? Assume that the air behaves as a perfect gas.

As the temperature is kept constant during the operation, Boyle's law can be
applied: .

PI x VI = P2 X V2

0"0 pz =PtVl
V2

100 X 103 [~] X 0005 [m3
]

0.025 [m3]

= 200 x 103 N/m 2 = 200 kN/m2
.

Charles' law states that if a mass of gas is kept at a constant pressure then the volume
is directly proportional to the temperature. Mathematically this is:

VocT

or T ex: V

V
or T = constant

So if a gas following Charles' law changes from temperature T I and volume VI to .
temperature T2 and volume V2 at a constant pressure then:
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Q Example 6.10
A balloon contains a gas at a pressure of 50 kN/m 2 and at a temperature of 20°C. The
temperature is raised to 100°C whilst the pressure is kept constant. What happens to
the volume? Assume that the gas behaves as a perfect gas.

As the pressure is kept constant then Charles' law may be applied.

VI = V2

TI T2

. V - VIT2.. 2---r;-
Unfortunately, we do not know the initial value of the volume.

V - VI X (100 + 273) [K]
2 - (20 + 273) [K]

= VI X 1.273

... V2 = 1.273
VI

We can say then that the volume increases by 1.273 times.

Combining the laws
Boyle's law, p x V = constant at a constant temperature, and Charles' law,
V/T = constant at a constant pressure, can be combined to give the equation:

pV .T = constant

This means that for a fixed mass of gas the relationship between the gas pressure,
volume and temperature remains the same. If a gas undergoes a process from
condition 1 to condition 2, then the relationship between pressure, volume and
temperature is:

PtVt=P2V2
TI T2

Q Example 6.11
A gas is contained in a cylinder at a pressure of 50 kN/m 2

, a temperature of 20°C and
a volume of 8 x 10-3 rrr', The piston compresses the gas to a volume of 3 x 10-3 rrr'.
The new temperature is lOO°C. Calculate the new pressure.

PI V I=P2V2
TI T2
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. _PIV1Tz. ·P2---­
T tV2

50 x 103 [~] x 8 X 10-3 [ill3
] x (100 + 273) [K]

(20 + 273) [K] x 3 x 10-3 [m3
]

= 169738.34 N/m 2

= 169.7 kN/m2

Characteristic gas equation
The example above deals with a fixed mass of gas. The value of the mass is not
important for the calculation. You may come across a process' that does not involve a
fixed mass of gas. The formula above sometimes needs expanding to take into
account a change of mass. If the combined law is applied to a mass of gas of 1 kg then
the volume V has a particular value; this is the specific volume and is usually written
as v. Remember that specific means per unit of mass. In this case the specific volume
is the volume for one kilogram of mass and the units are kg/rn ' rather than just kg.
The combined equation can be written for one kilogram of mass using the specific
volume:

pv = constant
T

The constant in this case is special and is unique for each different gas. It is called the
specific gas constant and given the symbol R.

pv = R
T

The units of R can be calculated as follows:

[:2][;;][~] = [~ ~] = [k:K]
The combinedequation can now be written as: pv = RT.

.This still doesn't help us deal with different quantities of mass, but if we now
multiply each side by the mass m:

pXvXm=mxRxT

But v x m = V so now:

pXV=mxRxT

This equation, p V = mRT is called the characteristic gas equation or the ideal gas
equation of state. With this, the relationship between the gas pressure, volume and
temperature of a process can be calculated when there is a change in the value of the
mass.
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o Example 6.12
A room measures 5'm by 3 m by 2.5 m. It contains air at a pressure of 1.01 bar. The
temperature is 20°C. Calculate the mass of air in the room. Assume that the value of
the specific gas constant R for air is 0.287 kJ/kg K.

Applying the characteristic gas equation,

pXV=mxRxT

.. m=pV
RT

1.01 [bar] x 105 [+-] x (5 x 3 x 2.5) [m3]
m bar

287 [_J_] x (20 + 273) [K]
kgK

= 45.040 kg

An introduction to thermodynamic property tables
The properties of steam and various other fluids are set out in thermodynamic
property tables. A series of these is available in the form of a small booklet. These are
commonly known as steam tables, although many other fluids are covered. Fluid data
can 'be looked up in the tables relating absolute fluid pressure P« and saturation
temperature T; to such properties as specific volume v and specific internal energy u.
Other properties recorded in the tables are enthalpy h and entropy s, but although
these are of great interest to engineers studying, for instance, steam power plant,
they need not concern us. When fluid temperatures are way above the saturation
temperature, the gas laws we have discussed may be used. When temperatures are
too close to the vapour region though the gas laws do not apply, and the steam tables
are then useful.

Look at the set of tables referring to saturated water and steam in Table 6.2. The
far left column lists pressures starting from a very low pressure measured in bar to a
very high pressure. Select a pressure, e.g. 1 bar, which is just below normal
atmospheric pressure. Follow the line to the right: the next column records the
saturation temperature Ti, which in this case is 99.6°C. This is the saturation
temperature {boiling point) at that fluid pressure. Following the line further to the
'right: the next column records specific volume vg , in this case 1.694 m3/kg. The

Table 6.2 Typical values from steam tables

p Is vg Uf ug hI' hfg hg

bar °C rrr'zkg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg

1.0 99.63 1.694 417 2505 417 2258 2675
1.2 104.8 1.428 439 2512 439 2244 2683
1.4 109.4 1.236 458 2517 458 2232 2690
1.6 113.4 1.091 475 2521 475 2221 2696
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subscript g means that this is the specific volume of the fluid when it is a dry saturated
steam (just a gas with no wet steam) at that pressure. The next two columns are the
internal energy of the saturated water Uf' and the internal energy of the saturated
vapour ug , at that pressure. The subscript f means a saturated liquid. It is important
to remember the difference between a saturated liquid and a saturated vapour. A
saturated liquid is liquid, in this case water, that has just reached its boiling point at
the fluid pressure (this happens at about 1000 e at normal atmospheric pressure). A
saturated vapour is a completely dry vapour when all the liquid droplets have been
converted into a gas, at the same temperature.- In between is the progressive vapour
stage, where a substance is midway between a liquid and a gas, with a dryness
fraction between 0 and 1.

Other fluid tables usually included are ammonia, refrigerants and mercury.

o Example 6.13
What is the specific volume of 10 kg of steam when it is a dry saturated vapour at a
pressure of 2 bar? What is the volume, the saturated temperature and the internal
energy?

From the tables:

Vg = 0.8856 [:;]

V = mVg = 10 [kg] x 0.8856 [~~]

== 8.856 rrr'

t; == 120.2°C
== 120 + 273 == 393 K

U == 2530 [kJ]
g kg

U == mu ,

= 10 [kg] x 2530 [~~]

= 25300 kJ

Notice that ug and vg are used rather than Uf and "r- as the steam is a dry saturated
vapour and not a saturated fluid.

'1 6.4 Steady flow processes

The changes that occur in the state of a thermodynamic system are called processes.
Open and closed systems have already been discussed. When a process occurs in a
closed system, energy may be transferred across the boundary as work or heat, but
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the working fluid never crosses the boundary. The processes that can occur are called
non-flow processes and the non-flow energy equation may be applied:

Q = W+ ~U

In an open system, the working fluid can also cross the boundary as well as energy.
This means that the equation above does not apply, as other energy may cross the
boundary with the working fluid. A process that occurs in an open system can be
classed as either a steady flow process or an unsteady flow process (which are self­
explanatory). We will assume that the flow processes here are steady. Many common
flow processes can be investigated by assuming a steady flow. A fan heater is an
example of a steady flow process, the working fluid being air steadily flowing in and
out of the system. The conditions necessary to make this steady flow assumption are
as follows:

1. the mass of working fluid flowing past any section of the system must have a
constant flow rate

2. the properties of the fluid at any section of the system must remain constant
during the process

3. all heat and work transfers must take place at a constant rate.

Many processes are flow processes: in a vehicle there are several systems all with a
working fluid being pumped around. Consider the flow of exhaust gases through a
turbocharger: the mass flow of exhaust gases into the turbine is equal to the mass flow
out. The hot gases drive a gas turbine and cause work to be done on a drive shaft. The
shaft causes work to be done on another flow process, the air compressor that
supercharges the engine. Compressed air leaves the outlet of the compressor at the
same mass flow rate as it enters the inlet. To analyse the process we need to select
operating conditions when we can assume that the flow through the compressor is
steady and does not vary. This highlights two steady flow processes. A gas turbine
extracts work from a gas as it expands and reduces in pressure. A compressor is
considered to be a turbine operating in reverse. Work is done on a fluid as it is
compressed from a lower pressure to a higher pressure (Figure 6.16).

Another example of a steady flow process is a heat exchanger. This is a device, as
the title suggests, for exchanging heat from one fluid to another. The two fluids are
kept separate and the heat transfer takes place through the material walls. A car
radiator is a heat exchanger. Heat is transferred from the jacket cooling water of the
engine to a flow of air. A boiler is a type of heat exchanger: heat is transferred from
hot combustion gases in the combustion chamber to water. Again note that the two

. fluids are kept separate.
The study of steady flow processes is based on the principle that energy cannot be

created or destroyed, but only converted from one form to another. The equation
used for analysing steady flow processes is known as the steady flow energy equation
and is derived from an energy balance. An energy balance of a system implies that.
the total amount of energy entering a system per second is equal to the total energy
leaving a system per second. Figure 6.17 represents an open system.

The working fluid enters the system through the inlet pipe at a constant rate. Inside
the system various energy transfers can take place. For instance, for a boiler, heat
would cross the boundary and enter the system; for an engine, work would cross the
boundary and leave the system. When all energy transfers have taken place, the fluid
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Figure 6.16

will leave the system through the outlet pipe. To calculate an energy balance, we
need to consider all the energy crossing the boundary in a unit of time. Energy
entering the system will be made up of:

• any heat transfer crossing the boundary per second
• the energy of the fluid itself flowing into the system per second; this will include

internal energy, kinetic energy and potential energy.

If the mass flow rate is m kg/s then, at the inlet to the system,

energy of the fluid = internal energy + potential energy + kinetic energy
= rnu + rngz, + imcT

Boundary

Inlet
~-----:>~I-------------------

System

y

Figure 6.17
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By using specific terms throughout and by multiplying all terms by the mass flow rate,
we find the energy flow rate. The first term rnu is the specific internal energy (Le. per
kilogram) multiplied by the mass flow rate to give the rate of internal energy entering
the system. The second term mgz, is the equation for potential energy using m
instead of just m, and z instead of h for reasons that will become apparent. The third
term imCI is the rate of kinetic energy entering the system using c for the velocity
instead of v, as we will be dealing with specific volume and the two could become
confused.

The fluid entering the system is pushed by the fluid behind it. This means that work
is done on the fluid in the system. Fluid that leaves the system is pushed by fluid
behind it. Therefore work leaves the system. The work done in moving the fluid is
called the flow work or pressure energy. The work done by one kilogram of fluid is as
follows:

work done = force x distance

Force exerted by the fluid = pressure x area = p x A (as p. = F/A)

So, work done = p x A x S

where S is the distance moved to push one kilogram of the fluid.
Now, as A x S contains one kilogram of the fluid, this is the specific volume v.

work done = p x v

The total energy entering the system needs to include net heat transfer and net work
transfer as well as the energy of the fluid. These can now be added to the equation as
follows:

total energy entering a system per second = Q + m(u, + gZJ + ~ d + PI VI) [~]

In a similar way, the total energy leaving the system per second will consist of the
energy of the fluid leaving the system per second and any work leaving the system per
second. The net work leaving the system per second across the boundary, is
represented by W(not to be confused with flow work pv leaving the system, which is
part of the energy of the fluid). The heat transfer is not considered since the heat
transfer rate Qis the net heat transfer rate, i.e. the difference between heat in and
heat out. Notice the same convention applies: heat transfer to the system is positive
and work transfer to the surroundings is positive.

Total energy leaving the system per second =m(U2 + gZ2 + ~c~ + P2V2) + w[~]

The principle of conservation of energy states that the total energy entering a system
is equal to the total energy leaving a system. The two energy flow equations can now
be combined in the same equation.

. . ( 1 ') ) [J] .( 1 2 ) W·[J]Q + m UI + gZt + 2et + PtVI ~ = m U2 + gZ2 + 2C2 + P2v2 + ~
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This is the full form of the steady flow energy equation, SFEE. This looks like a large
complicated equation but in many situations some of the terms can be assumed to be
zero and so can be ignored, as you will see. If you work out the units of any term in the
equation you will get the units of energy flow, joule per second (J/s):

e.g. PVn1 =} [~][~][~] = [Nsm] =m
The term pv + u has a special meaning and name. It is called specific enthalpy and
given the symbol h. We will not go into any detail on enthalpy in this book but it is
important that you recognise the symbol and what it means because data for
problems is sometime given in this form. So h = pv + u and the units are the same as
those for any specific energy terms (J/kg) or perhaps (kJ/kg). This is why z is used
instead of h for height, to avoid confusion with enthalpy. The SFEE can be rewritten
using h, instead of PI VI + u] and h2 instead of P2V2 + U2:

The total enthalpy of a system is sometimes stated in the terms below rather than the
specific form: H = PV + U [kJ] .

o Example 6.14
The cooling water of a vehicle engine passes through a heater. The enthalpy of the
water reduces by 20.1 kJ/kg across the heater. The water mass flow rate is 2.86 kgl
min. Calculate the power of the heater.

We can assume that the kinetic energy of the water is the same at the outlet of the
heater to the inlet, because the pipe diameter will be approximately the same. We
can assume that the potential energy will be the same too, since the inlet and the
outlet of the heat exchanger must be at a similar height. As there is no movement of
the boundary or a rotation of a shaft then there will be no work transfer.

For this problem the equation becomes:

Q= m(h2 - hI)

As the enthalpy reduces then (h2 - hI) is negative:

Q = 2.86 [~J x 6~ [~] x -(20.1 X 10
3

) [~]

= -958.1 W

The negative sign indicates heat transfer from the system to the surroundings.

o Example 6.15
A hot air blower consists of an electrical heating element and a fan. The power input
to the heating element is 1400 W. The gain in enthalpy of the air through the heater is
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150kJ/kg. The velocity of the air from the blower is 25 m/s. The mass flow through
the heater is 10 x 1~-3 kg/s. Calculate the power input to the fan.

• '. 1 2 2Q - W = m[(h2 - hI) + 2(C2 - CI) + g(Z2 - ZI)]

Assume that the kinetic energy of the air at the inlet is zero and that there is no
change in potential energy of the air through the system.

