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Vll  

P R E F A C E  

Arc welding is one of the key processes in industrial manufacturing. 
It is believed that in the entire metal fabrication industry, arc welding 
is the third largest job category behind assembly and machining. In 
particular, two types of processes, gas metal arc welding (GMAW) 
and gas tungsten arc welding (GTAW), are extensively used in factory 
automation. The practice of industrial welding is heavily dependent 
on the knowledge and vast experience of the welder, and, as such, at 
present it is more an art than science. However, in order to make the 
welding process more automated and less human (welder) dependent, 
in the last two decades significant efforts have been made to introduce 
the ideas of feedback in order to control the welding process to achieve 
a good weld. Modeling a welding process is one of the most important 
ingredients for controlling the process. Various modeling techniques 
and automatic control strategies have been suggested to improve the 
welding process. 

In this research monograph we provide a survey of modeling, sens- 
ing, and automatic control of the GMAW process. As such, this volume 
is intended to be one of survey-oriented rather than a detailed account 
of the subject matter. Further, the references under each chapter are 
listed chronologically so that one can see the development of the field 
over the years. To date, it appears that there have been at least three 
related literature surveys: one in 1988 on expert robotic welding systems 
(Sicard and Levine 1988), another in 1989 on sensory feedback control 
for robotic arc welding (Cook 1983a), and a third tutorial type of survey 
in 1989(Cook et al. 1989a). The first two focused on only robotic weld- 
ing, while the third considered modeling, sensing and automatic control 
of the GMAW process. The main purpose of the present monograph 
is to provide researchers with an updated status of the state-of-the-art 
in the areas of modeling, sensing and automatic control of the GMAW 
welding process. In addition to survey, this monograph also collects 
a number of original research results on this topic by the authors and 
their colleagues. 

This volume is composed of 6 chapters. After introducing some 
preliminary classification of various welding processes in Chapter 1, the 
modeling aspects GMAW process is briefly discussed in Chapter 2. The 
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viii 

topics reviewed are physics of welding, metal transfer characteristics, 
weld pool geometry, process voltages and variables, power supplies, etc. 
The topic of sensing is reviewed in Chapter 3 touching upon various 
sensors for arc length, weld penetration control, weld pool geometry, 
and optical and intelligent sensors. The main theme of control is dealt 
with in Chapter 4 starting from the classical control techniques of PI, 
PID, multivariable control, adaptive control, and intelligent control. 
A special feature of this book is in Chapter 5 where a case study is 
presented by the authors and their students at Idaho State University 
(ISU), Pocatello, Idaho in collaboration with the researchers at the 
Idaho National Engineering and Environmental Laboratory (INEEL). 
A brief epilogue draws the curtain on this book. A distinguishing 
feature of this book is the survey on the literature arranged section- 
wise at the end of each chapter for the convenience of the reader and a 
final bibliography at the end of the book for general reference on this 
research topic. 

Desineni Subbaram Naidu 
Pocatello, Idaho 

Selahattin Ozcelik 
Kingsville, Texas 

Kevin L. Moore 
Logan, Utah 

April 2003 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


Acknowledgments 

ix 

We would like to take this opportunity to express our sincere thanks to 
Dr.Herschell B.Smartt of the Idaho National Engineering and Environmental Lab- 
oratory (INEEL) in Idaho Falls, Idaho for his encouragement of this research ac- 
tivity. We particularly acknowledge his financial support, administered through 
Associated Western Universities (AWU), Salt Lake City, Utah, during the summer 
of 1997. We also acknowledge the support of INEEL through the University Re- 
search Consortium-funded project, Advanced Control Welding Technology, which 
stimulated the interest and need for the present research survey. We would also 
like to thank the entire URC project team, including Lyndon Brown, Bob Yender, 
Justin Tyler, Martin Murillo, Hardev Singh, Anna Mathews, and Mohamed Ab- 
delrahaman. We also thank the College of Engineering at Idaho State University 
(ISU), which provided facilities for the URC project and for the preparation of this 
mongoraph. A special word of appreciation is also extended to our technical editor, 
Ms. Leonora Schaelling. 

Due to the nature of this survey-oriented project, we depended a lot on the 
services of ISU Eli M. Oboler Library. In particular, the interlibrary loan staff, 
Nancy and Joan, deserve special mention for their ungrudging cooperation and 
timely action in bringing several of the copies of the references needed for the book 
and for their additional enthusiasm in getting the whole volume when only one 
particular article was requested! Also, our secretarial assistant Ann for doing lot of 
copying. 

For preparing the final copy of this book, we used our favourite I~TF~ format 
in PCTEX321 Version 4.0. The figures were drawn mainly using CorelDRAW2and 
exported into I_4TF~document. 

Finally, this survey-oriented book project would have taken a lot more time 
on our part, but for Subbaram's wife Sita, who had lot of patience in typing the 
huge bibliography files used in this survey. Thanks Sita! Finally, we enjoyed every 
moment of doing this project! 

Desineni Subbaram Naidu 
Pocatello, Idaho 

Selahattin Ozcelik 
Kingsville, Texas 

Kevin L. Moore 
Logan, Utah 

1PCTEX32 and I_4~a re  trademarks of Personal TF~, Inc., Mill Valley, CA. 
2CoreIDRAW is a registered trademarks of Corel Corporation. 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


This Page Intentionally Left Blank

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


Contents 
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

Acknowledgements . . . . . . . . .  . . . . . . . . . . . . .  ix 

List of  Figures . . . . . . . . . . . . . . . . . . . . . . . . .  xvi i  

1 I n t r o d u c t i o n  1 

1.1 I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2 The  Survey  . . . . . . . . . . . . . . . . . . . . . . . . .  4 

References  List for C h a p t e r  1 . . . . . . . . . . . . . . . . . .  7 

2 Gas Metal  Arc Welding: Model ing 9 
2.1 Gas  Meta l  Arc Welding  . . . . . . . . . . . . . . . . . .  9 

2.1.1 Pr inc ip les  of O p e r a t i o n  . . . . . . . . . . . . . .  11 

2.1.2 Arc Voltage and  Sel f -Regula t ion  of the  Arc . . . 11 

2.2 Phys ics  of Welding  . . . . . . . . . . . . . . . . . . . . .  14 

2.2.1 Phys ics  of Arc . . . . . . . . . . . . . . . . . . .  14 

2.2.2 Hea t  Transfer  or Flow . . . . . . . . . . . . . . .  15 

2.2.3 O t h e r  Works  on Hea t  Flow or Transfer  . . . . . .  17 

2.2.4 Cool ing  a n d / o r  Solidif ication Ra tes  . . . . . . . .  20 

2.2.5 Arc Charac te r i s t i c s  . . . . . . . . . . . . . . . . .  20 

2.3 Mel t ing  R a t e  . . . . . . . . . . . . . . . . . . . . . . . .  22 

2.4 Meta l  Trans fe r  Charac te r i s t i c s  . . . . . . . . . . . . . .  23 

2.4.1 Globu la r  Transfer  . . . . . . . . . . . . . . . . .  24 

2.4.2 Spray  Transfer  . . . . . . . . . . . . . . . . . . .  25 

2.4.3 S t r e a m i n g  Transfer  . . . . . . . . . . . . . . . . .  25 

2.4.4 Shor t -C i r cu i t i ng  Transfer  . . . . . . . . . . . . .  25 

2.4.5 Pu l sed  C u r r e n t  Transfer  . . . . . . . . . . . . . .  26 

2.4.6 O t h e r  Works  on Meta l  Transfer  . . . . . . . . . .  27 

2.4.7 Meta l  Transfer  E x p e r i m e n t s  . . . . . . . . . . . .  28 

2.4.8 Phys ics  of Me ta l  Transfer  . . . . . . . . . . . . .  29 

2.5 Weld Pool  . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

2.5.1 Weld Pool  and  Weld Bead  G e o m e t r y  . . . . . . .  32 

xi 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


xii CONTENTS 

2.5.2 Other  Works on Weld Pool . . . . . . . . . . . .  33 

2.6 Process Voltages . . . . . . . . . . . . . . . . . . . . . .  35 

2.6.1 Ca thode  and Anode Voltages . . . . . . . . . . .  36 

2.6.2 Arc Column Voltage . . . . . . . . . . . . . . . .  36 

2.6.3 St ick-Out  Voltage . . . . . . . . . . . . . . . . .  36 

2.6.4 Contac t  Tip Voltage . . . . . . . . . . . . . . . .  37 

2.7 Heat  and Mass Transfer . . . . . . . . . . . . . . . . . .  37 

2.7.1 Model for Heat  and Mass Transfer . . . . . . . .  37 

2.8 Process Variables . . . . . . . . . . . . . . . . . . . . . .  38 

2.8.1 Welding Curren t  . . . . . . . . . . . . . . . . . .  39 

2.8.2 Polar i ty  . . . . . . . . . . . . . . . . . . . . . . .  39 

2.8.3 Arc Voltage (Arc Length)  . . . . . . . . . . . . .  40 

2.8.4 Travel Speed . . . . . . . . . . . . . . . . . . . .  40 

2.8.5 Elect rode Extension (Stick-Out) . . . . . . . . .  40 

2.8.6 Electrode Orienta t ion  . . . . . . . . . . . . . . .  41 

2.8.7 Elect rode Size . . . . . . . . . . . . . . . . . . . .  41 

2.8.8 Shielding Gases . . . . . . . . . . . . . . . . . . .  41 

2.8.9 Classification of Process Pa rame te r s  . . . . . . .  42 

2.9 I N E E L / I S U  Model  . . . . . . . . . . . . . . . . . . . . .  43 

2.9.1 Nomencla ture  . . . . . . . . . . . . . . . . . . . .  44 

2.9.2 Forces Affecting Droplet  Dynamics  . . . . . . . .  46 

2.9.3 Droplet  Dynamics  . . . . . . . . . . . . . . . . .  47 

2.9.4 Model Equat ions  . . . . . . . . . . . . . . . . . .  48 

2.9.5 Model Simplification and Linearizat ion . . . . . .  50 

2.10 Empir ical  and Stat is t ical  Models . . . . . . . . . . . . .  52 

2.11 Modeling by System Identif ication and 

Es t imat ion  . . . . . . . . . . . . . . . . . . . . . . . . .  53 

2.12 Intell igent Modeling . . . . . . . . . . . . . . . . . . . .  53 

2.12.1 Other  Works on Intelligent Modeling . . . . . . .  54 

2.13 Other  Issues on Modeling . . . . . . . . . . . . . . . . .  55 

2.13.1 Dawn of GMAW . . . . . . . . . . . . . . . . . .  55 

2.13.2 Cost of GMAW . . . . . . . . . . . . . . . . . . .  56 

2.13.3 Other  Works on Modeling . . . . . . . . . . . . .  56 

2.14 Power Supplies . . . . . . . . . . . . . . . . . . . . . . .  61 

2.14.1 Cons tan t  Curren t  (CC) . . . . . . . . . . . . . .  63 

2.14.2 Cons tan t  Voltage (CV) . . . . . . . . . . . . . .  64 

2.14.3 Combined  CC and CV Power Source . . . . . . .  64 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


CONTENTS xiii 

2.14.4 Pulsed Cur ren t  . . . . . . . . . . . . . . . . . . .  64 

2.14.5 Inverters  . . . . . . . . . . . . . . . . . . . . . . .  65 

2.15 Other  Issues on Power Supplies . . . . . . . . . . . . . .  65 

2.16 Classification of References by Section . . . . . . . . . .  66 

References List for Chap t e r  2 . . . . . . . . . . . . . . . . . .  67 

3 G a s  M e t a l  A r c  W e l d i n g :  S e n s i n g  95 

3.1 Classification of Sensors . . . . . . . . . . . . . . . . . .  95 

3.2 Convent ional  Me thod  . . . . . . . . . . . . . . . . . . .  99 

3.3 Compu te r -Based  Measurements  . . . . . . . . . . . . . .  99 

3.4 Welding Pa rame te r s  Moni tor ing . . . . . . . . . . . . . .  100 

3.4.1 T e m p e r a t u r e  . . . . . . . . . . . . . . . . . . . .  100 

3.4.2 Welding Cur ren t  . . . . . . . . . . . . . . . . . .  101 

3.5 Sensors for Line Fol lowing/Seam Tracking . . . . . . . .  101 

3.6 Arc Leng th  Sensors . . . . . . . . . . . . . . . . . . . . .  103 

3.6.1 Voltage Measurement  . . . . . . . . . . . . . . .  103 

3.6.2 Sound Measu remen t  . . . . . . . . . . . . . . . .  103 

3.6.3 Laser (Range)  Finders  . . . . . . . . . . . . . . .  103 

3.6.4 Light and Spectra l  Radia t ion  Sensors . . . . . .  104 

3.6.5 Othe r  Works in Arc Length  Sensors . . . . . . .  105 

3.7 Sensors for Weld Pene t r a t ion  Control  . . . . . . . . . . .  105 

3.7.1 Back-Face Sensing . . . . . . . . . . . . . . . . .  106 

3.7.2 Front-  or Top-Face Sensing . . . . . . . . . . . .  106 

3.7.3 Weld Pool Oscillation . . . . . . . . . . . . . . .  110 

3.7.4 Drople t  Transfer  Frequency . . . . . . . . . . . .  111 

3.8 Sensors for Weld Pool Geomet ry  . . . . . . . . . . . . .  111 

3.9 Optical  Sensors . . . . . . . . . . . . . . . . . . . . . . .  113 

3.10 Sensors for Qual i ty  Control  . . . . . . . . . . . . . . . .  114 

3.11 Intell igent Sensing . . . . . . . . . . . . . . . . . . . . .  114 

3.12 Other  Issues on Sensing . . . . . . . . . . . . . . . . . .  115 

3.13 Classification of References by Section . . . . . . . . . .  118 

References List for Chap t e r  3 . . . . . . . . . . . . . . . . . .  121 

4 G M A W :  A u t o m a t i c  C o n t r o l  147 
4.1 Au toma t i c  Welding . . . . . . . . . . . . . . . . . . . . .  147 

4.2 Control  of Process  Variables . . . . . . . . . . . . . . . .  150 

4.2.1 Arc Leng th  Control  . . . . . . . . . . . . . . . .  150 

4.2.2 Contro l  of Mass and Heat  Transfer  . . . . . . . .  151 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


xiv CONTENTS 

4.2.3 Control of Weld Temperature  and/or  Cooling Rate152 

4.2.4 Control of Weld Pool and its Geometry . . . . .  153 

4.2.5 Other Works on Control of Weld Pool Geometry 154 

4.2.6 Control of Droplet Transfer Frequency . . . . . .  154 

4.2.7 Control of Weld Penetrat ion . . . . . . . . . . . .  156 

4.2.8 Control of Joint Profile (Fill Rate) and Trajectory 157 

4.2.9 Control of Other Variables or Conditions . . . .  159 

4.3 Classical Control: PI, PID and Others . . . . . . . . . .  160 

4.4 Multivariable Control . . . . . . . . . . . . . . . . . . .  161 

4.5 Optimizat ion and Optimal  Control . . . . . . . . . . . .  163 

4.6 Adaptive Control . . . . . . . . . . . . . . . . . . . . . .  164 

4.6.1 ISU Adaptive Control Scheme . . . . . . . . . . .  169 

4.6.2 Other Works on Adaptive Control . . . . . . . .  171 

4.7 Intelligent Control . . . . . . . . . . . . . . . . . . . . .  172 

4.7.1 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . .  172 

4.7.2 Neural Networks and Fuzzy Logic . . . . . . . .  173 

4.7.3 Knowledge-Based and/or  Expert  System . . . . .  175 

4.7.4 Other Works on Intelligent Control . . . . . . . .  177 

4.8 Statistical Process Control and Quality Control . . . . .  178 

4.9 Other Control Methodologies and Issues . . . . . . . . .  179 

4.9.1 Iterative Learning Control . . . . . . . . . . . . .  179 

4.9.2 Feedback Linearization . . . . . . . . . . . . . . .  180 

4.9.3 Relative Gain Array . . . . . . . . . . . . . . . .  180 

4.9.4 Other Works on Control . . . . . . . . . . . . . .  180 

4.10 Safety and Environmental  Issues . . . . . . . . . . . . .  183 

4.11 Classification of References by Section . . . . . . . . . .  184 

References List for Chapter  4 . . . . . . . . . . . . . . . . . .  187 

5 C o n t r o l  of  G M A W :  A C a s e  S t u d y  219 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  219 

5.2 Empirical Modeling of a GMAW Process . . . . . . . . .  222 

5.2.1 Calibration of a GMAW Process . . . . . . . . .  223 

5.2.2 Empirical Transfer Function Model . . . . . . . .  234 

5.3 SISO Current  Control Using PI Controller . . . . . . . .  235 

5.4 Multi-Loop Control of the GMAW Process . . . . . . .  239 

5.4.1 Relative Gain Array Analysis . . . . . . . . . . .  240 

5.4.2 Multi-loop Control Experimental  Results . . . .  240 

5.4.3 Disturbance Rejection Test . . . . . . . . . . . .  242 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


CONTENTS xv 

5.5 Adapt ive  Control  of GMAW Process . . . . . . . . . . .  244 

5.5.1 Overview . . . . . . . . . . . . . . . . . . . . . .  245 

5.5.2 Model  Simplification and Linearizat ion . . . . . .  248 

5.5.3 Model  for Heat  and Mass Transfer . . . . . . . .  251 

5.5.4 Feasibility Region in the G -  H Plane . . . . . .  251 

5.5.5 Stabil i ty Analysis and Charac ter iza t ion  of G - H 

Plane . . . . . . . . . . . . . . . . . . . . . . . .  256 

5.6 Control  S t ra tegy  . . . . . . . . . . . . . . . . . . . . . .  257 

5.6.1 Formula t ion  of the DMRAC . . . . . . . . . . . .  257 

5.6.2 Imp lemen ta t ion  of the DMRAC . . . . . . . . . .  260 

5.6.3 Exper imenta l  Results  . . . . . . . . . . . . . . .  262 

5.7 S u m m a r y  . . . . . . . . . . . . . . . . . . . . . . . . . .  268 

5.8 Classification of References by Section . . . . . . . . . .  270 

References List for Chap te r  5 . . . . . . . . . . . . . . . . . .  271 

6 C o n c l u s i o n s  275 
6.1 Control  Technology and Au tomat ion  in 

Welding . . . . . . . . . . . . . . . . . . . . . . . . . . .  275 

6.2 Main Issues and Out look . . . . . . . . . . . . . . . . . .  276 

6.2.1 Welding in Space Research . . . . . . . . . . . .  277 

6.2.2 Smar t  Robot ic  Welders and Manufac tur ing  . . . 277 

6.3 Classification of References by Section . . . . . . . . . .  277 

References List for Chap te r  6 . . . . . . . . . . . . . . . . . .  279 

B i b l i o g r a p h y  281 

I n d e x  347  

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


This Page Intentionally Left Blank

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


List of Figures 

2.1 Simple diagram of the gas metal arc welding p r o c e s s . . .  12 

2.2 Terminology of gas metal arc welding . . . . . . . . . . .  13 

2.3 Self-regulation of arc voltage . . . . . . . . . . . . . . . .  14 

2.4 Transfer modes as a function of current . . . . . . . . . .  24 

2.5 Pulsing current for metal transfer . . . . . . . . . . . . .  26 

2.6 Process voltage in the GMAW process . . . . . . . . . . .  35 

2.7 Input and output  variables of the welding process . . . .  42 
2.8 Relationship between welding parameters of the GMAW 

process . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

2.9 Schematic diagram of the GMAW process . . . . . . . . .  44 

2.10 Neural network estimator for weld pool geometry . . . . .  55 

2.11 Classification of welding power sources . . . . . . . . . .  62 

2.12 Typical volt-ampere curves for: (a) constant current 
power sources, and (b) constant voltage power sources. .  63 

2.13 Typical volt-ampere curves for a combined CC and CV 

power source . . . . . . . . . . . . . . . . . . . . . . . . .  65 

3.1 Principle of weld pool oscillations . . . . . . . . . . . . .  98 
3.2 Principle of computer-based measurements . . . . . . . .  100 