The equation becomes:
• •• 1 2

Q - W= m[(h2 - hI) + 2C2]

The rate of work to the fan, i.e. the power input, is negative as it is transferred to the
system:

• 2 •- W= rh((h2 - ht) + i C2) - Q

= 10 X 10-3 [ks

g](150 X 103 [:g] + 2~Z [:gJ) - 1400 m
= 1.503 x 103m-1400m= 103.1 l/s = 103 W

o Example 6.16
A fluid flows through a steady flow system at a rate of 0.5 kg/s. The initial pressure,
volume and velocity are 15 bar, 150 x 10-3 m3/kg and 75 m/s respectively. The final
pressure, volume and velocity are 1 bar, 1 m 3/kg and 125 m/s respectively. The
system transfers 200 MJ/h of heat to the surroundings. There is no work transfer and
you can assume that the potential energy remains constant through the process.
Calculate the change in internal energy.

• '. 1 2 2
Q - W = m{(h2 - hI) + 2(C2 - Ct) + g(Z2 - ZI)}

The equation becomes:

Q= rh{(P2V2 - PI VI) + (U2 - UI) + i(c~ - cT)}

Rearrange the equation to find the internal energy:

(uz - UI) = ~ - (Pzvz - PIVt) - Hd - cT)
m

-200 X 106 [!] x _1 [~]
h 3600 s

0.5 [k
s
g
]

- {I X 10
5 [:z] x 1 [;;] - 15 x 10

5 [:z] x 150 x 10-
3

[;;]}

= (-111.111 + 125 - 5) x 103 [:g] = 8.889 X loJ J/kg
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Notice that this is specific internal energy, and the units are per kilogram of the
working fluid.

The boundary of a process must be chosen carefully in order to apply the SFEE. For
instance, a cylinder of a four-stroke internal combustion engine cannot be con­
sidered a steady flow process. See Figure 6.18. The fuel mixture enters the cylinder
from the carburettor or the fuel injection system when the inlet valves are open. The
valve then closes and the fuel mixture is compressed and ignited to cause the force on
the piston. On the final stroke, the exhaust valve opens and the exhaust gases are
forced out, before the process is repeated. This makes the mass flow of the process
far from steady. By considering the boundary to be further outside the engine, the'
SFEE can be applied.

Exhaust
valve Inlet

valve Fuel inlet

Boundary

~
I

I
I
I
I
I

Piston

Figure 6.18 Non-steady flow process

I
I
I________ J

Cylinder

Now the mass flow through the engine can be. considered to be steady and the
SFEE can give answers about such things as fuel consumption and work done by the
engine. As the system boundary is imaginary anyway, then it can be moved to any
position to simplify a system and we can assume a steady flow of mass and energy
across the system boundary (Figure 6.19). The car as a whole could be considered to
be a steady flow process. We have to adapt the steady flow energy equation slightly.
There is no precise way of using the equation. The important thing to remember is to
consider the energy entering or leaving the system per second.

When placing the boundary around the entire car like this we can ignore details
such as the combustion process in the engine as these will all take place inside the car
boundary. The fluid entering the system is the fuel/air mixture, and this leaves as
exhaust gases. The problem can be greatly simplified by considering the dominant



Science for Motor Vehicle Engineers

Exhaust gas

Engine running
at constant velocity I

I

I
I
I

I

I
I
I___________________ J

r------------------------,
. : Boundary

:~
I
I

I
I

I

I
Fuel/air mixture
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Figure 6.19

energy transfers taking place across the boundary. The energy flowing into the
system can be considered to be due to the energy of the fuel, i.e. the petrol or diesel
oil. All other energy entering the system, from kinetic energy of the fuel for example,
can be assumed to be negligible. The energy leaving the system will be as heat
transfer to the surroundings from the engine, work transfer to the surroundings as
the car moves, and the energy of the fluid (i.e. exhaust gas) leaving the system. The
majority of the energy leaving the system (if the process is efficient) will be due to the
work that the car does (Figure 6.20).

Work out

Fuel (energy) in

>
Car

Enthalpy, kinetic energy,
potential energy of

exhaust gases

Heat out via
radiator and
other losses

Figure 6.20

The total energy of the fuel can be measured by the calorific value. This is the
amount of energy that any fuel can provide. It is measured as energy per unit mass,
e.g. [MJ/kg].

Q Example 6.17
A car fuel tank holds 50 kg of fuel with a calorific value of 45 MJ/kg. What is the total
energy available from the fuel for the engine?
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Energy available = 50 [kg] X 45 [MJ/kg]
= 2250 MJ = 2.25 GJ

Q Example 6.18
A car with a mass of 1400 kg travels along a flat road at a constant velocity and uses
fuel of calorific value 42 MJ/kg at a rate of 6.12 kg/h. The car reaches a hill and climbs
at a vertical rate of 0.5 m/s. Calculate the increase in fuel as a percentage. Assume
that any enthalpy, kinetic energy and potential energy out of the car due to exhaust
gases are negligible.

Consider the car on the flat road:

This can immediately be reduced to:

Q- W= m[O - calorific value fuel]

All the energy flowing into the system due to the mass flow of the fuel is calculated
from the calorific value:

Q- W= 6.12 [kg] x _1 [~] x 42 X 106[~]
h 3600 s kg

== -71 400 J/s

We shall use the suffix 1 with the WI to represent initial work rate before the hill. The
detail of what Q- WI are is not important, although the majority of this is the work
done per second by the car overcoming the resistance to movement.

Consider the car climbing the hill now. We will assume that the Q- WI term
remains constant.

(Q - WI) - mgn = (71400[~] + increase in fuel used)

The mg}: is the extra work rate due to the hill climb; it is the weight, mg, multiplied by
the distance h per unit time, h.

mgh = 1400 [kg] x 9.81 [~] x 0.5[7]
= 6867 J/s

The increase in the fuel used is due to the extra work rate, 6867 J/s. This can now be
calculated as a percentage of the original used:

increase in fuel = 6867 [J/s] x 100% = 9.60/0
71 400 [J/s]

If you look at the SFEE and think about a process with no mass flow you will see how
the non-flow energy equation is derived: Q = W + IiV. The principle of conser­
vation of energy still applies. No energy is passed in or out of the system due to mass
flow, just due to heat or work crossing the boundary, the difference between the two
resulting in a change in the internal energy.
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6.5 Liquids.

Hydraulics is the study of liquids in engineering. The word 'hydraulics' is commonly
used to refer to high pressure hydraulic power systems, such as braking systems or
hydraulic power assisted steering, but the term is really more general than that. A
liquid is a fluid that will flow under gravity to take up the shape of its container. As
with most things in engineering, hydraulics is divided into stationary liquids and
dynamic liquids. Hydrostatics refers to the study of liquids at rest such as in a storage
tank or some hydraulic machinery. Hydrodynamics refers to the study of liquids in
motion, such as water flowing through a heating system. In a vehicle there are several
liquid systems: for instance, the fuel system, the lubrication system, the cooling
system and hydraulic power systems. All the liquids in these systems serve different
purposes and the automobile engineer must understand the relationships between
the properties and characteristics such as pressure, temperature, flow rate and flow
profile. .

Volumetric expansion of liquids
When the temperature of most substances changes, then so does the volume. You
will be aware that checking liquid levels in a vehicle should be usually done when the
vehicle is warmed up and not when it is cold, i.e. at the normal running temperature.
This change in volume needs to be predicted when designing and performing
calculations on a fluid system (Figure 6.21).

~-----------------------
~/ I /

I

I

I

(~---- -----------------~
I
I

------
/

Figure 6.21 Volumetric expansion

Not all substances expand equally when subjected to the same temperature
change. These changes in volume are calculated using constants or coefficients for a
particular substance. For solids, a coefficient of linear expansion or contraction is
used. It can predict the change in length of a linear dimension. Liquids take up the
shape of their container and do not have fixed dimensions. The change in volume of a
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liquid that undergoes a temperature change is proportional to the original volume
and the change in temperature and is calculated using a coefficient of volumetric
expansion. This is the change in volume per unit volume for one degree change in the
temperature of a substance. The total change in volume is calculated using the
following formula:

change in volume = coefficient of volumetric expansion x original volume
x temperature rise

We can give the coefficient of volumetric expansion a symbol, y. The Greek letter £5,
pronounced delta, is usually used to represent the words 'change in'. If V is the
original volume, £5V is the change in volume and <5T is the change in temperature,
then:

change in volume, oV = y x V x oT

The units of yare expressed per degree kelvin (/K). Units check: [rrr'] =
[11K] x [m3

] x [K].

o Example 6.19
An oil tank is 2 m long by 1.5 m wide. The oil is 3 m deep in the tank. Calculate the
increase in depth of the oil when the temperature of the oil increases by 10°C. Neglect
any expansion of the tank material. The coefficient of volumetric expansion for the
oil is 70 x 10-5/K.

Remember that a change in temperature in degrees Celsius is equal to the change
in kelvin.

Increase in volume, oV = yVOT

= 70 x 1O-5[~] X 2 [m] x 1.5 [m] x 3 [m] x lO[K]

= 63 x 10-3 [rrr']

I . d h increase in volumencrease In ept = -------
area of base

= 63 X 10-3 [m3
]

2 [m] x 1.5 [m]

= 21 x 10-3 m = 21 mm

Mixing liquids ofdifferent densities
When mixing liquids of different densities together, you can assume that the volumes
and masses are not affected due to the mixing. So if two liquids are mixed together,
the final mass of the mixture is equal to the two masses added together. In a similar
manner, the final volume of the mixture is equal to the two volumes added together.
The density of the mixture then equals the total mass divided by the total volume:

. . total mass
Density of the mixture =-----

total volume
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U Example 6.20
2 kg of oil of density p = 850 kg/rrr' are mixed with 5 kg of oil of density
p = 910 kg/rrr'. Find the density of the final oil.

m m
As p = - then V = -

V ' P

Total volume, V = (8~O + 9~O) [[k~~3]]
= 7.847 X 10-3 rrr'

Total mass = 5 [kg] + 2 [kg] = 7 kg

. . total mass
Density of mixture = I I

tota vo ume

_ 7 [kg]
- 7.847 x 10-3 [m3]

= 892 kg/m3

Pascal's laws
Pascal was a scientist in the seventeenth century. Amongst other things he was
responsible for developing laws on fluid pressure. For a fluid that is at rest Pascal's
laws are:

1. The pressure is the same throughout the fluid if the weight of the fluid is ignored,
or in other words, the pressure in a fluid is equal at the same horizontal level.

2. The pressure acts equally in all directions at the same time.
3. The pressure acts at right angles to any surface in contact with the fluid.

Notice that the word 'fluid' is used rather than 'liquid'. This is because these laws
apply to gases as well as liquids.

A liquid in a closed cylinder can be put under pressure by applying a force to the
piston (Figure 6.22). The pressure p in the"liquid is calculated from:

Now look at the hydraulic system in Figure 6.23. The load D at the load ram is
balanced by a smaller force F at the effort ram. The pressure due to the load D is
given by:

load D
pressure =---- =-

area A

The pressure due to the force F:

load F
pressure = ---- = -

area a
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F

Piston area, A
p

Figure 6.22

If the system is in equilibrium then the pressure is equal in both rams:

D F
A a

This can be rearranged to:

D A
F a

So, for equilibrium, the ratios of the applied forces and ram areas are equal.

Force, F

Effort
ram

Figure 6.23

Area, a

Load, 0
Load

ram

Area, A
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Work and power
Suppose we want to calculate the work done in raising the load D by a certain height
L. Liquid must be displaced from the effort ram to the load ram. The volume Vof
liquid displaced will be equal to the load ram area A by the height L:

volume displaced V = A x L

The work done equals the force multiplied by the distance moved:

work done W = D x L

D
As pressure p = -

A

then D = P x A

We can substitute this back into the equation for work:

work W = p x A x L

This is the same as pressure multiplied by volume:

W=pxV

Units check: [J] = [:2] x [rrr'] = [Nm]

Power is the rate of doing work, i.e. p x V per unit of time. The volume V per unit of
time is the flow rate. We can represent the flow rate with V, the units being [m3/s].

This is the volumetric flow rate. Do not confuse this with mass flow rate m measured
in kg/so

. [N m3
] [Nm]. '. Power = p x V m2 S = -s- = [W]

o Example 6.21
A pump delivers 600 IIh of water against a pressure of 10 bar. Calculate the power
that the pump produces.

Power = p x.V

[ N] [~s 1 [m3

J 1 [~]= 10 [bar] x 105
-2- x 600 -- x - -- x - -
m bar k' 1000 liiref 3600 s

= 166.667 J/s = 166.7 W

Pressure head
Pressure in a liquid varies with depth due to the liquid's own weight. To determine
the pressure in a liquid at a depth h below the surface, imagine that there is a column
of liquid as shown in Figure 6.24.
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The liquid has a cross-sectional area A and its depth is h. As the liquid is at rest then
all forces are in equilibrium. Horizontal forces are in complete equilibrium, as the
pressure at each level is equal. Therefore we only need to consider vertical forces to
calculate the pressure at the depth h.

The downward forces consist of the force due to atmospheric pressure, Patm, and
the force of gravity on the column of liquid:

downward forces = (Patm X A) + (m x g)

If the density of the liquid can be found by dividing the mass by the volume, p = m/V,
then the mass is equal to density multiplied by the volume, m = pV. Substituting this
back into the equation we get:

downward forces = (Patm X A) + (p x V x g)

Volume is equal to cross-sectional area multiplied by height, so:

downward forces = (Patm X A) + (p x A x h x g)

The only upward forces are due to the pressure of the liquid at the depth, h. If
pressure, p = F/A, then the force, F =p x A.

If upward forces = downward forces, then

(P x A) = (Patm X A) + (p x A x h x g)

The area A is a multiple of both sides of the equation so it can be cancelled out,
leaving:

P = Patm + (p x h x g)

The pressure P on the left side of the equation is the absolute pressure at the depth h
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in the liquid. If we consider this to be the pressure above atmospheric pressure (i.e.
gauge pressure), rather than the absolute pressure, then the atmospheric pressure
term P on the right side of the equation can be ignored. Remember that absolute
pressure is equal to atmospheric pressure plus the pressure above atmospheric
pressure, i.e. the gauge pressure, Pabs == Patm + Pg• This leaves:

P == pgh

Units check: [:2J = [~~J[~J[m] = [~~2J

We now need to convert the kg into other units.