3.3 Schematic of laser shadow motion sensing method . . . .  107 

3.4 Simplified schematic of ultrasonic sensing method . . . .  107 

3.5 Simplified schematic of phase locked loop method for 
pulsing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

4.1 (a) Open-loop and (b) Closed-loop control systems . . . .  149 

4.2 Feedforward control system . . . . . . . . . . . . . . . . .  150 
4.3 PID control system for arc length regulation . . . . . . .  151 

4.4 Frequency Modulated Pulse Current Feedback System . 152 

xvii 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


xviii LIST OF FIGURES 

4.5 Schematic for a weld pool geometry (width and depth) 
control system . . . . . . . . . . . . . . . . . . . . . . . .  153 

4.6 PID control system for droplet frequency r e g u l a t i o n . . .  155 
4.7 Welding equipment and instrumentation for experimen- 

tal facility . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 

4.8 Intelligent control of the GMAW process . . . . . . . . .  158 
4.9 An early feedback control system for a welding process. 160 
4.10 PI control of the GMAW process . . . . . . . . . . . . . .  161 
4.11 A multivariable feedback control system for the GMAW 

process . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
4.12 A multivariable linearized feedback controller for the 

GMAW process . . . . . . . . . . . . . . . . . . . . . . .  163 
4.13 Basic principle of adaptive control . . . . . . . . . . . . .  165 
4.14 Alternative scheme of adaptive control . . . . . . . . . . .  166 
4.15 MRAC for plate temperature . . . . . . . . . . . . . . . .  167 
4.16 Adaptive thermal control system . . . . . . . . . . . . . .  168 
4.17 Adaptive thermal control system using a Smith predictor.169 
4.18 Direct model reference adaptive control of the GMAW 

process . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 
4.19 Self-learning fuzzy neural control system for arc welding 

processes . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
4.20 Experimental setup for neurofuzzy model-based control. 175 
4.21 Artificial intelligence system for a welding process . . . .  176 

5.1 The "big-picture" of GMAW process control . . . . . . .  221 

5.2 Experimental da ta -  contour plot of average current (amps).226 

5.3 D a t a -  contour plot of average arc voltage (volts) . . . . .  227 
5.4 Simulation d a t a -  average current from the fifth-order 

model for the whole data set . . . . . . . . . . . . . . . .  228 
5.5 Simulation d a t a -  best squared error for the whole data 

set applications . . . . . . . . . . . . . . . . . . . . . . . .  229 
5.6 Simulation d a t a -  average current from the fifth-order 

model for individual data sets . . . . . . . . . . . . . . .  230 
5.7 Simulation d a t a -  best squared error for individual data 

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 
5.8 Simulation d a t a -  best R~ parameter for individual data 

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


L I S T  OF F I G U R E S  xix 

5.9 Simulation d a t a -  best Vopa rameter  for individual da ta  
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 

5.10 Simulation d a t a -  best Ea parameter  for individual da ta  
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

5.11 Simulation d a t a -  best C1 parameter  for individual da ta  
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

5.12 Simulation d a t a -  best C2 parameter  for individual da ta  
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233 

5.13 Current  response to a step increase in the wire-feed speed.234 

5.14 Voltage response to a step increase in the open-circuit 
voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 

5.15 Current  response to a step increase in the open-circuit 
voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236 

5.16 Voltage response to a step increase in the wire-feed speed.237 
5.17 Closed-loop system with PI controller . . . . . . . . . . .  237 
5.18 Current  response, Kp - 0.5, Ki = 5, desired cur ren t -260A,  

actual current=260.0033A for 3 > t < 5 and desired cur- 
rent=240A, actual current=240.0955A for 5 > t _< 7 . . .  238 

5.19 Control signal, open-circuit voltage, for K p -  0.5, K i -  

5, desired cu r ren t -260A for 3 > t _< 5 and desired cur- 
rent=240A for 5 > t < 7 . . . . . . . . . . . . . . . . . . .  238 

5.20 Arc voltage, for Kp = 0.5, Ki - 5, desired current=260A 
for 3 > t < 5 and desired current=240A for 5 > t < 7. . 239 

5.21 Multi-loop control of the GMAW process . . . . . . . . .  240 
5.22 Experimental  results: current response, with simulation 

data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242 

5.23 Experimental  results: voltage response, with simulation 
data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 

5.24 Experimental  results: open-loop current response, step 
disturbance . . . . . . . . . . . . . . . . . . . . . . . . . .  244 

5.25 Experimental  results: open-loop voltage response, step 
disturbance . . . . . . . . . . . . . . . . . . . . . . . . . .  245 

5.26 Experimental  results: closed-loop current response, dis- 
turbance rejection . . . . . . . . . . . . . . . . . . . . . .  246 

5.27 Exper imental  results: closed-loop wire-feed speed re- 

sponse, disturbance rejection . . . . . . . . . . . . . . . .  247 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


X X  LIST OF FIGURES 

5.28 

5.29 

5.30 

5.31 

5.32 

5.33 

5.34 

5.35 

5.36 

5.37 

5.38 

5.39 

5.40 

5.41 

Exper imenta l  results: closed-loop voltage response, dis- 

tu rbance  rejection . . . . . . . . . . . . . . . . . . . . . .  253 

Exper imenta l  results: open-loop open-circuit  voltage re- 

sponse, d is turbance  rejection . . . . . . . . . . . . . . . .  253 

Feasible region in the G -  H plane . . . . . . . . . . . . .  254 

Weld speed with respect  to G -  H values . . . . . . . . .  254 

Current  changes in the G -  H plane . . . . . . . . . . . .  255 

Dist r ibut ion of the system response in the G -  H plane 

- ( + ) "  underdamped ,  (o)" overdamped . . . . . . . . . .  257 

Eigenvalue dis t r ibut ion in the G -  H plane . . . . . . . .  258 

Closed-loop G M A W  with D M R A C  . . . . . . . . . . . . .  263 

Current  response, desired current  = 260A, actual  current  

- 260.3824A . . . . . . . . . . . . . . . . . . . . . . . . .  265 

Arc voltage response, desired arc voltage = 29V, actual  

arc voltage - 28.6023V . . . . . . . . . . . . . . . . . . .  265 

Current  response, desired current  = 240A, actual  current  

= 240.9829A . . . . . . . . . . . . . . . . . . . . . . . . .  266 

Arc voltage response, desired arc voltage = 24V, actual  

arc voltage - 24.8629V . . . . . . . . . . . . . . . . . . .  266 

Curren t  response, desired current  = 260A, actual  cur- 

rent = 261.9960A for 3 < t _< 5, desired cur ren t=240A,  

actual  current=241.5589A for 5 < t < 7 . . . . . . . . . .  267 

Arc voltage response, desired arc voltage = 29V, actual  

arc voltage - 28.0629V for 3 < t _< 5, desired arc volt- 

a g e - 2 4 V ,  actual  arc vol tage-24.9090V for 5 < t < 7 . . .  267 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


Chapter 1 

I n t r o d u c t i o n  

1.1 I n t r o d u c t i o n  

Manufacturing processes Joining and cutting are very important for any 
industrial activity. Of these, cutting is a relatively straightforward and 
well-known process, which may be done mechanically or thermally, us- 
ing thermal sources such as oxygen or a plasma[l]. On the other hand, 
the process of joining is more involved. The basic joining processes are 

[21 

1. mechanical joining, 

2. adhesive bonding, 

3. brazing and soldering, and 

4. welding. 

The focus of this monograph is on the fourth joining process, weld- 
ing, and specifically Gas Metal Arc Welding (GMAW). According to 
American Welding Society [1], welding is defined as a localized coales- 
cence of metals or nonmetals produced either by heating the materials 
to the welding temperature, with or without the application of pressure, 
or by the application of pressure alone, with or without the use of filler 
metal. Although there are some 40 or so welding processes, only a few 
processes are important. In welding, the shielded metal arc welding 
(SMAW) and GMAW are some of the most widely used in industry. 
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The term arc welding refers to a broad group of welding processes 
that employ an electric arc as the source of heat to melt and join metals. 
It is believed that in the entire metal fabrication industry, arc welding 
is the third largest job category behind assembly and machining in 
metal fabrication industry [3]. 

The physics of welding deals with the complex physical phenomena 
associated with welding, including electricity, heat, magnetism, light, 
and sound. In particular, many welding processes require the applica- 
tion of heat or pressure, or both, to produce a suitable bond between 
the parts being joined. A common means of heating for welding is by 
the flow of current through electrical contact resistance at the joining 
surfaces of two work pieces. Welding processes that acquire heat from 
external sources are usually categorized with the type of heat source 
used. The processes in this category, with a brief definition, are given 
below [4]. 

1. Arc Welding 

(a) 

(b) 

(c) 

(d) 

(e) 

Shielded Metal Arc Welding (SMA W) is an arc welding process 
where an electric arc that is maintained between the tip of a 
covered electrode and the surface of the base metal produces 
the heat required for joining[5]. 

Gas Tungsten Arc Welding (GTA W) is an arc welding process 
that uses the arc between a non-consumable tungsten elec- 
trode and the weld pool with a shielding gas. 

Gas Metal Arc Welding (GMA W) is an arc welding process 
that uses an arc between a consumable electrode and the 
welding pool with a shielding from externally supplied gas 
without any application of pressure. In Europe, GMAW is 
also called metal inert gas (MIG) or metal active gas (MAG) 
welding [2]. 

Flux-Cored Arc Welding (FCA W) is an arc welding process 
that uses an arc between the consumable electrode and the 
weld pool with a shielding from a flux contained within the 
tubular electrode with or without additional shielding from 
an externally supplied gas. 

Submerged Arc Welding (SAW) is an arc welding process 
that produces joining of metals by heating them with an arc 
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between a metal electrode and the work piece. The arc and 
the molten metal are "submerged" in a flux on the work 
piece. 

(f) Electro-gas Welding (EGW)is an arc welding process that  
uses an arc between a consumable electrode and the weld 
pool, using auxiliary gas shielding around a flux-cored elec- 
trode. 

(g) Plasma Arc Welding (PA W) is an arc welding process that  
produces coalescence of metals by heating them with an arc 
between an electrode and the workpiece with shielding from 
an ionized gas. 

2. Resistance Welding (RW) is a process in which the heat required 
for welding is produced by the resistance to the flow of electric 
current passing through the parts to be welded. 

3. Electro-Slag Welding (ESW) is a welding process that  produces 
joining of metals with molten slag that  melts the filler metal and 
the surfaces of the workpieces to be welded with the shielding 
being provided by the slag. 

4. Oxyfuel Gas Welding (OFW) is a welding process that  uses com- 
bustion with oxygen as a heating medium by mixing fuel gas and 
oxygen inside a mixing chamber. 

5. Thermit Welding (TW) is a welding process that  heats the met- 
als to be welded with super heated molten metal from an alu- 
minothermic reaction between a metal oxide and aluminum. 

6. Diffusion Welding (DFW) is a solid-state welding process using 
the pressure at elevated temperatures with no microscopic defor- 
mation or relative motion of the workpieces. 

7. Electron Beam Welding (EB W) is a welding process that  uses a 
concentrated beam of high-velocity electrons to provide a heating 
source. 

8. Laser Beam Welding (LBW) is a welding process that  uses a 
focused high-power monochrome light to produce a deep pene- 
tration column of vapor to the base metal. 
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9. Friction Welding (FRW) is a solid-state welding process that uses 
compressive force to contact workpieces rotating or moving rela- 
tive to one another to produce heat. 

10. Ultrasonic Welding (USW) is a solid-state welding process that 
produces a weld by local application of high frequency vibratory 
energy. 

11. Spot, Seam, and Projection Welding are resistance welding processes 
in which joining of metals is produced by the heat generated by 
the resistance of the work to the passage of electric current. 

12. Flash, Upset, and Percussion Welding are a group of welding 
processes used to join parts by simultaneously making a weld 
across the joint area without using filler metal. 

The practice of industrial welding is heavily dependent on the knowl- 
edge and vast experience of the welder and as such, it is at present more 
an art than a science. However, in order to make the welding process 
more automated and less human (welder) dependent, in the last two 
decades, significant efforts have been made to introduce the ideas of 
feedback in order to control the welding process to achieve a good weld. 
Modeling, sensing and control techniques and strategies are the subject 
of this monograph. 

1.2 The Survey 

Although, the subject presented here was originally intended to be 
focused on automatic control techniques for GMAW, the authors soon 
found that it was necessary to introduce other aspects such as modeling, 
power supplies, and sensing. Thus, in this research survey, efforts have 
been directed towards providing a comprehensive review of the GMAW 
process in general and the modeling, sensing, and automatic control 
aspects in particular. 

The topic of arc welding has a vast research literature. However, 
the literature on modeling, sensing, and control of the GMAW process 
is not as extensive, and there are only a few surveys on the topic. 
Indeed, a very good general presentation on the need for modeling and 
control of manufacturing processes in general and welding in particular 
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was most revealing [6]. The author reviewed two decades (1970-1990) 
of manufacturing control research in the ASME Journal of Dynamic 
Systems, Measurement and Control and found that there are only 25 
articles published in the Journal in the area of manufacturing and out 
of these, there were only six papers on arc welding! More references 
can be found in three recent literature survey articles, including one 
on expert robotic welding systems with 92 references [7], and another 
on sensory feedback control for robotic arc welding, with 83 references 
[8]. While these surveys consider only robotic welding, a third tutorial 
type of survey presented during a keynote address by G.E. Cook, et 
al. can be found in [9]. In particular, the survey by Cook, et al. (with 
118 references) focused on sensing, modeling and control of welding 
processes. The survey presented here also focuses on various aspects 
of modeling, sensing, and automatic control of the GMAW process, 
but it considers a significantly expanded number of references (over 
600!). The main purpose of this research monograph is to provide 
researchers with the status of the state-of-the-art of the work in the 
areas of modeling, sensing, and control of the GMAW welding process. 
Occasionally, the gas tungsten arc welding (GTAW) process is also 
touched upon. 

Besides the review articles indicated above, the interested reader 
should also refer to several excellent welding reference books, includ- 
ing Volume 1 [1] and Volume 2 [4] for all aspects of welding, the classic 
text for modeling [10], and a recent (and the only) book for sensing and 
control in arc welding (although the material is exclusively based on 
the Japanese works) [11]. From the historical perspective, the reader is 
also highly recommended to look at the first survey on arc welding for 
an extensive literature survey (with 178 references) on the arc physics 
and metal transfer up to February 1942 [12]. This survey was pre- 
pared under the auspices of the Literature Division of the Engineering 
Foundation Welding Research Committee and was done in two parts, 
one connected with low-amperage arcs and the second part related to 
welding arcs. 

The subject matter is organized topically starting first with mod- 
eling, then considering sensing, and then finally control. Also included 
is a case study highlighting some experimental work done by the au- 
thors at Idaho State University. In each section we describe the topic 
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and summarize results from the literature. At the end of each sec- 
tion a table is given that gives reference numbers by topic. References 
are listed at the end of each chapter in the order they were discussed 
and are also collected at the end of the book in alphabetical order. 
It should be noted that references may be discussed more than once. 
For example, if we talk about a particular article on adaptive control 
systems for controlling the weld geometry, then that particular article 
is discussed both under the category of adaptive control and the cat- 
egory of control of weld geometry. We should also point out that the 
monograph focuses primarily on modeling, sensing, and control of gas 
metal arc welding. The topic robotic arc welding, which in itself is a 
major research area, is not covered in this monograph. 

Finally, the authors wish to stress that they have tried their best 
to compile all the relevant references on this topic. However, it is 
inevitable that some citations have been overlooked. In case some 
references that should have been included are missing from the survey, 
it is purely unintentional. The authors would greatly appreciate having 
such omissions brought to their attention. 

Table 1.1: Section by Section List of References 

Section Reference Numbers 

1.1 Introduction [1]-[7] 
1.2 Survey [61-[12] 
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Chapter 2 

Gas Metal Arc 
Modeling 

Welding: 

In this chapter, aspects of both modeling and power supplies are pre- 
sented. The modeling of a welding process in general means the deriva- 
tion of a set of mathematical equations (ordinary differential equations 
for lumped parameter systems, partial differential equations for dis- 
tributed parameter systems) describing the physical process by means 
of fundamental principles of science or statistical and/or experimental 
techniques. It is our perspective that effective feedback controller de- 
sign cannot be accomplished without a framework within which it is 
possible to describe and understand the behavior of the system to be 
controlled. Thus, it is important to have a model. In this chapter we de- 
scribe the literature on modeling the Gas Metal Arc Welding (GMAW) 
process. We begin with a description of GMAW. Then we discuss var- 
ious aspects of the physics of welding. The chapter concludes with the 
presentation of a specific model developed by the authors and their col- 
leagues at a U.S. Department of Energy national laboratory, the Idaho 
National Engineering and Environmental Laboratory (INEEL). 

2.1 Gas Metal  Arc Welding 

The welding process is a multi-energy process involving such different 
phenomena as plasma physics, heat flow, fluid flow, and heat and metal 
transfer, etc [13]. The basic concept of the GMAW process was known 
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by the 1920s, but only in 1948 was the process made commercially 
available [14]. At first, the process included an inert gas for shielding 
and hence was called Metal Inert Gas Welding (MIGW). Subsequent 
developments used reactive gases such as C02 and other gas mixtures, 
which led to the terminology Gas Metal Arc Welding (GMA W), which 
implied using both inert and reactive gases. 

The reason for the acceptance of the GMAW process for almost all 
the industrial applications is due to its versatility and specific advan- 
tages, such as those listed below[14]: 

1. GMAW is the only consumable electrode welding process that  
can be used for welding all commercial metals and alloys. 

2. GMAW welding can be done in all positions, unlike in submerged 
metal arc welding. 

3. Because of the continuous electrode feed, the metal deposition 
rates in GMAW are significantly higher than shielded metal arc 
welding (SMAW). 

4. Due to higher metal filler deposition rates, welding speeds in 
GMAW can be higher than those obtained with SMAW. 

5. Because the wire feed is continuous with GMAW, longer welds 
can be done without stops and starts. 

6. GMAW has no restriction on the length of the electrode as in 
SMAW. 

7. With spray transfer in GMAW, deeper penetration of the weld is 
possible compared to SMAW. 

8. Due to the absence of slag, there is less problem with cleaning. 

However, there are some limitations of the GMAW process: 

1. The welding equipment is more complex and hence costlier and 
less portable compared to SMAW. 

2. Protection against air drafts is required. 

3. Higher levels of radiated heat and arc intensity are produced. 
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The GMAW process can be used to join virtually any metal using 
many joint configurations, and in all welding positions [15]. The weld- 
ing process in general is a very complex process due to the fact that 
the process involves many scientific and engineering disciplines such as 
chemistry, physics, metallurgy, materials science, and mechanics. The 
process also involves a complex interaction of solid, liquid, gaseous, and 
plasma-state phenomena. The complexity of the process is due to the 
fact that a large number of these phenomena takes place simultaneously 
in a relatively small volume (0.1 to 10 mm 3) over a short distance (1 
to 20 mm), and frequently over short periods of time [16]. 