As 1 N == 1 kg m/s/ so 1 kg ~ Ns2/m

Substituting this back into the equation:

[ kg J- [Ns
2J- [N Jm S2 - m2 S2 - m2

It is worth working this out yourself.
We can assume that, for any liquid, the density p and acceleration due to gravity g

will remain constant. Therefore, if the pressure at depth h == pgh, then the pressure is
proportional to the depth h (i.e. P o: h). The depth h is sometimes called head in
engineering. Pressure is sometimes expressed in terms of head. For instance, the
pressure a pump has to produce may be quoted in metres of water. As a rough guide
1 bar gauge (== 100000 N/m 2

) is equal to approximately 10 m head of water.

o Example 6.22
Calculate the pressure at the base of a vertical pipe 42 m high and of diameter 0.1 m,
when it is filled with oil of density 880 kg/m ',

P == pgh

= 880 [~~ J x 9.81 [~] x 42 [m]

= 362.578 kN/m2

Notice that the pipe diameter has nothing to do with the pressure.

o Example 6.23
Calculate the maximum theoretical height that water can be sucked up a pipe by a
pump when the atmospheric pressure is 1.01 bar.

When a pump sucks fluid up a height then this is referred to as a suction lift. The
pump reduces the pressure at the inlet port below atmospheric pressure and
atmospheric pressure acting on the fluid forces the fluid up towards the pump. If the
pump could create a perfect vacuum, then the maximum pressure available to push it
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up the inlet pipe is atmospheric pressure. If a perfect vacuum is created at the pump
inlet, then for equilibrium at the base of the suction pipe of cross-sectional area A:

upward forces = downward forces

F
As pressure, p = - then force, F = P x A:

A

Patm X A = p x g x h x A

... h = Patm
pg

1.01 [bar] x 105 [~]

1000 [:~] x 9.81 [~ ]

= to.296m

A manometer is a device for measuring low pressures. It consists of a V-tube
containing either water or mercury, depending upon the pressure range to be
measured. Mercury will measure higher pressures than water because of its higher
density. Figure 6.25 shows a manometer. The two ends of the tubes can be connected
to two different pressures. The difference in the height in each leg indicates the
pressure difference. If one end of the tube is open to the atmosphere and the other is
connected to the pressure to be measured, then the difference in height will indicate
the pressure above atmospheric, i.e. gauge pressure. The usual head formula is used:
p = pgh.

1
Figure 6.25 Manometer



Science for Motor Vehicle Engineers

Q Example 6.24
The pressure in a gas cylinder is measured by attaching a suitable water U-tube
manometer. The difference in liquid level is 0.721 m. Calculate the gauge pressure.

p = pgh

=: 1000[~~] x 9.81 [~] x 0.721 [m]

= 7073.01 N/m 2 = 7.073 kN/m 2

Liquidflow
When a solid body moves, however complex the motion is, the individual particles of
the body all move in the same direction and in a similar manner. With a liquid, all the
individual particles are not fixed relative to each other and the individual particles
can all move separately. This can make the motion of a volume of liquid difficult to
describe.

Laminar and turbulent flow
When a liquid flows along a pipe, the motion is resisted by viscosity. Viscosity is the
resistance to the rate of change of shape. An example of a liquid with a high viscosity
is bearing grease. An example of a liquid with a low viscosity is petrol. The viscosity
causes a pressure drop along the length of the pipe. This requires energy to drive the
liquid through the pipe. The resistance to flow also depends upon the type of flow. As
the liquid flows past the pipe walls, the particles nearest to the walls are slowed down
due to frictional forces between the solid and the liquid. These frictional forces are
called viscous forces. The effect of the liquid slowed down like this is called viscous
drag. When the velocity of the flow is low, the individual particles of the liquid all
move in the same direction parallel to the sides of the pipe walls. The flow profile can
be shown by a cross-section of the liquid and the pipe, using arrow lengths to
represent the liquid velocity.

This type of flow is shown in Figure 6.26 and is called laminar flow, or streamline
flow. Laminar flow in a pipe is defined as liquid flow where all the particles at a given
radius from the pipe centre all move at the same velocity, the velocity being highest at
the centre and lowest at the pipe walls. At higher flow velocities, the motion becomes
chaotic. The individual particles no longer flow in the same direction, but move

pipe walls

Figure 6.26 Laminar flow
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Figure 6.27 Turbulent flow

around in all directions at random in the general direction of the liquid motion. This
type of flow is called turbulent flow. The flow pattern is less ordered (Figure 6.27).

The viscosity of the liquid affects the type of flow as well as the velocity. At low
velocities and high viscosities the flow tends to be laminar. At high velocities and low
viscosities the flow tends to be turbulent. For example, you would expect slow oil
flow to be laminar and fast water flow to be turbulent. Other things that affect the
type of flow are the pipe diameter and liquid density.

To be able to calculate the volume flow rate through a pipe we have to make some
assumptions. If the flow is assumed to be perfect the problem is simplified. Perfect
flow means that every particle of the liquid flows with the same velocity in straight
lines parallel to the walls of the pipe. This type of flow does not exist in reality but is
another useful ideal for simplifying calculations (Figure 6.28).

Figure 6.28 Perfect flow

Volumetric flow rate and mass flow rate
The velocity of flow of a unit volume of fluid through a pipe can now be considered.
This can be found by recording the quantity of liquid flowing through a system in a
given time. The average flow rate can be calculated as:

ft V· volume of liquid [m
3

]average ow rate, = . -
tIme s

v

If the average flow rate is then divided by the cross-sectional area of the pipe, the
average velocity is found:

. average flow rate p
average velocity c = . I = -

cross-sectiona area A
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We use c to represent velocity rather than v so there is no confusion with volume Vor
specific volume v.

Units check: [~;] = [7]
The mass flow rate can be found from the volumetric flow rate. Remember that
density is equal to mass divided by volume, p = m/V and so m = p X V.

If volumetric flow rate it = c x A
Mass flow rate m = volumetric flow rate x density

= v « p
=cxAxp

Equation of continuity
Consider liquid flowing through a pipe that reduces in diameter over its length
between points 1 and 2 (see Figure 6.29).

I

I

: 'Area, A2

V>

I

I

I

Area~

Velocity, v, : ~i.9~i~ _fl.?~ Velocity, v2

>

Figure 6.29 Flow through a tapering pipe

The mass flow rate passing any section is constant. The cross-sectional areas at
sections 1 and 2 are A I and A 2 , and the fluid velocities are CI and C2' respectively. As
the mass flow rate is constant, we can say that:

CI X AI X P = C2 X A 2 X P

The density will remain constant and can be cancelled out:

cl x A I=c2 x A2

We can rearrange this to give:

~=A2
C2 Al
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When the pipe dimensions are known the ratio of the velocities can be found. This is
caJled the equation of continuity, and states that the velocity of the flow is inversely
proportional to the area of the pipe section.

nd2 nd2

Also, as AI =-t and A 2 =T then:

Cl _ nd~ 4 _ d~---x---
Cz 4 ndt dt
CI A z d~
Cz - Al - dt

So, not only is the velocity inversely proportional to the area of the pipe section, it is
also inversely proportional to the square of the pipe diameters. For example, if the
diameter of the pipe were to reduce by one-half then the velocity would increase to
four times its original value.

Q Example 6.25
The diameter of a length of tapered pipe reduces from 0.25 m to 0.12 m over a length
of 1.5 m. Liquid flows from the larger diameter to the smaller diameter. The velocity
of the liquid is 2.5 mls at the inlet to the pipe. What is the velocity at the outlet of the
pipe?

== 2.5 [m1X 0.25
2

[ml]
s J 0.12 2 [~]

== 10.851 m/s

Bernoulli's equation
Bernoulli's equation states that when an incompressible liquid flows between two
points in a system, the total energy at point one is equal to the total energy at point
two. The total energy is composed of:

1. potential energy
2. pressure energy or flow work
3. kinetic energy.

Potential energy = mgh
Pressure energy or flow work = p V

kineti 1 2metre energy = - me
2
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These were defined in the chapter on the steady flow energy equation. Inserting
these values into the equation:

1 2 1 2
mgh, + PI V + -mcI = mgh + P2V + - mc2

2 2

We could have derived this from the steady flow energy equation. A section of the
pipe can be considered as a system with a steady mass flow rate in and a steady mass
flow rate out. The steady flow energy equation is:

· . ( 1 2 ) [J] .( 1 2 ). [J]Q + m UI + gh l + lCI + PIVI ~ = m U2 + gh2 + lC2 + P2v2 + W ~

This equation considers the energy flow rate entering or leaving the system per
second. If energy flow rate entering or leaving the system is considered during one
second the equation becomes:

Q + m(Ul + gh1+ ~ei + PIVl) [J] = m(Uz + ghz+ ~c~ + pzvz) + W[J]

Through a section of pipe, we could assume no heat transfer and no work transfer
through the pipe wall. We could also assume that there are no internal energy
changes between the liquid entering the system and leaving the system. The equation
becomes:

which is the same as Bernoulli's equation:

1 2 1 2
mgh, +p1V+lmCl =mgh2+P2V+lmC2

In the SFEE equation remember z is used in place of h for height to avoid confusion
with enthalpy.

As this is applied to hydraulic systems, it is usually expressed in terms of pressure
head h, i.e. divide throughout by mg:

h, + PlY + cr = hz + pzY + d
mg 2g mg 2g

As density, p = mlV then Vim = IIp. This can be substituted into the equation to
give an alternative form:

P C2 P c2

h, + --l. + --l = h2 + -.l + ~
pg 2g pg 2g

This assumes that there is a perfect interchange of energy. No account is taken of the
'losses' of energy between points 1 and 2 in the system, e.g. heat transfer through the
pipe walls. These losses can be allowed for in Bernoulli's equation with a little
modification.
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. total energy 'losses'.
Total energy at 1 = total energy at 2 + between I and 2etween an

2 2
PI CI P2 C2 IhI + - + - = h2 + - + - + osses
pg 2g pg 2g

Q Example 6.26
Diesel fuel of density 900 kg/rrr' flows down a pipe. The difference in height over the
length is 1.5 m. The pressure and velocity of the oil at the top of the pipe are
170kN/m 2 and 5 mis, respectively. The velocity of the oil at the bottom of the pipe is
15 m/s. Calculate the pressure at the bottom of the pipe. Assume that there are no
losses.

We'll call the top of the pipe point 1 and the bottom of the pipe point 2.
2 2

hi + PI + .s.. = h2 + P2 + C2
pg 2g pg 2g

Rearranging for P2:

(
2 2)PI CI C2

P2 = hi + pg + 2g - h2 - 2g pg

_( + 170 x 10
3

+ 52 -0- 15
2

)[mlX900[k
g]X981[m]

- 1.5 900 x 9.81 2 x 9.81 2 x 9.81 m3 ' S2

= (1.5 + 19.255 + 1.274 - 0 - 11.478) [m] x 900 [~~] x 9.81 [~]

= 93.155 kN/m 2

Problems 6
1. The temperature of a room is 21°C. What is this in absolute units?
2. A copper vessel of mass 0.5 kg contains 2.5 kg of water. The initial temperature

of the water and copper is 16°C. The vessel is heated until the final steady
temperature is 40°C. Ten per cent of the energy supplied is lost to the
atmosphere. How much energy is required? The specific heat capacity for the
copper C = 0.391 kJ/kg. For the water, the specific heat capacity C = 4.18 kJ/kg.

3. The pressure of a tank is measured with a mercury manometer. The reading is
900 mm of mercury. Atmospheric pressure at the time of the reading is
1.005 bar. What is the absolute pressure in the tank? The density of mercury is
13 500 kg/rrr'.

4. The pressure of air in a pressure bottle is measured with a water manometer. The
reading is 850 mm. The atmospheric pressure at this time is 759 mm of mercury.
Calculate the absolute pressure of the air. The density of water is 1000 kg/nr'.
The density of mercury is 13500 kg/rn',

5. 5 kg of steam that is a dry saturated vapour is converted to water at 20°C. How
much energy is obtained? The specific heat capacity is C =.4.18 kJ/kg and the
specific latent heat of vaporisation is 2260 kJ/kg.
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6. The cooling system of a vehicle contains 9 kg of water at a temperature of 45°C.
How much energy is required to evaporate 200/0 of the water at atmospheric
pressure? The specific heat capacity of the water is c = 4.18 kJ/kg and the
specific latent heat of vaporisation of the water is 2261.8 kJ/kg.

7. The internal energy of a system decreases by 1500 kJ when 550 kJ of heat is
transferred to the system from the surroundings. What is the work transfer?

8. One kilogram of a fluid at a pressure 200 kN/m2 is compressed from 0.6 nr' to
0.15 rrr', What is the work done?

9. A gas with a volume of 0.05 m' and an absolute pressure of 500 kN/m2 expands
until the volume is 0.15 rrr'. The temperature remains constant throughout the
process. Calculate the final pressure.

10. The compression ratio of an engine is 10 to 1. The pressure at the beginning of
the compression is 50 kN/rn2

• The pressure at the end of the compression is
3000 kN/m2

• At the start of the process the air is 30°C. What is the final
temperature?'

11. A wall is double-skinned. The outer layer is brick 150 mm thick with a thermal
conductivity of 0.85 W/m K. The inner layer is made of an insulation material,
75 mm thick, and with a thermal conductivity of 0.07 W/m K. The temperature
inside is 43°C and the temperature outside is 2°C. Calculate the heat loss through
the wall.

12. Describe the meaning of the terms 'emissivity' and 'black body'. What type of
surfaces absorb the most radiation?

13. Air in a cylinder has a pressure of 50 kNzrn", a temperature of 30°C and a volume
of 0.09 m', What is the mass of air? The specific gas constant R for the air is
0.287 kJ/kg K.

14. Cooling water flows through a system at a rate of 13 kg/min. Calculate the
velocity when it flows through a pipe of diameter 30 mm and a pipe of diameter
46 mm. The density of the cooling water is 1015 kg/rn'.

15. A pump discharges water of density 1000 kg/m' through a 50 mm diameter pipe
at 20 litres/min, to a height of 1.5 m. The efficiency of the pump is 70%

• Find the
power required by the pump.

16. A gas enters a system at a temperature of 65°C, a pressure of 125 kN/m 2 and a
velocity of 7.7 m/s through a pipe of diameter 0.1 m. The gas leaves the system at
a temperature of 175°C, a pressure of 225 kN/m2 through a pipe diameter 0.3 m.
Calculate the velocity of the gas leaving the system. The specific gas constant R
for the gas is 0.292 kJ/kg K.

17. Thirty-five cubic metres per hour of fresh water flows vertically upwards through
a tapering pipe and discharges to the atmosphere. The flow area of the pipe exit
is 5500 mrrr', The flow area of the pipe base is 3200 mrrr'. The height of the top of
the pipe is 2 m above the base. Apply Bernoulli's equation in the equivalent head
form to find the gauge pressure at the base of the pipe. Assume the density of the
water to be 1000 kg/rrr',

18. A car radiator is completely filled with cold water; this requires 12litres. The car
travels a short journey. During the journey 0.25litres of water is lost through the
overflow pipe. The initial temperature of the water is 10°C. Find the final
temperature of the water. The coefficient of volumetric expansion of the water is
43 x 10-5/K.
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19. Find the density of an oil if a vertical. column of this oil 1.5 m high can be
balanced by a vertical column of mercury 0.105 m high. Assume the density of
the mercury to be 13600 kg/rrr',

20. Fresh water flows through a short horizontal tapering pipe, from the larger
diameter to the smaller diameter. At the large end the velocity is 2 m/s. The
pressure reduces by 15 kN/m 2 through the pipe. Calculate the velocity at the
smaller end. .