The GMAW process is relatively a complex and "dirty" process, 
but often the most widely-used process in industry, particularly in au- 
tomatic robotic arc welding. In real life and practical applications, the 
GMAW process exceeds by over 10 fold the "clean" GTAW process 
[17]. 

2.1.1 Principles of Operation 

Gas metal arc welding (GMAW) is a welding process where the heat is 
generated by an electric arc incorporating a continuous-feed consum- 
able electrode that is shielded by an externally supplied gas. A simple 
schematic diagram of the GMAW process is shown in Figure 2.1114]. 
Figure 2.2 shows the terminology used with the GMAW process. 

Besides the welding gun, the actual equipment required for the 
GMAW process includes an electric power supply, the electrode wire- 
feed unit, and a source of shielding gas. The gun guides the electrode 
wire, current wire, and shielding gas tube. As described in the next 
section, self-regulation of the arc length is maintained by a constant 
voltage power supply with a constant wire-feed speed unit. Alterna- 
tively, a constant-current voltage supply can be used with arc voltage 
controlling the wire-feed speed. 

2 .1 .2  A r c  V o l t a g e  a n d  S e l f - R e g u l a t i o n  of  t h e  A r c  

The voltage drop across the arc (arc voltage) is directly proportional 
to arc length. Hence, the arc voltage is controlled by changing the 
arc length. There is a minimum voltage for striking the arc, and the 
open-circuit voltage of the power supply is obviously higher than the 
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Figure 2.1: Simple diagram of the gas metal arc welding process. 

arc-striking voltage. 
In order to understand the mechanism of maintaining the arc, con- 

sider the constant-voltage (CV) and constant-current (CC) volt-ampere 
characteristics of a typical power supply along with arc voltage curves 
as shown in Figure 2.3 [18]. Notice that the change in current for a 
change in arc length (from high to low) for a CC power supply is much 
less than that for CV power supply. The intersection of an arc voltage 
curve with the voltage source curve is called the operating point for the 
power supply. The operating point may change continuously during 
welding operation. 

1. For the case of a CV power supply with a constant wire-feed speed, 
consider the operating point P. A small decrease in arc length and 
hence a small decrease in arc voltage results in a relatively large 
increase in welding current. This large increase in current in- 
creases the melt-off rate, thereby increasing the arc length and 
hence increasing the arc voltage back to its normal operating 
point. The opposite action happens when the arc length is in- 
creased from any operating point P. Thus, the GMAW process 
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Figure 2.2: Terminology of gas metal arc welding. 

. 

employing a CV power supply with fixed wire-feed speed has a 
self-regulating feature, which is very good for a semi-automatic 
welding system. Thus, while using the combination of a constant 
voltage/constant wire-feed speed unit, a change in torch posi- 
tion causes a change in arc current that exactly compensates the 
electrode stick-out (electrode extension), thereby maintaining a 
constant arc voltage. 

For the case of a CC power supply with a constant wire-feed 
speed, a similar sequence of events takes place, except the change 
in current is much less, and thus it can take more time to self- 
regulate the system. In a truly CC (steeply dropping) system, 
the change in current is much less, thereby meaning that the 
welder (by changing the arc length) has little or no control on 
the current. Also, with a CC power supply with a steep drop- 
ping characteristic, the arc will maintain a fixed length only if 
the contact-tube-to-workpiece distance remains constant with a 
constant wire-feed rate. However, in practice, since this distance 
will change, the arc will then either tend to burn back to the con- 
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Figure 2.3: Self-regulation of arc voltage. 

tact tube or stub into the workpiece. This can be rectified by 
using a voltage-controlled electrode-feed control system. If the 
arc voltage increases (decreases), the motor speeds up (down) to 
hold the arc length constant. 

A study on the dynamic characteristics of self-regulation of the arc 
in a GMAW process is given in [19]. An analytical model using a 
classical frequency response method was developed to determine the 
degree of arc length regulation as a function of the frequency of torch- 
to-workpiece (also called contact-tube-to-workpiece) distance change. 
It was found and experimentally verified that the regulation of arc 
length decreases with increasing frequency. 

2.2 Physics of Welding 

2.2.1 Physics of Arc 

Arc is the main part of the physics of the welding process. In welding, 
a high energy density heat source is applied to the parts or surfaces 
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to be joined and is moved along the path of the intended joint. When 
a filler may be added, the heat source must also be sufficient to melt 
the filler material as it is delivered to the joint surface. In-depth treat- 
ments of arc modeling can be found in [20, 21, 22, 23]. The complete 
understanding of the definition of the arc, the consumable-electrode 
welding arc, and the function of the arc are given in the series of classic 
contributions [24, 25, 26]. The different arc types as well as the relevant 
welding parameters are discussed in [27]. Another study in [28] inves- 
tigates the relationship between the arc light intensity and arc length 
through analytic modeling. Using the heat balance in the plasma, the 
arc light intensity is derived as a function of the arc length and the 
welding current. Computer simulation of arc behavior and bead ap- 
pearance for a GMAW process is developed in [29]. Arc initiation with 
GMAW depends on various factors such as wire speed, wire-to-base 
metal contact resistance, geometry, etc. Farson [30] has studied arc 
initiation in GMAW. 

2.2.2  H e a t  T r a n s f e r  o r  F l o w  

In the case of arc welding, the energy input is usually the arc energy 
input. Arc energy input is the quantity of energy transferred per unit 
length of weld from a traveling heat source expressed in joules per meter 
(m) or millimeter (mm). Thus, the energy input (H) is defined as the 
ratio of the total input power (P) of the heat source in watts to its 
travel velocity (R) expressed in mm/sec, or 

H = P / R  (2.1) 

If the heat source is an arc, then the heat input energy (to a first 
approximation) is 

H = E I / R  (2.2) 

where E is the voltage (volts) and I is the current (amps). Taking 
efficiency (r/t) of the heat transfer into account, the net energy input 
(Hn~t) is given as 

Hnet - rlt H = rlt P = rlt E I (2.3) 
R R 
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Typically, the efficiency factor has a high value of between 0.66 and 
0.85 for the GMAW process and between 0.21 and 0.48 for the GTAW 
process [31]. 

In heat transfer, we further note that  the melting efficiency is the 
fraction of the net energy input (Hnet) used for melting the metal. 
Also, there is a specific theoretical quantity of heat Q required to melt 
a given volume of the metal from a cold start. This quantity Q, in 
Joules~ram 3, is 

(Tin + 273) 
Q - (2.4) 

300,000 

where Tm is the melting temperature in degrees Celsius of the metal. 
Taking the melting efficiency rim into account, we have 

QA~ QA~v QA~v 
= = (2.5) rim = Hna rlt P ~Tt E1 

where A~ is the cross-section of the weld metal, which can be written 
as the sum of the area of the base metal that  was melted (Am) and the 
area of the weld metal (also called area of reinforcement) (At). Ar also 
represents the filler metal added to the weld. 

Using the relations (2.5) and (2.3), we get an important relation 
between the weld metal cross section A~ and the energy input H as 

rl,,~ Hna rlt ~m H 
A~ = = (2.6) 

O O 

The transfer of heat energy in the weldment is governed by the con- 
duction of heat, which is described by the following partial differential 
equation [15] 

O [k(T) OT] 
oW 

a [k(T)aT 
+N N 

0 OT 
- pC(T) -~  - Q(2.7) 

where x is the coordinate in the welding direction (ram), y is the co- 
ordinate transverse to the weld (mm), z is the coordinate normal to 
weldment surface (ram), T is the temperature in the weldment, (~ 
k(T) is the thermal conductivity of the metal (J/mm.s.~ p is the 
density of metal (g/mm3), C is the specific heat of the metal (J/g.~ 
and Q is the rate of internal heat generation (W/mm3). 
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A complete theoretical analysis of heat distribution was done by 
Rosenthal [32], and this model was modified by Jhavari, et al. [33], 
taking into account the plate thickness and the heat loss due to radia- 
tion. 

2.2.3 O t h e r  W o r k s  on  H e a t  F low or  T r a n s f e r  

An early development of a general set of charts showing the effect 
of plate thickness, thermal properties, and operating variables of the 
welding process on thermal properties such as cooling rate and peak 
temperature distribution can be found in [33]. 

In [34], it is stated that during heat transfer with GMAW and 
plasma-GMAW, the heat value of transferring metal drops appears to 
determine the total cross-sectional area of weld penetration while the 
impact of drops on the liquid metal weld pool determines the depth of 
penetration. 

A study on the physical processes governing the generation and the 
flow of heat in a consumable mild steel wire to determine the influence 
of welding parameters on melting rate and drop temperature for a 
GMAW process can be found in [35]. 

Modeling of heat transfer and thermal behavior of metals during 
welding, with reference to the GTAW process, are discussed in [36, 37, 
38]. 

In [39], a simple FORTRAN-based computer program has been 
developed for calculating the heat affected zone (HAZ) and cooling 
rate (CR) for rectangular plates. 

The work [40] presents experimental investigations on drop detach- 
ment and drop velocity in a pulsed GMAW process. The investigators 
measured the velocity of drops detached and the diameter of the drop 
neck during the detachment process with the aid of a high-speed pho- 
tography arrangement consisting of a laser, lenses, optical filter, and 
fixed and rotating mirrors. It is found that the pendent drop contracts 
when the pulse starts and becomes unstable when the diameter reaches 
a critical value. 

An in-depth study of the effect of welding heat input and preheating 
on cooling rates can be found in [41]. 