7 Control and
instrumentation

I 7.1 Modelling and control systems

What is a system?
So far, we have looked at mechanical and thermodynamic systems. We have seen
that a system is a collection of connected components or matter within a boundary
that we want to investigate. The boundary is an imaginary line around the com­
ponents to make the study of them easier. The components will all interact with each
other in some way and the boundary shows the inputs and outputs of a system as any
signals that cross it. A system can be just about anything, e.g. an arm, an engine or a
power station. It is the region in space that is of interest. Everything outside of the
boundary is called the environment. The signals that cross the boundary from the
environment are called system inputs and the signals that cross the boundary from
the system are called system outputs. It is the position of the boundary that defines
the system.

Consider a cooling water system that uses an electric motor driven pump to
provide the water pressure (Figures 7.1 and 7.2). The speed of the pump N is

Motor
voltage

Figure 7.1

Water in >

Figure 7.2

Motor pump unit

Water
pressure

Voltage

Water out>
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proportional to the water pressure p, i.e. p oc N. The voltage supply Vto the motor is
proportional to the speed of the motor and pump N, i.e. VOC N. Therefore the
voltage applied is proportional to the water pressure, V oc p. The voltage is the input
to the system. The output is the water pressure. We could however have positioned
the boundary differently.

Speed of
drive shaft

Figure 7.3

Pump

Water
pressure

In Figure 7.3 the pump is the system. The input is the speed of the drive shaft Nand
the output is the water pressure p, again. Often, there will only be one inputthat
varies and only one output that is affected by this varying input. As in the above
example, these are the easiest to analyse and the ones we will look at here. A system
may not necessarily be a physical system, like that above: it could concern economics
or management for instance. We will restrict our studies to physical systems.

Why model a system?
A model of a system, like any model, is a representation of that system. The model is
used to predict how the system will respond to certain inputs. When a driver gets into
an unfamiliar vehicle, the controls may feel strange and driving may seem difficult at
first. Quickly, however, the driver gets used to the vehicle, to the response of the
engine revolutions from the accelerator pedal, to the response of the car when the
steering wheel is turned, to the deceleration on braking, etc. This happens because
the driver learns about the vehicle, i.e. a model is developed in the driver's mind.
This model is a 'picture' of the performance of the vehicle and allows the response of
the vehicle to be predicted.

The models that engineers often use are mathematical models. These can be
developed from equations and are used to analyse system performance or control. It
is useful to be able to predict how a system will perform under different conditions.
The relationship of interest is between the variable input and measured output, such
as in the pump example above.

The model is only an approximation of the system though, and certain assumptions
have to be made to simplify the performance.

Block diagrams
Having decided that you want to model a system, what now? We have to look at what
exactly makes up that system and how it interacts with the environment. An
imaginary boundary has been drawn around the system. We now need to represent
the system in a simple way. A common method of doing this is using a block diagram.
The individual functioning parts of a system can be represented with blocks, and
arrows between the blocks drawn to show how the parts are related. The arrows show
the signal flow through the system. Each block represents a relationship between its
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System input__-,Jl>! Motor
voltage ,

Figure 7.4

'"'--__>~ System output
water pressure

input and output. The motor pump example above can be represented as shown in
Figure 7.4.

The usual convention is to draw the system input at the left side of the page and the
system output at the right side. The lines between the block are signals and the
arrows show the direction of the signal flow. For instance, the arrow between the
motor and the pump is the shaft speed, i.e. the output from the motor is the shaft
speed and the input to the pump is the shaft speed. This signal is a precise variable. It
is not simply the motion of the shaft: it is the speed of the shaft that is proportional to
the water pressure and so it is the pump block that represents the relationship
between shaft speed and water pressure.

Subsystems
A system often consists of several interacting subsystems. How complex the model
needs to be will depend upon what information you require from it. Consider a petrol
engine as shown in Figure 7.5.

Accelerator
pedal
position

Figure 7.5

>
Petrol
engine
of car

Engine
speed

>

The input to the engine is the accelerator pedal position. The output is the engine
speed. The engine can be considered to consist of four subsystems: the carburettor,
the intake manifold, the combustion and the engine dynamics (Figure 7.6).

Figure 7.6

Spark
advance

t
Combustion
in engine
cylinder

Load
torque

Engine

speed

Developed
engine
torque

The spark advance is also a controllable input. The load torque is a disturbance
input. The developed torque is also indicated as an output. Each subsystem can be
investigated further, if necessary. A model outline of the carburettor could look like
Figure 7.7.
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Atmospheric
pressure Manifold pressure feedback

\V \V
Air ..................-

ator
............. Carburettor.....-

Fuel
..................-

Acceler
pedal
position

Figure 7.7

The accelerator pedal position is the controllable input. The outputs are the air
and fuel, which become the inputs to the intake manifold. The atmospheric pressure
and the manifold pressure affect the operation of the carburettor and are shown as
disturbance inputs. There is a feedback signal of the manifold pressure fromthe
intake manifold subsystem.

Mathematical models
The mathematical model of a system describes the relationship between the inputs
and the outputs. Mathematical laws and formulae can be used to develop a model.
The variables, the theories and laws, and the assumptions made, all affect the model
developed.

o Example 7.1
Consider a simple coil spring that has one end fixed against a surface as shown in
Figure 7.8.

F

x

Figure 7.8
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Force, F

Figure 7.9

Spring

F =kx

x

A force, F, is applied to the other end. The mass of the spring can be assumed to be
negligible. The spring will compress by distance x. A model is required that- can
predict the deflection x for an input force F. We could represent this by a block that
has an input of F and an output of x, as shown in Figure 7.9.

If the spring stiffness is k then the force applied from the deflection is: F = k x x.
This is the equation relating the output to the input of the block and we now have a
simple mathematical model of the system. This can be used to predict the deflection x
when a force is applied.

The decision that we made, to the mass of the spring, simplifies the model. Had we
not ignored the mass of the spring then the mathematical model would have been
more complex and more accurate, incorporating the effects of gravity. We must also
assume that the force is not so large that the coils of the spring are pushed together
and the above formula would no longer apply. How complex the model is made
depends on its purpose.

One thing to notice is that the model is not time-dependent. This means that, for a
constant input (force), the output remains constant with time. This is not always the
case.

o Example 7.2
Consider a hydraulic damper. A piston can slide in a cylinder and the cylinder is filled
with hydraulic oil. There are holes in the piston so that the oil can flow through it as it
slides. A model is required that predicts the position of the piston when a force is
applied. . .

We will assume that the piston has a negligible mass and that the oil can flow freely
through the piston so that the pressure remains equal each side of the piston. When
the force is applied the piston will move. The oil in the cylinder creates a drag on the
piston as it moves.

Look at Figures 7.10 and 7.11. The velocity of the piston is proportional to the
viscous drag on the piston (see page 240). We know the relationship between the
force and the velocity but not between the force and the displacement x. The
relationship between the force applied and the velocity v of the piston is

F= Cv

dx
=C-

dt

where C is a constant.
The velocity is represented as dxldt meaning the change in the displacement x

occurring in a certain time t (see page 17). Velocity is represented like this rather than
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Oil

F

Figure 7.10

F

Figure '7.11 First order response

Damper

dx
F=C dt

Cylinder

x

by a single letter such as v to highlight the relationship between the force F and the
position x. The difference between this example and the last one with the spring is
that there is not a single constant output (displacement x) for a fixed input (force).
Here, the output changes with time: it is time-dependent. A time-dependent system
is called a dlynamic system. The output of a dynamic system depends on the input and
time. The example here is known as a first order system, as it involves the first
derivative of the output x, i.e. dx/dt. A graph of the output x measured over a period
of time for a step input of F would be as shown in Figure 7.12.

This is a typical response of a first order system to a step input. Notice that there is
no overshoot before the output settles at the final value.

Displacement, x

Time

Figure j' .12
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U Example 7.3
If a force is applied to a block with a mass m that stands on a frictionless surface, the
block will accelerate according to Newton's second law (F = rna). The block is
guided so that it can only move in the direction of the force. We require a model that
predicts the position of the block when a force is applied.

Mass

F

Figure 7.13

-:
-:
-:
-:

Frictionless /'
surfaces /'

x I... . ./
""'---'--'--~~ ./'

Figure 7.14

F x

See Figures 7.13 and 7.14. We know the relationship between the force and the
acceleration but not the relationship between the force and the position, or even the
velocity. In Chapter 4 it was shown that velocity could be calculated and represented
by dx/dt, meaning the change in displacement occurring in a time t. This is the rate of
change of the displacement. If the velocity, dx/dt, is differentiated again, we obtain
an expression for acceleration, d2x/dt2

. This is the change in velocity occurring in a
time t which is the rate of change in velocity. The expression relating force. to
acceleration can be written like this:

d2x
F = rna => F = m dr

This form of the expression looks a little more complex but it now shows the
relationship between the force and the displacement x. Again the model is time­
dependent. This is known as a second order system, since the expression involves the
second derivative of the output, i.e. d2x/dr.
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o Example 7.4
The above three examples can be combined into one system. See Figures 7.15 and
7.16.

Mass

F

Spring

Damper

Figure 7.15

F

Figure 7.16

Mass, spring
and damper

x

This is a common arrangement in engineering. A suspension spring and damper of
a vehicle behave in a similar manner to this. To develop a model we will make the
same assumptions that we made for each individual model, i.e. that all mass is
negligible except for the mass of the block; the block can only move in the direction
of the force and there is no friction between the block and the surface. We can apply
Newton's second law of motion again:

F=rna

Now, however, there is more than the one input force to consider. The input force is
opposed by the resistance forces of the spring F; and the hydraulic damper Fd : .

total input force = F - F; - Fd

This input force is used to give the mass of block m an acceleration a or ~>

So, F - F; - Fd = rna

d2x
=rn-dr



Science for Motor Vehicle Engineers

We also know that F; = kx and Fd = C dx. Substituting these expressions into the
. dt

equation we get:

dx d2x
F-Kx- C-=m-

dt dr

Rearranging this we get,

d2x dx
F=m-+ C-+ Kx

dr dt

This is obviously a more complex model than the previous three examples, but the
motion of the block is more complex, The output response of this system to a step
input could be as shown in Figure 7.17.

This is a typical response of a second order system to a step input. Notice that the
output overshoots and oscillates before settling at its final value.

Displacement, x

Time

Figure 7.17

Analogous systems
Analogous systems are different systems that have a similar relationship between
outputs and inputs. For example, consider the water tank shown in Figure 7.18.

Vi

Cross-sectional area = A

Va

Figure 7.18
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The volumetric flow of water in is Vi, the volumetric flow of water out is Va and the
net flow of water in is itnet, so that itnet = Vj - Va. The depth of the water in the tank
is h. The relationship' between the net flow in and the depth is:

. dh
Vnet = A­

dt

where A is the cross-sectional area of the tank. This is a first order response, as it
involves a first derivative. This can be compared to the hydraulic damper model with
an input of force F and an output of displacement x:

dx
F=C­

dt

The difference between the two relationships is in the constants C and A. These two
systems are known as analogous systems. Analogous systems are a useful concept.
The response of one system can be simulated by another. Electrical circuits are
sometimes designed as analogous systems to have comparable relationships be­
tween, for instance, input voltage and output voltage. If a controller is being
designed to control, for example, the level of a large industrial boiler by varying the
water pump speed, then it is far simpler and safer to test the controller initially on an
analogous electrical circuit that can mimic the relationship between the input and the
output of the boiler.

Control systems
A control system is used when a quantity or variable (the output) in any equipment
needs to be maintained or altered in some way. This is done by adjusting one or more
of the inputs. Consider a gas-powered air heater (Figure 7.19).

Air temperature
(disturbance input)

Gas flow
(controlled input)

Figure 7.19

--
Air heater

Hot air temperature
(output)

--

The temperature of the hot air produced by the heater can be controlled by
adjusting the gas flow that is burnt. The temperature of the heated air is also affected
by the temperature of the cold air entering the heater from the atmosphere. Only the
gas flow can be adjusted. This is called a controlled input. Inputs that affect the
output but cannot be adjusted are called disturbance inputs. The variable that is
chosen as the output is not always a good indication that the system is controlled
properly. The air heater measures the outlet temperature of the air, but it is probably
the temperature of the air in the heated room that is of interest to the people in it.
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Vehicle speed
Accelerator pedal, Engine

(output)
<, cables and ...... ........
./ .7 and car ,/

carburettor

Force on pedal
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Figure 7.20

Now think about driving a car as a system (Figure 7.20). The speed of the car is
controlled by adjusting the force on the accelerator pedal. There are other disturb­
ance inputs such as the gradient of the road (not shown here). If the driver wants to
maintain a speed of 35 km/h (system output), then this can be done by holding the
accelerator pedal in a fixed position (system input), provided that there are no
disturbances. If there is a disturbance such as a hill then speed will reduce (e.g. to
20 km/h). The driver can read the speed of the car with the speedometer. There is
now a difference between the desired speed and the actual speed and the driver can
apply an increased pressure on the accelerator pedal to correct the difference. This
control system can be represented by the block diagram in Figure 7.21.

Desired
speed

Force on
pedal

Speed of car
I--';'-~--?

Indicated speed Speedometer ~ ---J

from speedometer '--- ----'
Figure 7.21

The control system takes the actual output, feeds it back to the input and compares
it with the desired output. Corrective action can then be taken to reduce the
difference or error. The information flows in a loop around the system. This type of
control system is called a closed loop system. In contrast, a system such as that shown
by the air heater diagram, which does not have a feedback of information, is called an
open loop system. A system that requires a human operator to make the comparison
between the system output and the desired output is a manual system. Many systems
do not use a human operator, when for instance the system dynamics are fast and
complex; these are called automatic control systems. The general form of a block
diagram for an automatic control sytstem is shown in Figure 7.22.

Here, the feedback is negative. This is a common arrangement for a control
system. The feedback signal Yis subtracted from the reference signal, i.e. the desired
output R, to produce an error signal, E:

E=R-Y

Output, Y

Feedback

Figure 7.22
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The controller is designed using a model of the system. It adjusts the input to the
system in order to produce the predicted output. The actual output achieved is then
compared with the desired output, i.e. the reference signal, and the error signal is
produced. The controller uses the error signal to further adjust the input to the
system.