Experiments to determine the values of welding parameters that 
affect heat input calculations for pulsed GMAW are given in [42]. 
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A new research paradigm called the inverse problem, involving an 
interactive combination of complex experiments and analysis, is dis- 
cussed in [43] for heat transfer with applications to welding and solid- 
ification. 

A study on the three-dimensional analysis of heat and fluid flow in 
GMAW using boundary fitted coordinates is presented in [44]. 

An in-depth study on the metal transfer (heat and fluid flow), both 
analytically and experimentally, is given in [45]. The commentary on 
this work is given by Lesenewich [46]. 

Matsunawa [47] gives a keynote address that considers a brief his- 
tory of studies on heat and mass transfer in arc welding, possible fac- 
tors to induce flow in a puddle and their effects on penetration shape, 
some experimental verifications of the mathematical model, and future 
outlook in the field. 

An axisymmetric thermo mechanical analysis of a stationary gas 
metal arc weld, employing sequential coupling of the thermal and stress 
analysis using finite element method (FEM) is given in [48]. 

In [49], a computer program was developed for the computation of 
thermal cycles at heat affected zones with GMAW of medium thickness 
plates based on the computation model for quasi-steady heat transfer 
problem and the boundary element method. 

The development of a model of the GMAW process to predict the 
three-dimensional transient temperature distribution in the workpiece 
and numerical simulation using FEM are given in [50, 51]. The authors 
used pinch instability theory (PIT) and the static force balance theory 
(SFBT) of the drop detachment and obtained expressions for the vari- 
ous characteristics of the drop such as drop radius, drop velocity, and 
drop frequency. 

In [52], Ushio introduces a three-dimensional model for heat and 
fluid flow in a moving gas metal arc weld pool. The model takes the 
mass, momentum, and heat transfer of filler metal droplets into con- 
sideration and quantitatively analyzes their effects on the weld bead 
shape and weld pool geometry. 

Kim and Basu [53] have developed an unsteady two-dimensional 
(2D) axi-symmetric model for investigating the heat and fluid flows in 
weld pools. Based on that the weld bead geometry, and the velocity 
and temperature profiles for the GMAW process have been determined. 
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In the mathematical formulation electromagnetic, buoyancy, surface 
tension, and drag forces are considered for weld pool convection. 

In [54], calculation of the thermal cycles near the weld region during 
gas metal arc welding was studied. An estimation of the depth of weld 
penetration, the geometry of the weld pool and the cooling rates are 
calculated based on predicted thermal cycles. 

A heat flux distribution model, suitable for larger surface defor- 
mation of a weldpool, of GMAW WAS developed in [55]. The spatial 
distribution of the heat flux has an effect on the weld-pool shape and 
solidification process, which in turn affects the structure and properties 
of the weldment. 

Wu, in [55], developed a model for the distribution of the heat con- 
tent of filler metal droplets inside the gas-metal arc weld pool. It is 
known that  this distribution has an effect on the weld bead dimen- 
sions and the weld thermal cycle and is considered as an internal heat 
generation term. 

In GMAW processes, the time-dependent temperature and displace- 
ment fields generated by the weldment are the parameters of interest. 
In [56], a measurement system that combines both full-field temper- 
ature and three-dimensional displacement measurement capabilities is 
presented. 

A three-dimensional finite element simulation of the welding process 
is presented in [57]. The analysis involves de-coupled heat transfer and 
thermo-mechanical analysis for the determination of residual stress and 
distortion. 

In [58], fluid flow and heat transfer during GMAW of HSLA-100 
steel were studied using a transient, three dimensional, turbulent heat 
transfer and fluid flow model. The temperature and velocity fields, 
cooling rates, and shape and size of the fusion and HAZs were calcu- 
lated. To better understand a weld metal microstructure, a continuous 
cooling transformation (CCT) diagram was computed. 

Experiments have been done in [59] to simulate the effect of 
Marangoni convection on weld pool shape. Stationary welds NAN03 
and Ga were made with a defocused C02 laser beam to simulate the 
effect of Marangoni convection on the shape of arc weld pools without 
a surface-active agent. It was proposed that in the absence of both a 
surface-active agent and a significant electromagnetic force, the pool 
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bottom convexity increases with increasing Pc. 

2.2.4 Cooling and/or Solidification Rates 

The solidification time St, in sec, is given by 

LHn~t 
St = 2~kpC(Tm - To) 2 (2.8) 

where L is the heat of fusion, J / m m  3, C, k, and p are constants, and 
Tm and To are the metal temperature and the ambient temperature,  in 
~ respectively. 

Dorschu [60] experimentally studied the dependence of cooling on 
GMAW process variables and found that the cooling rates are affected 
by the torch speed and pre-heating of the workpiece. Further studies 
on cooling and solidification include [36, 22, 23]. 

Garland [61] studied principles involving in solidification processes 
and the control of weld pool solidification to produce weld metals pos- 
sessing enhanced properties. 

Derivations for solidification of the molten metal in terms of the liq- 
uid phase angle and for the bead formation assuming a simple harmonic 
wave of the molten metal are given by [62]. 

2 .2 .5  A r c  C h a r a c t e r i s t i c s  

A welding arc can be viewed as a gaseous conductor that  converts 
electrical energy into heat energy. The various characteristic features 
of the welding arc are the plasma, temperature, radiation, electrical 
features, magnetic fields, and arc blow. We briefly describe each of 
these (except radiation) in this section. 

Plasma 

The arc current is carried by a plasma, the ionized state of a gas, 
which is composed of nearly equal number of electrons and ions. The 
electrons, which support most of the current conduction, flow out of 
a negative (cathode) terminal and move towards a positive (anode) 
terminal. In the case of arc welding one of these cathode or anode 
electrodes serves as the workpiece and the other is called the electrode. 
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Mixed with the plasma are the other things including molten metals, 
slags, vapors, and molecules. The formation of plasma is governed 
by the advanced concepts of the Ideal Gas Law and the Law of Mass 
Action [15]. The plasma typically has an axial temperature in the range 
of 5,000 to 15,000~ [63]. Craig [64] gives an excellent review of the 
plasma arc process and the work in [65] discusses the placement of the 
plasma arc sheath to achieve several productivity applications. 

Temperature 

The temperatures of the welding arc are in the range of 5,000 to 30,0000 
K depending on the condition of the plasma and the current flowing 
through it. Some special arcs of extreme power may reach an axial 
temperature of 50,000 ~ K. In most cases, the temperature of the arc 
is measured by techniques using the spectral radiation emitted by the 
arc. 

Electrical Features 

A welding arc acts like an impedance to the flow of electric current in 
the power supply circuit. The electrical power dissipated in the arc is 
the sum of the power in the three regions of the arc: the anode, the 
cathode, and the plasma. Thus, 

P = I(E~ + E~ + Ep) (2.9) 

where P is the power (W), I is the current (A), Ea is the anode voltage 
(V), Ec is the cathode voltage (V), and Ep is the plasma voltage (V). 

Magnetic Fields 

Magnetic fields, either induced or self, interact with the arc current to 
produce force fields that cause an arc deflection that is usually called arc 
blow. Further, the magnetic fields affect plasma streaming and metal 
transfer. The effects of magnetic fields on welding arcs are determined 
by the Lorentz equation, according to which the force produced is pro- 
portional to the vector cross product of the external field strength and 
the arc current. 
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Arc Blow 

The phenomenon where the arc has a tendency to be forcibly directed 
away from the point of welding, is often termed arc blow. In general, 
the arc blow is the result of two conditions: (1) the change in current 
direction and (2) the presence of magnetic materials around the arc. 
Low arc voltage results in shorter, stiffer arcs that  resist arc deflection 
better than a higher arc voltage. Physics and chemistry of welding 
processes in general can be found in [14, 66]. 

2.3 Melting Rate 

As described earlier, the heat energy in an arc is generated by electrical 
reactions at the anode and cathode regions within the plasma. Portions 
of this energy will melt the electrode. The melting rate is primarily 
affected by the current or cathode heating. The melting rate M R  is 
given by [67] 

M R  = aI  + ~-~-l~I 2 (2.10) 
aw 

where a and ~ are constants, l~ electrode resistivity, I is the welding 
current and aw is cross sectional area of the wire. For further discussion 
on melting rate, see the classic paper by Lesnewich [68]. 

Chandel [69] has studied the effects of welding variables and para- 
meters such as welding current, arc voltage, wire diameter, electrode 
extension, electrode polarity, and power source type on the melting 
rates for submerged arc welding process. The calculation of the ohmic 
heating in the electrode extension of different filler wires and a sim- 
ple relation for the melting rate are given in [70]. Tusek [71] gives 
a mathematical model for the calculation of melting rates obtained 
in gas-shielded arc welding with a multiple-wire electrode and in sub- 
merged arc welding with a multiple-wire electrode. Bingul [72] gives 
a model correlating the anode temperature profile with the dynamic 
melting rate in GMAW. 
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2.4 M e t a l  Transfer Character i s t ics  

In general, the consumable electrode arc welding processes are preferred 
because the filler metal is deposited more efficiently at higher rates of 
deposition than with other welding processes [14]. To be more effective, 
the filler metal needs to be transferred from the electrode to the weld 
pool with minimum loss due to spatter. 

The metal transfer modes during the GMAW process are described 
by the following categories. 

1. Free-Flight Transfer 

(a) Globular 

(b) Spray Transfer 

(c) Combination of Globular and Spray 

2. Short Circuiting (or Dip) Transfer 

3. Pulsed Transfer 

The physics of metal transfer is not yet well understood, due to 
the facts that the arcs are too small, the temperatures are too high, 
and the metal transfer is at too high a rate. Thus, many mechanisms 
affecting metal transfer have been suggested in [14]. To better under- 
stand the dynamics of the metal transfer in GMAW, Kovacevic [73] has 
studied the dynamic modeling of metal transfer process in GMAW, and 
presented a model for process control. 

Since a stable metal transfer mode is usually associated with a 
good quality weld, Quintino [74] has investigated the control of metal 
transfer in GMAW using neural networks. This has been done through 
the use of sensors, control algorithms, and neural networks. 

Various welding parameters, as well as the material properties of 
the electrodes need to be taken into consideration simultaneously for 
the analysis of the metal-transfer phenomena of GMAW. In order to de- 
termine the dominant factors that affect the metal transfer mode, Choi 
[75] has conducted a study for dimensional analysis of metal transfer. 
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2.4 .1  G l o b u l a r  T r a n s f e r  

Here during the welding process, the filler metal transfers across the 
arc in globules propelled by arc forces. As shown in Figure 2.4 for 
GMAW, globular transfer (characterized by a drop size bigger than 
the diameter of the electrode wire and at the rate of few drops per sec) 
takes place when the current is relatively low compared to the current 
levels associated with spray transfer but larger than the current levels 
associated with short circuit transfer. Globular transfer is also called 
open-arc welding which can take place when using a non-pulsed current 
source. Further works on globular transfer can be found in [76]. 

MODE 

Short- 
Circuit 

Globular ] ISpraYl 

"q . . . .  CURRENT . . . .  �9 
Lower Higher 

I  treaming I 

Figure 2.4: Transfer modes as a function of current. 

A mathematical model to describe the globular transfer in GMAW 
is developed by Fan [77]. This work is both theoretical and experimen- 
tal. Using the volume-of-fluid (VOF) method, the fluid-flow and heat 
transfer phenomena during the impingement of a droplet on a solid 
substrate, arc striking, the impingement of multiple droplets on the 
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molten pool, and, finally, the solidification after the arc extinguishes, 
are studied. 

In [78], a dynamic two-dimensional arc model was used to investi- 
gate the effects of the various forces acting on the droplet in GMAW. 
The model is based on the equations of conservation of mass, energy, 
momentum and current, Ohm's law and Maxwell's equations. 

2.4.2 S p r a y  T r a n s f e r  

Spray transfer takes place when the current is above the level of transi- 
tion current as shown in Figure 2.4. The transition current is directly 
proportional to the liquid metal surface tension, but inversely propor- 
tional to the electrode diameter. An interesting characteristic of spray 
transfer is the phenomena of finger penetration. Due to its highly di- 
rected stream, spray transfer can often be used in any position. That 
is, the workpiece is not required to be below the torch. Also, pulsing 
of the welding current (see Figure 2.5) is often used for spray transfer 
processes. Pulsed spray transfer using low background voltage and high 
peak current so that the average current is less than typical non-pulsing 
spray transfer is addressed in [79]. 

2.4.3 S t r e a m i n g  T r a n s f e r  

At higher welding currents, the drop size decreases and the electrode tip 
becomes tapered and a very fine stream of droplets is projected axially 
through the arc leading to streaming transfer. This transfer is seen with 
high-resistivity and small-diameter wires operating at welding currents 
above 300 A [67]. 

2 .4.4 S h o r t - C i r c u i t i n g  T r a n s f e r  

Short circuiting transfer occurs during the lowest ranges of current. 
Metal is transferred from the electrode to the workpiece by direct 
contact between the electrode and the weld pool at the rate of 20 
to 200 times per second. Short-circuiting transfer arising in the 
GMAW process was analyzed using the voltage and current signals in 
[80, 81, 82], where it was found by theory and experimentation that the 
factors determining reliable monitoring of the short-circuiting transfer 
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are short-circuiting frequency, arcing/shorting period ratio and metal 
back distance variations. 

2.4.5 P u l s e d  C u r r e n t  T r a n s f e r  

In consumable electrode welding processes, metal transfer can be 
achieved by using power supplies that pulse the current back and forth 
between the globular and spray-transfer current ranges as shown in 
Figure 2.4. The principle is that metal transfer from the electrode 
is achieved in two ways depending upon the welding current: one at a 
current below a certain critical current producing a globular mode (less 
than 10 drops per second) and the other at a current above the critical 
current producing spray mode (a few hundred drops per second). This 
critical value of the current is called transition current. The minimum 
current during the globular region is called background current. Fig- 
ure 2.5 depicts the key characteristics of the current signal in pulsed 
current welding. 
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Figure 2.5" Pulsing current for metal transfer. 
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2 .4 .6  O t h e r  W o r k s  on  M e t a l  T r a n s f e r  

An extensive literature survey of research results on arc physics and 
metal transfer up to February 1942, done in two parts (one connected 
with low-amperage arcs and the other related to welding arcs) is pre- 
sented in [84]. One of the earliest investigations on different modes of 
metal transfer with particular reference to welding of aluminum can be 
found in [85]. 

A good discussion on pulsed power supplies for GMAW is given 
in [86, 87] and Cram [88] gives a general discussion on droplet forma- 
tion. An in-depth study on pulsed GMAW with respect to the effects 
and interactions for some of the possible variables, including experi- 
mentation and the influence of shielding gases and wire size on bead 
characteristics, is presented in [89, 90]. 

A synchro-pulse GMAW method of pulsed power welding, where 
the arc length is held constant by using arc voltage as the reference 
for a feedback control system, can be found in [91]. The use of a 
power supply for investigating wire melting rate and metal transfer 
behavior in steady and pulsed current modes for a GMAW of aluminum 
is given in [92]. In [93], a study on metal transfer in pulsed GMAW with 
mild steel electrode considered the variations of transfer modes with 
various waveforms and the calculation and experimental verification of 
the profile of a pendant droplet at the electrode tip taking into account 
surface tension, gravity, and electromagnetic force. 

An experimental study of pulsed-current GTAW to determine the 
effects of frequency on the arc column and weld pool is presented in 
[94]. This shows that high-frequency current pulsing increases the elec- 
tromagnetic string force in the weld pool and therefore, increases weld 
depth independent of top width, resulting in different pool shapes. A 
detailed discussion on droplet transfer in GMAW is given in [95]. A 
study of droplet rates for various metal transfer modes in GMAW re- 
ported that at the maximum droplet rate, the droplet transfer cycle 
time was very consistent [96]. 

Different calorimetric and temperature measurements have been 
done [97] to determine the droplet heat content during GMAW of alu- 
minum and the effect of droplet transfer mode and the welding current 
on droplet heat content and temperature were also observed. A study 
on power inputs to arc and cathode heating can be found in [98]. An 
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analysis of three major types of metal transfer modes in SMAW (ex- 
plosive transfer, short-circuiting transfer, and slug-guided transfer) is 
given in [99]. In [100], the analysis of metal transfer in GMAW is dis- 
cussed. The droplet sizes are predicted using both static force balance 
theory and pinch instability theory as a function of welding current. 
Experimentation results are given. 

Both theoretical and experimental results on droplet growth and de- 
tachment for globular transfer mode, the transition from globular mode 
to streaming mode, and streaming mode transfer are found in [101]. 
The development of an interesting two-dimensional time-dependent 
model for the prediction of droplet formation in GMAW by presenting 
a unified treatment of the arc welding wire (taken as the anode and the 
workpiece as the cathode) is given in [102]. Detailed analysis of metal 
transfer for GMAW control can be found in [103, 104]. 

2.4.7 M e t a l  T r a n s f e r  E x p e r i m e n t s  

In a series of experiments, a research team at the Idaho National Engi- 
neering and Environmental Laboratory (INEEL) investigated the vari- 
ous modes of metal transfer. In particular, a series of experiments was 
performed from globular to spray transfer at a variety of conditions 
using an elaborate data acquisition system that included high-speed 
movies [105, 106, 107, 108, 109]. It was found that at the boundary 
between the globular and spray transfer modes, the droplet size varies 
between small droplets, which melt off faster than average resulting in a 
smaller electrode extension and a longer arc length, and large droplets, 
which melt off slower than average resulting in a large electrode ex- 
tension and shorter arc length. In particular, in [105], a multisensor 
approach was taken to determine the metal transfer mode by monitor- 
ing current and voltage of the power supply. Also, a portable work- 
station based on a MicroVaX II Computer and Computer Automated 
Measurement and Control (CAMAC) was used. In [106], experimen- 
tal techniques were developed for the measurement of heat transfer 
from the torch to weldment and for the measurement of droplet trans- 
fer characteristics including droplet transfer time, droplet volume, and 
droplet velocity. Further investigations into the control of drop detach- 
ment in GMAW can be found in [110]. In this work, it was shown that 
complete decoupling of the metal transfer processes and base metal 
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heating process were possible by using independent power supplies to 
the system. 

Employing an on-line data acquisition GMAW system using ER 
100S-1 electrode, several parameters were identified to characterize dif- 
ferent metal transfer modes [111,112]. The analysis involved statistical 
methods, Fourier transforms, amplitude frequency histograms, peak 
searching algorithms, and smoothing techniques. 

Subramaniam [113] has identified multiple transfer modes and char- 
acterized the conditions under which they occur. In the pulsed GMAW 
process, it was found that droplet transfer mode is affected not only by 
welding voltage and current, but also by the pulsing parameters. Other 
experimental works on droplet detachment are reported in [114, 115]. 

Investigation of the interaction of a molten droplet with the liq- 
uid weld pool surface has been reported in [116]. A finite element 
fluid dynamics model that incorporates nonlinear temperature and 
compositionally-dependent material properties was used. The effects 
of single and successive droplet transfer, droplet composition temper- 
ature, velocity, size, and transfer rate were investigated. 

2.4.8 P h y s i c s  of  M e t a l  T r a n s f e r  

Metal transfer dynamics are the result of a balance of forces acting on 
the metal droplet [67]. The various forces involved are 

1. Gravitational force, Fg, 

2. Aerodynamic (drag) force, Fd, 

3. Electromagnetic force, Fe, 

4. Surface tension force, F~, 

5. Vapor jet forces, Fv, 

These forces depend on particular operating conditions (weld current, 
arc voltage, wire diameter, shielding gases, etc.). The balance of forces 
on a droplet is given by 

Fg + Fd + = + Fv (2.11) 
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Following is a brief description of these forces with particular with 
respect to free-flight metal transfer based on [67] (an alternative treat- 
ment of the various forces is found in [117]). 