Consider a heating control system for a room as shown in Figure 7.23. The output
temperature of the system, i.e. the room temperature Y, is compared with the
desired output temperature, i.e. the reference signal R, to produce the error signal,
E. The input of the controller is the error signal E. The output of the controller is the
control effort, applied to the heater to reduce the error signal, i.e. the difference
between the system output and the desired output. The feedback is used because the
actual output temperature achieved will often differ from the desired temperature.
This is due to other disturbance inputs or inaccuracies of the system model to which
the controller design applies.

The design of the control system is a vast branch of science and engineering all of
its own and cannot be covered even briefly in a book of this size, but you should be
aware of the purpose of a control system. Automatic control systems are increasingly
used in motor vehicles for things such as automatic engine tuning.

Control effort

Room
temperature, Y

y

Figure 7.23

7.2 Instrumentation

Instrumentation is used for measuring quantities. These can be any quantities of a
system that are of interest. In a system, we may want to measure mechanical and
thermal quantities such as: strain, force, pressure, moment, torque, displacement,
velocity, temperature and frequency. Electrical quantities that may be of interest
are: voltage, current and resistance. We will look at mechanical and thermal
measurement here. For general descriptions of instrumentation we will refer to
anything that is being measured as the process. Quantities are measured to obtain
data about the process, or in a control loop for such things as feedback. Consider all
the instrumentation used in a motor vehicle. For example, the dash display may show
instrument readings for: engine speed, temperature, turbocharger speed; oil press­
ure, vehicle speed and black ice warning. Engine speed and load are measured by the
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Figure 7.24 Measuring system

ignition system to alter the spark advance. Some brakes are fitted with indicators to
show wear.

A measuring system consists essentially of three main components: a sensing
element, a signal conditioner and a display element, as shown in Figure 7.24. The
sensing element is applied to the process and in some way produces a signal that is
related to the quantity to be measured. The signal converter changes the signal from
the sensing element into a form suitable for the display element. The display element
refers to the output from the measuring system being displayed in a form that an
observer can understand. For example, a resistance thermometer uses a sensing
element that, when applied to a process, produces a resistance signal that is
proportional to the temperature of the process. The resistance signal can be
converted into a proportional current signal. The current signal can then be used to
move a pointer on a dial. Notice the signal conversion through the system:

Temperature signal ~ resistance signal ~ current signal ~ visual signal

Electronic instrumentation
An electronic instrumentation system is often more complex than this: the sensing
element may consist of a transducer and a power supply; the signal conditioning unit
may include an amplifier; the display element could consist of a data processor and a
recorder. Electronic systems produce an electrical output that can be readily used for
feedback in an automatic control system. If we take a more detailed look at an
electronic instrumentation system, we could consider that it consists of six elements
or subsystems. These are shown in Figure 7.25 in a block diagram form.

~~~ditioning ~ AmplifierH RecorderH ~~t;essor I

Figure 7.25 Electronic measuring system

Transducer
The transducer converts the quantity to be measured into an electrical quantity that
can be monitored. The changes in the electrical quantity are proportional to the
changes in the quantity measured. For example, a strain gauge is used to measure the
strain of a component or structure when it is loaded. The gauge is a transducer that
converts a change in strain in the component being measured into a change in
electrical resistance. The change in electrical resistance is then proportional to the
change in the strain.
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Power supply
The transducer requires an energy source to drive it. An appropriate power supply is
used to suit the transducer.

Signal conditioning
The electrical signal from the transducer may not be in a useable form. The signal
conditioning unit converts or modifies the transducer output into a more useful
electrical quantity. For example, the output from the strain gauge mentioned above
is an electrical resistance. A voltage signal would be more useful, so the conditioning
unit converts the resistance signal into a corresponding voltage signal.

Amplifiers
The voltage measuring equipment requires the signal input to be of a certain voltage.
Often the output from the signal conditioning unit is a very small voltage (less than a
millivolt is common). Amplifiers are used to increase the conditioning unit output
voltage to alevel that is suitable for reading.

Recorders
A recorder displays the voltage in a form that can be easily read. A voltmeter can be
used for measuring static voltages. For dynamic voltages, i.e. voltages that vary with
time, a dynamic voltmeter must be used that can record a voltage signal with respect
to time. The voltage signal that represents the measured quantity is converted into a
display that can be easily read visually against a suitable scale or into a digital code
that can be used by the data processor.

Data processor
Data processors are used to convert the outputs from the instrument system into a
form that can easily be analysed using a digital computer. They are common where
large numbers of instruments are used and data is collected. Sorting out all the data
would take a long time. The data processor can convert the data into graphs or tables
which can be easily analysed by an engineer.

Error
Error is the difference between the measured value that instrumentation produces
and the true value of the quantity measured. This must be kept to a minimum. For
any instrumentation system used for measurement and analysis or for control
systems, a maximum value of error must be established that will give an acceptable
accuracy of the measured value. Errors can be due to several causes.

Accumulation of errors in each element of the instrumentation can create a large
error of the overall system. A single element of an instrumentation system has a
specified accuracy set by the manufacturer. If the element is used properly, in good
condition and properly calibrated, then you can expect that element to operate
within these accuracy limits. Accuracy is usually expressed as a percentage of full-
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scale deflection, e.g. a resistance thermometer with a full-scale deflection of 100°C
and an accuracy quoted as ± 1% means that for a reading between O°Cand lOOoe, the
accuracy is plus or minus 1°C. Therefore if a reading was, say, 47°C then all we can
say is that the actual temperature lies between 46°C and 48°C.

The accuracy limits of the element will cause an error in the overall instrumen­
tation system. This does not cause a problem if the error of the measured value is
known and within the desired limits. However, an instrumentation system consists of
several elements. Each will have its own accuracy limits that will introduce errors
into the system. Even if each element operates within the manufacturer's accuracy
limits, these elements can accumulate through the system. The accumulated error
can then be too high to give a measured value with the necessary accuracy.

Malfunctioning of any element will cause errors in the measured value of the system.
An element could malfunction because it is not properly maintained. It could also
require adjusting. The zero offset is used to adjust the element so that when the input
is zero the output is also zero. If this is not done a constant error, called a zero-offset
error, exists over the whole range of the element (Figure 7.26).
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Figure 7.26 Zero offset

The element also requires calibrating. This adjusts the change in the output for a
change in the input. When a change in the input to an element does not give the
required change in the output, the error is called a calibration error. On a graph of
the output against the input, this shows as an incorrect slope of the actual response
(Figure 7.27).

The slope of the line is called the sensitivity of the instrument .. If a change in the
input to the element is ~Qi and the corresponding change of the output that this
causes is ~Qo then:

S
... ~Qi

ensitivity = -"-
~Qo
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Figure 7.27 Calibration error

Output

Input

Figure 7.28 Range error

Any element will operate only over a certain range. If the input is greater than that
range then the output will be subject to errors. At the upper end of the range the line
on the graph of output against the input stops being straight. An input to the element
above the straight part will cause range errors (Figure 7.28).

Transducer sensitivity to other quantities than the one being measured can result in
instrumentation error. A transducer is intended to be sensitive to a particular
quantity that is to be measured. It may be sensitive to other quantities. For example,
a transducer may be designed to measure the oil pressure ofan internal combustion
engine. If the temperature changes as the measurements are being made, then errors
can occur due to the transducer being sensitive to temperature as well as to the
pressure of the oil. A transducer should be chosen for a system that has a negligible
sensitivity to other quantities of the process that may change.
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Transducer interference of the process being measured can give errors or even
meaningless results, The transducer must be chosen carefully and placed on the
process so that the operation of the process is not affected. The transducer may use
energy from the process or apply forces to it. For example, there is no point in using a
flow meter to measure the liquid flow in a pipe if, by adding the flow meter to the
system, the flow and pressure of the liquid are disrupted. Usually, the transducer
should be small and light compared with the component or process.

Other error sources often encountered are due to human operation, electronic noise,
resistance of the wiring and hysteresis.

If the operator of the instrumentation does not understand how to read the visual
display or if the display is not clear, then obviously errors can be large. Dial gauges
need to be viewed square on to obtain the correct reading. An error due to reading a
dial gauge at an angle is called parallax error. Think how the speed of a vehicle may
appear incorrect when the speedometer is read by the front passenger of a vehicle, as
it is read at an angle rather than square on by the driver.

Errors due to electronic noise can be caused by connection wires lying close to
other electrical equipment such as a motor or an arc welding set. Magnetic fields from
such equipment create small currents in the connection wiring which affect the
measurement signal. The measurement signal is usually small so it does not take
much interference to create significant errors. The wiring is usually shielded for
instrumentation to minimise interference. Electronic filters can be used to allow
signals to pass only at the frequency we are interested in, and to block other
frequencies.

The resistance of the wiring can sometimes affect measurements. Some trans­
ducers use resistance sensing elements. If the resistance of the wiring is significant
compared to the resistance of the sensing elements then the accuracy of the
instrumentation can be greatly reduced.

Hysteresis occurs in many systems. It refers to instruments that give different
readings for the same value of the measured quantity, according to whether the
measured value gradually increases or decreases. It usually occurs in mechanical
elements due to play or friction in drives. A graph of the instrument output against
the measurement input can look like the graph in Figure 7.29. If hysteresis does
occur, then its effect should be noted and considered when taking readings.

Errors always exist when setting up any measurement system. Indeed, as instru­
ments get older some components can deteriorate and their characteristics change.

Output

~---------~

Input

Figure 7.29 Hysteresis error
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By carefully considering all of the above errors, these errors can be kept to a
minimum and within acceptable limits.

Some other definitions concerning errors
Repeatability is the ability of an instrument to display the same output for repeated
inputs of the same measured quantity value. For example, if the resistance ther­
mometer mentioned above was used to take five readings of a constant temperature
as follows: 50°C; 51°C; 51.5°C; 50°C; 49°C,then there can be an error with any
reading due to a lack of repeatability. The term precision is how close repeated
readings are to each other. An instrument with a low precision when measuring a
constant quantity will produce varying readings scattered over a certain range. An
instrument with a high precision will produce similar readings of a constant quantity.
Do not get precision confused with accuracy.

a) b)

c)

x x
x x

Figure 7.30 Accuracy and precision

d)

A useful comparison to clarify the difference is four dart players throwing several
darts at a board (Figure 7.30). The two players of the top two boards, (a) and (b),
have a high accuracy while the two players on the bottom, (c) and (d), have low
accuracy. The two players on the left though, (a) and (c), have low precision whereas
the two players on the right, (b) and (d), have high precision. An instrument with a
low precision results in random errors. Random errors vary in a random pattern
between successive readings. These can sometimes be overcome by taking several
readings and calculating an average. Errors that do not vary from one reading to
another are called systematic errors.

The reliability of an instrument is the probability that it will operate correctly to
the accuracy specified by the manufacturers.
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The resolution of an instrument is the smallest change in the measured quantity
value that will produce an observable reading at the visual display. If a resistance
thermometer has a scale on the display that is subdivided into half degree intervals,
then a change in the temperature of O.l°C cannot be detected accurately. The
resolution would then perhaps be O.soC.

A lag occurs when the quantity being measured takes some time to cause a response
at the display output. It is the time that the system takes to respond. Many instruments
show a first order response with time when the measured quantity has a step change.
This time response needs to be considered or readings will be incorrect.

Sensing elements
The sensing element converts the quantity to be measured into a more suitable
corresponding signal. The output from the sensing element can take many forms. A
simple example of an instrument sensor is the spring balance. The deflection of the
spring is proportional to the force applied. The length of the deflection is measured
against a scale. In this way, the measured quantity, the force, is converted into a
corresponding signal of length. An electronic measurement system requires the
signal to be converted into some sort of electrical signal that can be processed by the
signal conditioning unit and then displayed or used for a control system. A
mechanically based measurement system transmits the signal as displacement
through lever, gears etc. Other types of system use hydraulics or pneumatics. Two
different sensing elements are sometimes used. Consider an instrumentation system
that measures the flow of water through a pipe. A sensing element can be used to
convert the flow rate into a pressure difference. A second sensing element can then
be used to convert the pressure difference signal into a corresponding electrical
signal. Some examples of sensing elements are as follows.

Resistive sensing elements
Resistive sensing elements convert the measured quantity into electrical resistance
and are very common in instrumentation. Copper and nickel are commonly used for
sensing elements for resistance thermometers. The change in electrical resistance is
proportional to the change in temperature.

Strain gauges are used to convert changes in strain into changes in resistance.
When metal is stretched, its resistance tends to increase. This is a useful property for
constructing strain gauges. These consist of either a wire or foil element that can be
stuck onto a surface. Strain is:

. change in length
strain = -------

original length

so when a component is subject to strain then the change in length causes a
corresponding change in the electrical resistance of the metal element. A wire strain
gauge is made of a length of wire wound in a grid shape. This is supported on a
suitable backing material. Strain gauges are also made from foil (Figure 7.31).

Elastic sensing elements are all based on the principle that changes in force or
pressure will produce changes in shape or length. The spring balance depends on this
principle: the applied force changes the length of the spring. Elastic sensors contain a
component that is designed to deform when a force is applied. This deformation can
then be measured, with a set of strain gauges for instance.
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Figure 7.31 Foil strain gauge

A ring type load cell is shown in Figure 7.32. The ring deforms as a direct force is
applied. The ring can cover a range of loads by using different diameters or
thicknesses. Four strain gauges are often used to monitor strain on the inside and
outside of each side of the ring. These are incorporated into a circuit. The deflection

Load

Gauge 1
outside

Gauge 2

Gauge 3
inside

Gauge 4

Figure 7.32 Ring type load cell
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is then converted into a corresponding change in voltage at the output to the circuit:

changein force ~ change in deformation ~ change in voltage

Torque cells operate in a similar manner. They are designed to convert torque into a
corresponding deformation of a shaft. Again strain gauges can be used to measure
deformation. This is much easier to do if the shaft is stationary. The electrical signal is
difficult to transmit from a rotating shaft (Figure 7.33).

Shaft

Gauges 3 and 4
on opposite side

Figure 7.33 Torque cell

A Bourdon tube is used as a sensor in pressure gauges. It consists of a tube that is
open at one end and closed at the other. The tube is usually in a C-shape although
they can be found in other shapes (Figure 7.34). The open end of the tube is

Dial indicator

\

Bourdon
tube

Figure 7.34 Pressure gauge

Pointer

-:
)
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connected to the process to be measured. As the pressure inside the tube increases,
the C-shape opens up by a corresponding amount. Changes in pressure are converted
into changes in shape. The end of the C-shape is connected via a gear linkage to a
pointer on a dial indicator gauge.

A photoelectric cell is used to detect intensity of light. A material is used in the cell
so that, when it forms part of an electrical circuit, it can convert changes in the
intensity of the light falling on it into a corresponding change in current flowing
through it. This takes several forms. One type uses a photoconductive material. The
electrical resistance of these materials decreases as the light intensity falling on them
increases. This type of sensor is useful when direct contact cannot be made with a
process, but changes in light intensity can be related to the quantity to be measured.

Flow measurement
Flow measurement can take three different forms: mass flow rate, volume flow rate
or fluid velocity. One common form of the volume flow rate is the venturi meter. We
have already demonstrated that pressure is proportional to head with the V-tube
manometer: p ex: h. A venturi meter uses this principle for measuring volumetric flow
rate. A narrow throat is arranged in a pipe as shown in Figure 7.35. As the cross­
sectional area decreases the velocity increases (see the equation of continuity on
page 242). This results in a relationship between volumetric flow rate Vand the loss
of pressure head, H (= hI - h2) , as follows:

Voc Vii
The reading of H can be arranged against a suitable scale to show volumetric flow
rate.

H=h
1-h2

t Lossoflead

--------r--------------- ----~ t

>
--->~ ~-------,

Liquid flow / ~'-- _

Figure 7.35 Venturi meter

Problems
1. A pressure gauge is specified as having a range of 50-300 kN/m 2 and an accuracy

of ±0.5 kN/m 2
• Explain the significance of this information.

2. A voltmeter has a range of 0-20 V and an accuracy of ±2% full-scale deflection.
What is the accuracy for a reading of 7 V?
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3. Develop the outline of a control system in block diagram form for maintaining
the speed of a diesel engine at a desired value under varying load conditions.

4. A thermocouple is specified with a sensitivity of 0.01 mv/oe. What is the
significance of this?

5. A centrifugal governor is to be designed to control the speed of a machine. The
shaft of the governor is directly connected to the drive shaft of the machine.
There are two weights of the governor each with a mass of 0.1 kg that are to act at
a radius of 0.07 m and apply a force to a sensor. Develop a simple mathematical
model that describes the relationship between the shaft speed of the machine
and the force applied to the sensor by the governor.

6. A water heater holds 15 litres of fluid. The heater is 65% efficient. A model of
this plant is required in order to design a simple control system. Develop a simple
mathematical model that describes the relationship between the energy input to
the system and the temperature changes of the water. Assume that the specific
heat capacity of the water is 4.19 kJ/kg K.

7. Define the terms: accuracy, precision, repeatability, sensitivity and reliability.
8. What is the difference between random and systematic errors?
9. What sensors can be used for converting a displacement signal to a voltage

signal?
10. Describe the operation of a strain gauge.
11. Draw a diagram showing the major components of an electronic measuring

system.
12. What is the resolution of an instrument?



8 Basic electricity

8.1 Basic principles

Electricity is a term that refers to the use of electrical energy in engineering.
Electrical energy is so common in modern day life as it is easily transported and easily
converted into other forms of useful energy, e.g. for heating, lighting, motors, etc.
Electronics is a branch of electrical engineering that involves circuits designed for
control, communication and computing. The level of electrical engineering and
electronics in modern motor vehicles is becoming increasingly sophisticated and
requires specialist knowledge and equipment. You should be aware, though, of the
basic concepts involved in the electrical systems of motor vehicles. Some electrical
devices are necessary for the operation of the engine and others are designed for the
comfort of passengers.

The unit of energy is the joule (J) but electrical energy is commonly measured in
kilowatt hours (kWh), for historical reasons and scale conveniences.

1 kilowatt hour (kWh) = 3.6 X 106 J

The kilowatt hour is the 'unit' of electricity that domestic meters measure. The unit
of electrical power is the watt (W). One watt is one joule per second: 1 W = 1 J/s.
Notice that the unit of energy above, the kilowatt hour, is the unit of power
multiplied by time.

Current and voltage
Think of the structure of an atom. At the centre is the nucleus, which is positively
charged, consisting of protons and neutrons. Revolving around the nucleus are
electrons which are negatively charged. These are, the smallest negatively charged
particles possible. Some of the electrons of certain materials are only loosely held to
the nucleus and they tend to move around at random. These materials are called
electrical conductors. A material that does not have any loose electrons is called an
insulator. Most conductors are coated with an insulating material, such as plastics,
except at the connection points to prevent accidental connection with other conduc­
tors.

Under certain circumstances the electrons of a conductor can 'be made to flow in
one direction, transferring their charge from atom to atom through the material. This
flow of electrons is called an electric current. The symbol of electric current is I and it
is measured in amperes or amps (A). The electric charge of the electrons is measured
in coulombs. One ampere is one coulomb of charge per second.
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For a current to flow in a conductor, a force is required to cause all the electrons to
flow in on~ direction. When a difference in charge exists between two points the
electrons will flow from the more negatively charged point to the more positively
charged point. The more positively charged point is referred to as the higher
potential and the more negatively charged point is called the lower potential. The
voltage is a measure of the energy released when a unit of positive charge of one
coulomb moves 'downhill' from the higher potential to the lower. The quantity
symbol of voltage is Vand the unit symbol for the volt is also V. Alternatively voltage
is a measure of the work done in moving a charge 'uphill' from the lower potential to
the higher potential. Voltage is sometimes called potential difference or electromo­
tive force (EMF). When a current of one ampere flows between two points and one
watt of power is dissipated between the two points, then a potential difference of one
volt exists between the two points.

Notice that the wording above is 'from the more negatively charged point to the
more positively charged point' and not from the negative point to the positive point.
This is because electrons will flow even if the two points were, say, positive but one
was more positive than the other. Notice also that the voltage is measured between or
across two points and that current is measured through a conductor. Never refer to a
voltage through a circuit as this is complete nonsense. A current flows through
something because a voltage is placed across it. This is further demonstrated by the
way that voltmeters and ammeters are applied to circuits. A voltmeter measures
voltage. An ammeter measures current.

Look at Figures 8.1 and 8.2. The voltmeter is connected across the device to
measure the potential difference between the two points. The ammeter is connected
as a conductor in the circuit to measure the current flowing through it.

When electrons flow through a conductor in one direction, the current is referred
to as direct current (DC). If the direction is reversed at frequent intervals then this is
referred to as alternating current (AC). Domestic and industrial electricity supplies
are generally alternating current as this is easier to generate and transmit. In motor
vehicles, direct current is used as this is more suitable for use with a battery. The
theories involving direct current are simpler than those involving alternating current,
as quantities are not time-dependent.

Voltmeter

V

Figure 8.1

Ammeter

Figure 8.2
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Circuits and resistance
When a voltage is 'applied to a conductor, the current that flows depends on the
magnitude of the voltage, the dimensions of the conductor and the material of the
conductor. The dimensions and the material type are summarised by the resistance.
Resistance, as you may expect, is the resistance to current flow. The quantity symbol
of resistance is R and it is measured in ohms (0). The greater the resistance of a
conductor the less current will flow for a given voltage. Generally, the resistance of a
conductor of a given material increases with decreased cross-sectional area and
increased length. The relationship between voltage V current I and resistance R is:

V
R==­

]

This is known as Ohm's law.

o Example 8.1
A voltage of 10 V is applied across a lamp of resistance 5 O. Calculate the current that
flows.

V
If R ==-

]'

V
then] ==-

R

== 10 [V] == 2 A
5 [0]

Before an electrical current can flow, the voltage must be applied to a complete
circuit of conductors. If the voltage is applied to conductors that do not form a closed
circuit, the circuit is referred to as an open circuit. A device that is part of a circuit
such as a light or a motor is referred to as a load. The load forms a resistance in the
circuit. Usually, when circuits are being analysed, the conductors, i.e. the wiring, are
assumed to have zero resistance and all the circuit resistance is due to the load. This is
not actually the case but the resistance of the conductors is negligible compared with
that of the load and calculations are a lot easier. If the load is bypassed by a
conductor, then this is referred to as a short circuit. If the resistance of the conductor
is considered to be zero then, if we apply Ohm's law, it implies that an infinitely large
current will flow. This is not the case in practice as nothing has zero resistance but, as
anyone who has dropped a spanner across the terminals of a car battery will know, a
very large current can flow resulting in serious damage. For this reason, fuses or
circuit breakers are fitted in circuits. A fuse is a 'weak' point in a circuit, designed to
burn out when a certain maximum current flows and before damage can be done to
the rest of the circuit. A circuit breaker is designed to open, breaking the circuit
before a current gets too large to cause damage.

There are three important rules concerning voltage and current:

(a) At any junction in a circuit, the sum of the current in is equal to the sum of the
currents out.
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(b) The voltage drop around a closed circuit is zero.
(c) The power P that a load takes in a DC circuit is calculated from the current

multiplied by voltage: P = VI.

These will become clear in a moment as we look at an example.
The direction of current flow can cause some confusion. As has already been

stated, current flow is the flow of electrons from the more negative point to the more
positive point. Also above, the movement of a positive charge was mentioned in the
discussion on current. When electricity was first discovered, the flow of electrons was
not understood and it was assumed that current flowed from more positive to more
negative points in a circuit. Many rules and theories were developed on the
assumption that current flow was in this direction. Later, it was discovered that
electron flow was from the more negative to the more positive points. Rather than
change all the rules and theories, the convention of current flow being from positive
to negative has been maintained. Remember what current flow. actually is, but in any
calculations always assume that current flow is from the more positive point to the
more negative one.

When a circuit consists of several resistors, it is usual to find the overall effect they
have on the circuit and consider them as one resistance. Resistors that are in series
around a circuit can be directly added together.

o Example 8.2
Calculate the current that flows around the circuit shown in Figure 8.3. Find the
voltage across each resistance and the overall power consumed.

2Q

Figure 8.3

+

10 V

3Q

Notice the symbols used for the resistors and the cell battery. These are standard
symbols used for circuit diagrams.

Total resistance, R = 2 [0] + 3 [0] = 5 [0]

V
1=­

R

= 10 [V] = 2 A
5 [0]

The voltage across each resistor can be found by applying Ohm's law again.
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Voltage across 2 fi resistor

V
If R=­

I'

then V = RI
=2[fi]x2[A]=4V

Voltage across 3 fi resistor
V=RI

=3[fi]x2[A]=6V

The voltages across loads are referred to as volt drops, since they act in the opposite
direction to the current flow. If the supply voltage is considered as positive around
the circuit then the volt drops will be negative. This demonstrates law (b) above, that
the total voltage around the circuit is zero:

10 [V] + (-6 [V]) + - (4 [V]) = 0

The power consumed can be found from law (c).

p= VI

= 10 [V] x 2 [A] = 20 W

Note that this law applies only for DC circuits.
When a circuit does not work, a voltmeter can be applied to any load. If the

voltmeter shows a zero voltage drop across the load, then this indicates that there
cannot be any current flowing and there is a break in the circuit, i.e. a loose
connection. By applying the voltmeter across various points along the circuit, the
total terminal voltage can be measured across the break in the circuit.

o Example 8.3
Calculate the current that flows through the main conductors in the circuit in Figure
8.4. Calculate the current in each branch of the circuit.

When resistors are arranged like this they are said to be in parallel. Resistors in
parallel cannot be added directly together.

30

20

10 V

Figure 8.4
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The relationship between the overall resistance and n individual resistances is as
follows:

1 1 1 1
-=-+-+ ... +­
R R 1 R2 Rn

1 1 1
-=-+-
R 2 3

1 3+2
----
R 6

... R = ~ = 1.20
5

The voltage applied across each of the two resistors in parallel is the supply voltage.
The current in the 3 0 resistor branch:

I = ~ = 10 [V] = 3 333 A
R 3 [0] ·

The current in the 2 [0] resistor branch:

I = ~ = 10 [V] = 5 A
R 2[0]

Total current in main conductor:

I = ~ = 10 [V] = 8.333 A
R 1.2 [0]

Notice that this verifies law (a):

5 [A] + 3.333 [A] = 8.333 A

Another term you may come across is conductance. In DC circuits conductance is the
reciprocal of resistance. The quantity symbol is G and the unit is the siemens (S).

1
G [S] = R [il]

I 8.2 The effects of electric current

Electric currents are created in electrical circuits usually for one of three reasons:

(a) a heating effect
(b) a magnetic effect
(c) a chemical effect.
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Heating effect
When current flows through a material there is a heating effect. This effect can be
small in a well designed circuit. Loose connections tend to cause some heating. Some
circuits are designed to create a large heating effect such as in an electric heater or in a
light bulb where the filament is heated to a temperature where it glows to give out
light energy. If the heating effect is too great for the design of the circuit then the
wiring can become too hot and the insulation will break down.

Magnetism
Magnetism can be created in two ways: either by permanent magnets or by an electric
current. If a conducting wire is wound into a coil then the magnetic field produced
will be similar to that of a permanent magnet. The strength of the field is proportional
to the number of turns of wire and to the current flowing through it. If the coil of wire
is wound onto an iron core, then the magnetic effect is increased since iron provides a
path for the magnetic field lines.

The arrangement in Figure 8.5 is known as an electromagnet. Its advantages over
permanent magnets are that large magnetic forces can easily be created and that it
can be switched on and off. If a conductor travels through a magnetic field then a
potential difference is produced in that conductor. This is known as Faraday's effect.
The voltage produced is due to the relative movement between the magnetic field
and the coil. If the conductor forms part of a circuit then the voltage will cause a
current to flow.

------------

------------
Figure 8.5

This effect is very useful and is used to generate electrical energy from mechanical
energy (see Figure 8.6). The dynamo or alternator of a car generates electricity in this
manner, as do all commercial generators in power stations. If the reverse is now
applied, and a current made to flow through a conductor in a magnetic field, then this
produces relative movement between the conductor and the magnetic field. This is
the principle of the electric motor. An electric motor is the same as a generator
except that electrical energy is supplied for conversion tomechanical energy rather
than the reverse. In an electric motor an electric current is made to flow through a
conductor in a magnetic field. The magnetic field can be caused by permanent
magnets or electromagnets.
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When a current flows through certain liquids, chemical changes take place to the
liquid and to the metal placed in the liquid. Electrical energy is converted into
chemical energy. One of the disadvantages of electrical energy is that it is difficult to
store directly. In a motor vehicle electrical energy is generated continuously by the
fan belt driving a generator. However, the electrical power required for turning over
an engine and starting a vehicle is vast, and this electrical power needs to be stored
ready for when the vehicle is next started. In a battery, energy can be stored as
chemical energy for later use.

A car battery consists of a container containing several 2 V cells (six for a 12 V
battery). In each cell, two different types of lead plate are immersed in an electrolyte
solution of sulphuric acid and distilled water. A voltage applied to the battery of cells
creates an imbalance of electrons and a current passes through the electrolyte. The
positive plate has a deficiency of electrons and the negative terminal has an excess of
electrons. As the current flows through the electrolyte, chemical reactions take place
between the plates and the electrolyte and a voltage is maintained across the plates.
This is the charging of the battery.

When electrical energy is later required, the chemical changes are reversed and
when the battery is part of a circuit a current can flow again. This is the discharging of
the battery. The battery can be charged and discharged many times during its life, but
if it is completely discharged (flattened), for example by leaving the headlights on
overnight, then its life can be shortened. A battery can sometimes be accidentally
completely discharged if the electrical circuitry of a vehicle becomes wet. Impure
water conducts electricity so water that connects a more positive point of the circuit
with a more negative point will allow a current to flow and can gradually discharge
the battery.

A typical charging circuit is shown in Figure 8.7. The generator is driven by the fan
belt to produce electrical energy. The regulator limits the maximum voltage that the
generator can produce to avoid damage to itself and to other equipment. The cut-out
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Figure 8.7

is a one way switch that allows the battery to be charged by the generator but
prevents the battery discharging through the generator.

The symbol consisting of three reducing parallel lines represents what is termed
the earth of the vehicle. The frame of the vehicle is used as one big terminal for the
electrical system and this is the earth of the vehicle. One terminal of the battery is
designated as the earth and is directly connected to the vehicle frame. This is done to
simplify wiring and to save on cable. For example, notice that both the battery and
the generator are connected directly to the earth, i.e. to the vehicle frame. If the
frame were not used as the earth another cable would be required between the
generator and the battery.

Problems 8
1. When a circuit is tested a current of 0.5 A passes when a voltage of 24 V is

applied. The total load resistance of the circuit is 40 O. What is the resistance of
the rest of the circuit?

2. Three loads of resistance 3 0, 6 0 and 9 0 are connected in series and a voltage
of 12 V applied. What current passes through each resistor?

3. Three loads of resistance 2 0, 5 nand 8 n are connected in parallel and a voltage
of 24 V applied. What is the current that passes through each resistor?

4. Three loads of resistance 4 n, 1 0 and 7 0 are connected in parallel. A further
resistance of 10 n is connected in series with them. What is the total resistance of
the circuit?

5. Three 12 V headlights are to be connected to a 12 V battery. How would you
connect the circuit up to achieve the correct voltage across each?

6. An electric windscreen heater requires 30 W of power. When the windscreen
heater is connected to a 12 V supply, what current passes through the circuit?

7. Show how you would connect up a voltmeter and an ammeter to test a circuit.
8. What is the purpose of a vehicle battery when a generator is already used?
9. The current passing through a simple circuit is found to be too low. Why and how

might the conduction leads be changed to improve this?
10. Describe briefly the three effects of an electrical current in electrical circuits.
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9.1 Steel

Metals

A wide range of materials is used in modern engineering. Materials can be broadly
classified into two groups: metals and non-metals. Non-metals include plastics.
Plastics are being used increasingly in engineering. As technology advances, more
plastics are able to be tailor-made to have specific properties to suit a particular job.
In a motor vehicle, however, the main construction material is still metal. This
chapter will concentrate on the properties of metals and their uses. Common types of
metals are ferrous metals which contain iron. These tend to be cheaper than non­
ferrous metals and their structure and properties can easily be changed by heat
treatment and the addition of alloying materials. Non-ferrous metals are sometimes
used, because of their specific properties, for example: being good conductors of
heat and electricity, or having a low coefficient of friction with other surfaces.

Mechanical properties
Strength is the ability to stand applied forces without breaking, or the resistance of a
metal to stress. Tests are carried out on a material sample of standard dimensions
(see page 71). Strength can be defined in several ways:

• tensile strength is the maximum force per unit area that the material will withstand
when loaded in tension

• compressive strength is the maximum force per unit area that the material will
withstand when loaded in compression

• shear strength is the maximum force per unit area that the material will withstand
when loaded with a shear force

• yield strength is the force per unit area at which the material gives way or yields.

It is important that a material is not loaded to the yield point. After this has occurred
the material takes on a permanent set and the characteristics change, making it
unsuitable for further load carrying.

Toughness is the ability of a metal to resist impact loads without fracture. A chisel
shank that has to withstand hammer blows needs to be tough. Toughness can be
measured by an impact test such as the Izod test. Here, a test piece of material
gripped in a vice is hit with a hammer attached to a pendulum. The force of the blows
applied can then be made equal by swinging the pendulum from the same height. The
hammer and pendulum arrangement is designed to break the test piece. The effect of
the blow on the test piece is measured by the height that the pendulum reaches as it
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continues to swing after impact. The height that the pendulum swings short of its
original height is a mea sure of the energy lost at impact (Figure 9.1) .

If the initial height of the pendulum is h, and the final height is h, then the loss of
energy due to the impact can be represented by the loss of potential energy:

mgh, - mgh, = mgth, - hr)

The energy lost at impact is recorded by a pointer that moves to the height reached by
the pendulum against a scale. Since the energy lost is directly proportional to the lost
height, the scale can be calibrated to measure joules.

Hardness is the ability of a metal to withstand wear and scratching. Any bearing
surfaces need to be hard to withstand wear. Tools such as files need to have hard
surfaces so the teeth will cut the work material and not wear out quickly.

Ductility is the ability of a cold metal to be stretched and formed without breaking.
The metal used for sheet metal work needs to be ductile , so the components can be
shaped from a flat sheet. A ductile metal, copper for example, can be drawn through
a die to make wire without breaking. Ductility can be measured as a percentage of
elongation at fracture . Two marks are made on a test piece of material a certain
distance apart . The test piece is then stretched until it breaks. The two pieces are then
placed back together and the distance between the two marks measured again. The
difference between the original length between the two marks and the new distance
apart is the extension:

. extension
percentage elongation = x 100%

original length

Malleability is sometimes confused with ductility. Malleability is a term that
describes the ability of a metal to be shaped by compression loads. It is therefore a
measure of how easily the metal can be shaped by hammer blows for example. Some
materials , lead for example, can be malleable without being ductile.

Elasticity is the ability of a material to return to its original shape after it has been
deformed by a load.
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Besides these mechanical properties, there may be other physical properties of
interest to an engineer when selecting materials, such as thermal conductivity and
electrical conductivity.

Ferrous metals
The term ferrous means iron. A ferrous metal therefore means a metal that includes
iron. Pure iron is not usually used in engineering as it is soft and not very strong. Iron
is used to make alloys. Steel and cast iron are alloys of iron and carbon. An alloy is a
mixture of two or more elements, the main one being a metallic element. Steel
contains less than 1.8% carbon. Cast iron contains between 2 and 4% carbon. When
the carbon content is below 1.8% all the carbon forms chemical compounds with the
iron. These compounds enable the characteristics of the steel to be altered by heat
treatment. When the carbon content is above 1.8°10, as with cast iron, pure carbon
exists in the iron.

Steel is manufactured from iron ore. The first process is the conversion of iron ore
to pig iron. To do this iron are, coke, and limestone are heated in a blast furnace. Hot
air is forced up through the materials, making the coke burn rapidly and reducing the
iron are to molten iron. The molten iron absorbs carbon as the coke is burnt. The
limestone combines with impurities in the iron are to form slag. The slag can be
separated from the iron. The result is pig iron. Pig iron contains too much carbon and
other impurities. The molten pig iron is mixed with scrap iron, and then undergoes
one of several other processes that remove the impurities by combining them with
oxygen. After the impurities have been removed, small amounts of other materials
may be added to alter the properties of the resulting steel. The carbon content can
also be adjusted at this point.

The amount of carbon in plain carbon steel determines its properties. These
properties can be changed by heat treatment. The three most important properties to
an engineer are hardness, ductility and strength. In its normal state (i.e. without any
form of heat treatment), as the carbon content of steel increases the hardness
increases and the ductility decreases. The strength of the steel increases as the carbon
content increases up to a maximum when the content is 0.83°10. Above this, the
strength reduces. Low carbon steel is known as mild steel and has a carbon content·of
about 0.2°10. Medium carbon steel has a carbon content of between 0.4 and 0.6°10.
High carbon steel usually refers to steel where a maximum strength is required when
the carbon content is 0.830/0. Cast iron contains more than 2% carbon. This causes a
low tensile strength, and cast iron components should only carry compressive loads.
It is brittle and cannot stand impact loads either. The high carbon content of cast iron
does however make machining easy, and its low melting point means it is easy to cast.

Uses ofcarbon steel
Mild steel is a very common material in engineering. It is usually manufactured in
bars, sheet form or plate form. Machining is carried out on the steel in the bar form.
Sheet steel is used for pressing shapes. The plate form is used for pressure vessels
such as boilers. Mild steel does not alter significantly with heat treatment due to its
low carbon content.

Medium carbon steel has a higher tensile strength than mild steel. It is.commonly
used for hand tools. The carbon content allows heat treatment to be applied in order
to increase hardness. It cannot be completely hardened but it can be toughened
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effectively, and is commonly used for keys. High carbon steel can be made very hard
with heat treatment, and is used for cutting tools such as files. Cast iron is used to
economise on material when making a component. A shape can be easily cast, such
as an engine block, and then only the necessary surfaces machined to the required
shape and finish. The low tensile strength needs to be considered when designing the
part, and dimensions need to be large enough to make up for this.

Impurities in steels
Not all impurities can be removed from steel during manufacture. The impurities
must be controlled to produce steel with the desired properties. The main impurities
are sulphur, manganese, phosphorus and silicon. Sulphur causes the steel to be
brittle at high temperatures. The steel is then difficult to forge. Manganese tends to
combine with unwanted impurities, such as sulphur, in molten steel, which are then
removed as slag. Any remaining manganese hardens the steel. Phosphorus reduces
the toughness of carbon steels. The content must be controlled to within acceptable
limits. Silicon can increase the strength of steel, but it does not do this as well as
carbon and it can reduce the effectiveness of carbon.

Alloy steels
An alloy steel is a steel with another element or alloy added to alter its properties in
some way.

Manganese steel contains more than 1% manganese. As mentioned previously,
manganese increases the hardness of the steel and so is useful for resisting abrasion.

Tungsten is added to steel, forming tungsten steel, to increase the strength,
hardness and toughness. These properties are maintained at high temperatures. This
steel is commonly used in high speed steels (cutting tools).

Molybdenum has a similar effect on steel to tungsten, maintaining the hardness at
high temperatures.

When nickel is added to steel the tensile strength and the toughness are increased.
The hardness and corrosion resistance are also increased.

Chromium is added to steel to increase the hardness.
Nickel and chromium are sometimes used in combination to form nickel­

chromium steel. The resulting mechanical properties are: increased elasticity,
greater hardness and greater toughness; the resistance to corrosion is also greatly
increased. Many stainless steels are based on nickel-chromium steel. A common
form of stainless steel is made with 18% chromium, 80/0 nickel and 0.08% carbon and
it has a high resistance to corrosion and staining.

Cobalt is used to make various alloy steels, typically containing 5-10 % cobalt, with
tungsten and chromium. This forms hard but brittle steels in high speed tools.

9.2 Heat treatment

If steel containing sufficient carbon is heated to a sufficiently high temperature and
then allowed to cool, changes occur in the structure which alter the mechanical
properties. These changes to the structure can be controlled by cooling the steel at
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different rates through different temperature ranges. If the steel is cooled rapidly,
the changes that occur during the heating process do not have time to reverse and the
steel becomes very hard. The steel can be cooled more slowly by quenching it in oil,
reversing some of the changes and making the steel very tough. If the steel is cooled
very slowly, all changes can be reversed and the steel is soft. The temperature to
which the steel must be heated to make these changes take place depends on the
carbon content. These are shown in Figure 9.2.

The necessary heating temperature for a particular carbon content is called the
critical temperature. The steel is usually heated to around 25°C above the critical
temperature to ensure all the necessary changes have taken place in the structure of
the steel. The temperature is a maximum for pure iron at 900°Creducing to 700°C for
0.83% carbon steel. With more than 0.830/0 carbon the critical temperature remains
constant at 700°C.

Hardening
Steel can be hardened by heating it to the critical temperature. The steel is then
cooled rapidly by plunging it into cold water. This is not very effective when the
carbon content is below 0.25 %.

Tempering
After a piece of steel has been hardened it is usually too brittle to be useful as a tool or
component. Some of this hard material can "be broken down and the toughness
increased by reheating the steel. This process is called tempering. The amount of
hardness removed depends on the temperature that the steel is heated to: the higher
the temperature the more hardness is removed. For example, a cutting tool that must
be very hard with just a little of the brittleness removed, is tempered by heating to
around 230°C. A tool that has to withstand hammer blows is tempered to a higher
temperature to make it tougher. A chisel would be tempered at around 280°C. As the.
temperature of the steel changes during tempering, oxides on the surface of the steel
will change colour. This can be used as an approximate guide to the temperature for
simple tempering jobs.
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Annealing
Annealing is the process of making the steel as soft as possible. The steel is heated to
above the critical temperature and then cooled as slowly as possible. This is best done
by heating in a furnace and then turning the furnace off to cool with the steel still
inside.

Normalising
Normalising is regarded as a corrective treatment when a steel has become hardened
after undergoing a manufacturing process of some sort. The steel is softened by
heating it to above the critical temperature and then allowed to cool in air at room
temperature.

Case hardening
Some engineering components need to be tough to absorb impact loads but also
require a hard surface to resist wear. This is achieved by making the component out
of a steel that has the necessary toughness and then case hardening it. Case hardening
is a process that increases the carbon content of the outer layers of the component, by
heating it with other carbon-rich materials. The outer layers of the component
become hard high carbon steel while the inner section remains in its original form.
Gudgeon pins are fabricated in this manner. The piston imposes high loads on the
gudgeon pin requiring a tough material, but the angular motion of the connecting rod
requires a wear-resistant surface.

9.3 Non-ferrous metals

Copper is a very good conductor of heat and electricity. Thin wire and sheet are easily
manufactured because copper is very ductile. For this reason, copper is used
extensively for electrical wiring and contacts, and for heating system materials. It is
too soft to be used in its pure state for many applications, and is usually used in an
alloy form of either brass or bronze. Brass is an alloy of copper and zinc. The
properties can be altered by varying the proportion of zinc between 30% and 40% .
Bronze is an alloy of copper and tin. A common form is phosphor bronze, which is
about 88% copper, 10% tin, and has 0.25% phosphor added. Phosphor-bronze is
often used for bearing bushes. Another common 'form is called gunmetal which is
about 88% copper, 10% tin, and has 2% zinc added. Gunmetal has a high resistance
to corrosion and makes very strong castings for such things as pump housings. A tube
and fin radiator of a cooling system typically has brass tubes and a brass header tank,
with copper fins.

Aluminium is a good conductor of electricity; ·it is very light, and has good
corrosion resistance. As with copper, it is too soft to be used in its pure form where
strength is required. It is used for high voltage overhead electricity cables because of
its lightness and good conductivity. These cables have a steel core because alu­
minium is not strong enough to support its own weight. Aluminium is used to make
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lightweight alloys, usually, for sheeting, or for castings. Composite pistons are
constructed from a combination of steel and aluminium, to take advantage of the
light weight and high thermal conductivity of aluminium and the strength of steel.

White metal is an alloy used as a bearing material. The metal antimony is combined
with lead or tin. The antimony is the harder material that resists wear, and the lead or
the tin encourages a film of lubricant to be retained when the metal is used as a
bearing surface. Most engines used in motor vehicles use tin-based white metal
inserts which fit inside a shell. This makes replacing the bearing simple and cheap.

9.4 Corrosion

Corrosion of metals is caused by chemical attack. Corrosion of metal components
causes damage to the surfaces. It reduces the mass of the original metal and affects
the mechanical properties such as strength.

The two major causes of corrosion are:

1. rusting which is the reaction of iron with oxygen in the presence of water to form
an iron oxide

2. dissimilar metals in contact in the presence of water.

Steel is particularly vulnerable to corrosion where there are impurities in the steel
and salts in the water, which is why vehicle body corrosion is worse at the coast or in
winter when salt is spread on roads. To avoid oxygen and water, steels are usually
coated with another material such as paint or a corrosion-resistant metal.

The surfaces of zinc, aluminium and magnesium oxidise very rapidly. The oxide
surfaces formed are extremely corrosion-resistant and no further oxidation will take
place. Unfortunately this is not the case with steels, since the rust formed gives no
protection. When two dissimilar metals are in contact in the presence of moisture, a
current can be set up in the similar manner to the operation of a cell battery. A
chemical reaction called electrolysis takes place; the liquid is called an electrolyte. As
the current flows, electrons are transferred at the metal surfaces; these are called
electrodes when referring to electrolysis. One of the electrodes will gain electrons
from the electrolyte. The atoms of the other electrode can lose electrons and form
ions which go into solution, resulting in electrochemical attack on the surface of the
metal. Care must be taken when choosing metals for construction to avoid electroly­
tic action. Particularly serious is the combination of copper and aluminium. Alu­
minium alloy sheeting joined together with copper rivets would be disastrous
because the aluminium would corrode at an extremely high rate.

Problems 9
1. Describe the difference in composition between cast iron and steel.
2. Under what conditions should cast iron not be used? For what purposes might

cast iron be used?
3. Describe four heat treatment processes that are applied to steel to alter its

mechanical properties?
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4. Steel with a carbon content of 0.8 0/0 is fully hardened and is to be used for cutting
tools. It is found to be too brittle for this purpose. Describe the heat treatment
process, including temperatures, that could be applied to reduce the brittleness.

s. What is an alloy steel? What is stainless steel and where might it be used?
6. Aluminium is soft and weak. Why then is it used in engineering? How might the

weakness of the material be overcome?
7. What property of copper makes it easily drawn into wire?
8. What is brass and what is bronze?
9. Why is corrosion of steel faster in a salt water environment?

10. Describe how a tough steel component can be given a hardwearing surface
without affecting the properties of the inner section of the material.



Problem answers

Chapter 1 Introduction

1) 90.922 x 10-3m3
, 90.9221itres

2) 1.2 x 10-3m3

3) 113.398 kg
4) 1.6 m
5) 809.205 kg
6) 9.982 m
7) 3.978 X 10-3 rrr', 3.978 litres
8) 2.319 m
9) Yes, 0.006 inch = 0.1524 mm
10) 17.882 m/s
11) 1.065
12) 55.920
13) 1.057 x 1021

2 2
14)'S=~

2a

15) r = v
2
.2.h

S.g
16) 2.45 m
17) 58.6°,31.4°
18) 0.34 m, 0.73 m, 65°
19) 35°
20) y = 454

Chapter 2 Forces

1) 3.924 kN
2) 39.375 kg
3) 2.871 X 10-3 m'
4) 365.9 kg
5) 350 bottles
6) 0.295 m/s2

7) 841.7 N
8) 2.702 X 10-3 m' or 2.7 litres
9) 866.67 m/s2

10) 0.07 m'
11) 3.679 kN
12) 24.057 kN, 12.258 kN
13) 984.8
14) 13.042 kN, 2.300 kN
15) 2.266 kN, 1.133 kN
16) 8.886 kN

17) -
18) 16.85 kN, 11.21 kN
19) 1.763 kN, 10.154 kN
20) 5.096 kN, 0.983 kN, 11°
21) 52.50 Nm
22) 175 N
23) 333.9 mm from the left end
24) 323.077 N
25) 2.117 m from the front axle
26) 4700 N
27) 78 mm to the rear
28) 542 mm from the left end
29) 114.95 mm from the left end
30) 2.4 mm to the right

Chapter 3 Distortion of materials

1) 31.124MN/m2

2) 191 GN/m2

3) 127.324 MN/m2

4) 22.222 MN/m 2

5)
6) 3.183 J
7) 28.937 MN/m 2

8) 25 kN, 8.75 kNm
9) 29.167 kN, 12.5 kN, 16.667 kN
10) 24.375 kNm
11) Fcopper = 169.7 N, Fsteel = 124.6 N
12) 13.7kN
13) 0.625 mm
14) 17
15) 450 MN/m 2

16) 4 m
17) 235.9 kNm
18) 40.709 mm
19) 360 N, 240 N
20) 6.425 kNm
21) 64.236 MN/m2

Chapter 4 Motion

1) 3.6 s
2) 6.9 s



3) 2.4 s, 6.9 m/s2

4) ·2222.24 m
5) 73.7 km/h at 241.3° or 28.7° west of

south
6) 477.5 revolutions
7) 111.1 rad/s
8) 0.3 m/s due north
9) 6.667 km/h
10) 0.2, 1.2 N
11) 441.254 N
12) 13.5
13) 20.8°
14) -
15) 6621.75 N
16) 82.375 N
17) 86.280 N, 54.535 N, 63.230 N
18) 0.26
19) 2.158 Nm
20) 0.174
21) 260.61 Nm, 40.936 kW
22) 10 966.227 m/s''
23) 98.9 km/h
24) 21.5°,61.8 km/h
25) 2.51 m at 31° anticlockwise from A
26) 55 m
27) 444.1 m/s2

Chapter 5 Work, energy and power

1) 360 W
2) 24525 J
3) 277.78 kW
4) 20.9 kW
5) 8.886 MJ
6) 117.3 kJ
7) 1123.8 J
8) 12.984 kW
9) 89.4%
10) 132.5 mm
11) 8.16
12) 2.7 kN

Chapter 6 Thermodynamics

1) 294 K
2) 281.04 kJ
3) 2.197 bar
4) 108.9 kN/m2

Problem answers 12891

5) 12972 kJ
6) 6140.3 kJ
7) 2050 kJ from the system
8) 90 kJ
9) 166.67 kN/m2

10) 1545°C
11) 32.9 W/m2

12) rough surfaces
13) 51.7 g
14) 18.120 m/min, 7.707 m/min
15) 7.007 W
16) 0.63 m/s
17) 16567.028 kN/m2

18) 58.5°C
19) 952 kg/rrr'
20) 5.8 mls

Chapter 7 Control and
instrumentation

1)
2) 6.6-7.4v
3)
4)
5) F = 0.014 (J)2, where F is in Nand

(J) is in rads/s
6) Q = 96.7 ~T, where Q is in kJ and

~Tis in K
7)
8)
9)
10) -
11) -
12) -

Chapter 8 Electricity

1) 8 n
2) 0.. 667 A through each
3) 12 A, 4.8 A, 3 A
4) 10.718 n
5) In parallel
6) 2.5 A
7) Voltmeter - across circuit (in

parallel), ammeter - in line in
circuit (series)

8) To store electrical energy for
starting the engine
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9) Change to leads with a larger
C.S.A.

10) -

Chapter 9 Metals

1)
2) Not for tensile or impact loads

3)
4)
5)
6)
7) Ductility
8)
9)
10) -
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acceleration 20, 111
algebra 8-11
ammeter 272
amplitude 165
analogous system 257
angular

acceleration 126
impulse 131
momentum 131
velocity 126
displacement 126

annealing 285
area 22-26
automatic control systems 258

balance of moments 43
balancing of machines 159-161
barometer 202
beam sections 97
bending 79-102
bending moment

equation 92-94
maximum 84
diagram 81-92

Bernoulli's equation 243
bike

skidding 158
stability 156-158

black body 218
block diagrams 249
boundary 198
bow's notation 55
Boyle's law 219
breaking point 71

calorific value 230
cantilever 85
carbon steel 282-283
case hardening 285
cast iron 282
cell battery 278
centre of gravity 48-54
centrifugal force 151
centripetal acceleration 149

centripetal force 151
centroid 50-52
characteristic gas equation 221
Charles' law 219
circle 24
clearance volume 29
closed cycle (thermodynamic) 207
closed loop 258
closed system 198
coefficient of restitution 123
compound bars 74-76
compound gear train 195
compression ratio 29
compressive strength 280
concentrated loads 81
conservation of energy (principle)

181,200
conservation of mass (principle) 200
conservation of momentum (principle)

122,200
control effort 259
control systems 257
controlled inputs 257
corrosion 286
coulomb friction 134
Coulombs 271
current 272

damping 172-173
density 30
differentiation 16-18
disc brakes 147
displacement 111
distributed loads 47, 81, 86
disturbance inputs 257
dry steam 212
dryness fraction 212
ductility 281
dynamic system 253
dynamic unbalance 161

Earth 21
efficiency 187
elastic limit 71
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elasticity 281
electric current. 272

chemical effect 278
heating effect 277
magnetic effect 277

electrical conductor 271
electrical insulator 271
electrical resistant 273
electromagnet 277
electronic calculators 7-8
emissivity 218
energy 178-183
enthalpy 222
equation of continuity 242
equation of motion 114-115, 127
equilibrant 37
exam questions 6-7

factor of safety 72
feedback 258
ferrous metal 282
first order system 253
flow rate

mass 242
velocity 241
volumetric 241

flywheel 186
force 20, 31-41
forces

coplanar 38
in equilibrium 37-38
polygon of 38
resolution of 36
resultant 33
triangle of 38

framed structures 55-64
frequency 166
friction 133

angle of 138
coefficient of 137
dynamic 137
force of 135
laws of 136
static 137

friction clutch 144-146

gases 218-223
gear wheels 194-196

generator 277-278

hardening 284
hardness 281
heat 208-218
heat transfer

conduction 213
convection 216
radiation 217
rate 214

heat treatment 283-284
hogging 81
Hooke's law 69
hydraulic damper 252
hydraulics 232
hydrodynamics 232
hydrostatics 232

idler wheel 194
impact 122
imperial system 3
impulse 122
inclined plane 140
inertia 112, 114
instrumentation 259

accuracy 265
amplifier 261
calibration error 263
elastic sensing elements 266
electronic 260
errors 261
flow measurement 269
hysteresis 264
lag 266
load cells 267
photoelectric cells 269
power supply 261
precision 265
random errors 265
range 263
recorder 261
reliability 265
repeatability 265
resistive sensing elements 266
resolution 266
sensing elements 266
sensitivity 262
signal conditioning 261



systematic errors 265
torque cells 268
transducer 260
zero offset 262

internal energy 208
Izod test 280-281

jib crane 40

kinetic energy 179
kinetic energy of rotation 181
kinetic energy of translation 180
knife-edge supports 82

laminar flow 240
latent heat 211

of fusion 212
of vaporisation 212

lever 46
limit of proportionality 71
liquids 232

machines 187
magnetism 277
malleability 281
manometer 203
mass 20
mathematical models 249
maximum cornering velocity 152-153
mean effective pressure 185
mechanical advantage 188
metal 280-287
method of sections 62-63
metric system 1
minimum safe radius 153
modelling 249-257
moment of inertia 129
moment of resistance 81
moments of a force 41-42
momentum 122
motion 111
motorbike see bike
motorcycle see bike
multiple 2

neutral axis 93
Newton's laws of motion 112-114
nominal breaking stress 72

Index

non-ferrous metal 285
normal reaction 36
normalising 285

Ohm's law 273
open circuits 257
open loop 258
open system 198

parallax error 264
parallel axis theorem 100-102
Pascal's laws 234
pendulum 169-171
percentage elongation 72
perfect flow 241
perfect gas 218
perfectly elastic 122
perfectly elastic collision 122
periodic time 166
pig iron 282
polar second moment of area 105
polytetrafluoroethene 134
potential energy 179
power 183-185

engine 185
transmission 192

pressure 201
absolute 201
atmospheric 201-204
gauge 201
head 236

primary quantities 1
process, reversible 206
pulley systems 189-192
Pythagoras 15-16

quantity symbol 1

radian 104
radius of gyration 130
rectangle 23
relative density 30
resilience 73, 107-108
resistors

parallel '276
series 274

reversible processes 206
rotational momentum 131
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SI system 1
sagging 81
screw thread 140-144
second moment of area 95-102
second order system 256
sensible heat 210
shear

force 80-91
strain 77
stress 76

short circuits 273
simple harmonic motion

acceleration 164-165
displacement 164-165
maximum acceleration 164-165
maximum velocity 164-165
velocity 164-165

simply supported 82
space diagrams 36
specific gas constant 221
specific gravity 30
specific heat capacity 210
speed 113
spring stiffness 168
square 23
static unbalance 161
steady flow process 223-231
steady flow energy equation 223-231
steam power plant 207
steam tables 222-223
steel

alloy 283
high carbon 283
impurities 283
low carbon 282
medium carbon 282

stiction 135
strain 69, 77

linear 69
strain gauges 266
streamline flow 240
strength 280
stress 68, 76

compressive 68
direct 68
tensile 68

submultiples 2
suction lift 238
surroundings 198

swept volume 28-29
system 248

temperature 205
Celsius 1, 205
Kelvin 1, 205

tempering 284
tensile strength 280
tensile tests 71
theorem of Pythagoras 15-16.
thermal conduction 216
thermal insulation 216
thermodynamic property tables see

steam tables
thermodynamic system 198
thermodynamics, first law 207
torque 103
torsion 103

equation 105
torsional resistance 107-108
toughness 280
transducer 260
transposition of formula 11-12
trapezium 26
triangle 23
trigonometry 12-15
turbulent flow 240

ultimate load 71
ultimate tensile stress 71
unit

conversion 4-5
prefix 2

units 1
multiples 2
submultiples 2

unity brackets 4-5

vector addition 33
vector subtraction 34
vectors 32
vehicle skidding 152-153
vehicle stability 154-155
velocity 111

absolute 119
relative 119-121

velocity ratio 188
velocity-time diagram 116-118
vibrating mass 167-169



viscosity 240
viscous drag 249, 252
voltage 272
voltmeter 272
volume 27, 29
volumetric expansion 232

Index /2951

weight 21
Weston differential pulley 191
wet steam 212
work 176-178,207-209

yield point 280
Young's Modulus of Elasticity 69