Gravitational Force 

The gravitational force is given by 

Fg = gm (2.12) 

where m is the mass of the droplet and g is the vertical component of 
the acceleration due to gravity (9.81 m/sec 2 or 9.81cos0, where 0 is the 
angle between the arc axis and the vertical). 

Aerodynamic (Drag) Force 

The gas flow (atmosphere) around and within the arc induces aerody- 
namic drag (Fa) on the droplet given by 

Fd -- 0.57~y2pr2Cd (2.13) 

where V is the gas velocity, p is the gas density, r is the droplet radius 
and Cd is the drag coefficient. This force is higher with higher droplet 
radius and gas velocity. 

Electromagnetic Force 

It is well known that a current-carrying conductor establishes a mag- 
netic field (hence a force) around the conductor. Due to the welding 
current, the electromagnetic force is given by 

# 
F~ - ~ I21n 

2 
r a 

(2.14) 

where # is the magnetic permittivity of the material, I is the welding 
current, r~ is the exit radius of the current path and R is the entry 
radius of the current path [67]. 
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Surface Tens ion  

Surface tension is important in metal transfer. In free-flight transfer, 
it is the principal force that  prevents droplet detachment and in dip 
(short-circuit) transfer, it is the force that pulls the droplet into the 
weld pool. Using the static analysis of the drop retaining force in 
globular transfer, we get the surface tension (force) as 

Fs = 27rrwa f (ra/C) (2.15) 

where r~ is the wire radius, a is the surface tension, f(rw/c) is the 
function of wire diameter and c is the constant of capillarity. For large 
diameters of droplets, this force becomes 

F~ = 27rr~a. (2.16) 

Vapor Jet Forces 

At higher welding currents, significant vaporization at the surface of 
the molten droplet can occur in the arc root area. Thermal acceleration 
of the vapor particles into the arc plasma results in a force called the 
vapor jet force, which opposes the droplet transfer. This vapor jet force 
for a flat surface at uniform temperature and composition is given by 

m ~  (2.17) Fv= df 

where m0 is the total mass vaporized per second per ampere, I is the 
current, J is the current density, and d~ is the vapor density. 

2.5 Weld  Poo l  

In all arc welding processes, formation of a weld pool is a common 
characteristic. Upon solidification of the weld pool, the liquid metal 
converts into a weld bead. One of the most important factors deter- 
mining quality of weld is the degree of penetration, which is defined 
as the relative pool depth, compared to the thickness of the workpiece 
[63]. Depending upon the penetration depth being equal to, less than, 
or more than the workpiece thickness, we have the full or partial pen- 
etration [118]. 
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2.5.1 W e l d  P o o l  a n d  W e l d  B e a d  G e o m e t r y  

The weld pool geometry is the shape of the pool for a given weld pool 
mass and is determined by the heat conduction of the metal and the 
liquid motion (convection) in the weld pool [63]. The geometry of 
the weld pool and the weld penetration are influenced mostly by weld 
pool convection. In looking at the geometry modeling of the weld, 
Doumanidis [119] classifies the welding characteristics based on the 
following parameters: 

1. Weld bead geometry 

2. Microstructure and material 

3. Residual stress and distortion 

An analytical model was obtained in the solid region for the conduction 
temperature field in terms of pool width, penetration depth, reinforce- 
ment height, and other variables of the process. Doumanidis's design 
of a geometry control system is based on a linearized dynamic experi- 
mental model, obtained by an off-line process identification method in 
the neighborhood of the nominal conditions. 

Thermal models of the welding process can be classified into three 
types: 

1. empirical models, 

2. finite element models, and 

3. analytical models. 

Of these, analytical models are the most promising for a control scheme. 
The earliest analytical model of welding may be the work by Rosen- 
thal for point source solution of temperature in the weldment [32, 120]. 
These models were further refined in [37]. A distributed source con- 
duction model is presented in [121] for prediction and control of weld 
geometry (weld width and depth). A real-time calibration of the model 
in a closed-loop control environment is also discussed. 

Andersen et al. [122, 123, 124] obtained a weld pool dynamic model 
based on the assumption of spherical or nearly spherical geometry as 
in a fluid drop, different from the previous researchers who assumed a 
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cylindrical geometry [125, 126, 127, 128]. The model is derived based 
on the Legendre polynomial formulation of the differential equations 
describing the pool dynamics. The frequency f of oscillation (for the 
first mode) of the weld pool is obtained as 

~f T~ (2.18) 

where Ts is the surface tension of the molten metal in weld pool and 
m is the mass of the molten metal. Thus, the weld pool frequency 
depends on the mass and not the shape of the weld pool. 

Kim [129] developed a mathematical model for control of weld beam 
penetration in the GMAW process. Welding process parameters in- 
cluded in the modeling are gas flow rate, welding speed, arc current, 
and welding voltage. Experimental results have shown that weld bead 
penetration increased as wire diameter, arc current, and welding volt- 
age increased, whereas an increase in welding speed decreased the weld 
bead penetration. 

A static equilibrium model for bead formation in high-speed 
GMAW is presented in [130]. This model is based on the Young- 
Laplace equation that describes the surface shape of the weld bead. 
Numerical simulation of a time-dependent three-dimensional GMAW 
pool due to a moving arc has been performed in [131]. A transient 
three-dimensional GMAW pool was simulated numerically. The ad- 
dition of molten material was modeled by an impacting liquid metal 
spray on the weld pool, with evaporation and latent heat absorption 
for boiling being computed at the weld pool surface. 

Modeling of the weld pool behaviors in GMA welding has also been 
developed in [132]. In this work, a new distribution mode for the 
arc heat flux on the deformed weld-pool surface has been established 
according to the physical phenomenon of the arc current conducting 
path, which is modified by the deformation of weld-pool surface. 

2.5.2 O t h e r  W o r k s  on  W e l d  Poo l  

The development of a model for the dynamics of full penetration that 
relates the heat input to the width of the back bead for GTAW process 
is given in [133, 134]. A study on improving the weld quality (structure 
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and mechanical properties) of aluminum welds by low frequency arc 
oscillation during GTAW is presented in [135]. A new model of a 
compound vortex as a possible mechanism to explain the deep surface 
depression arising at currents over 300 A using calculus of variations is 
proposed in [136]. A new system called MELODY has been developed 
by the Machwood Engineering Laboratories, for weld pool frequency 
monitoring [126]. 

Tamhardt [137] has developed a model for pool motion applicable 
to both stationary and non stationary weld cases for a GTAW process, 
where the models relate the pool geometry parameters to frequency 
characteristics of the pool motion. Identification of the weld pool im- 
pedance is discussed in [138]. In [139], two models have been devel- 
oped for weld pool. The first one is a lumped parameter model and the 
second one is a distributed parameter model. Weld pool geometry is 
predicted based on the natural frequency of the weld pool, where the 
weld pool oscillations are measured through signal processing of arc 
voltage and current signals for a stationary GTAW process. 

The derivation of a lumped dynamic model of the weld bead geo- 
metrical characteristics (width, penetration and reinforcement height) 
for partial penetration GTAW processes is presented in [140]. A hybrid 
model for the weld geometry consisting of three parts: a torch model, 
the weld pool, and the solid region was developed by Doumanidis [141]. 

In [142] an experimental study on weld pool oscillations or weld 
pool geometry using arc voltage and arc light emission for a GTAW 
process was reported. Investigations on three-dimensional heat trans- 
fer and fluid flow in GMAW for analyzing the effect of contact tube- 
to-workpiece distance on the weld pool geometry by considering the 
driving forces for weld pool convection, electromagnetic force, the buoy- 
ancy force and the surface tension force on the weld pool surface can 
be found in [143]. In this work, experimental results have shown that 
the variation of the weld bead geometry is due to the change of the 
contact tube-to-workpiece distance. Other related works are reported 
by the same authors [144, 145]. 

Further, a three-dimensional weld pool model has been developed 
to study the fluid flow and heat transfer during GMAW [146]. Both 
droplet heat content and impact force were considered in analyzing the 
effect of droplets on the formation of weld pool. The fluid flow in the 
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weld was induced by the presence of surface tension, electromagnetic 
and buoyancy force. The surface deformation of the weld pool was 
calculated by considering arc pressure and droplet impact force. 

2.6 Process Voltages 

Another way of accounting for all the voltage drops in the welding 
circuit is given in [147]. Let the process voltage Ep be denoted as 
the voltage that appears across the contact tube and workpiece (or 
the source voltage minus the drop across the internal resistance of the 
source). Thus, the process voltage Ep is given by 

gp -- Ecath "~- Ecol -+- ganod -~- gso qt_ gcont (2.19) 

where the various voltages are as shown in Figure 2.6 [147]. 

i 

C o n t a c t  T i p  . . . . . . . . . . . . . . . .  ,~ E. cont  

" ' K  . . . .  i~  . . . . . . . . . . . . . . . . . . . . .  ~[ .... 
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...! ....... . l  

A r c  ..... !a i ~ . . . ~ ! ~  ~ Ecol 
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Figure 2.6: Process voltage in the GMAW process. 
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2.6.1 Cathode and Anode Voltages 

The cathode (Ecath) and anode (E  anode) voltages result from the arc 
(or plasma) dynamics and are often combined [117]. 

2 .6 .2  A r c  C o l u m n  Voltage 

As it is often difficult to separate the arc column voltage (E~ot) from 
the anode and cathode voltage, it is often combined with them and the 
three are collectively termed the "arc voltage". Thus the arc voltage 
may be written as 

Ea = Eanode -4- Ecath "k- Ecol -~ E~ + E~ol (2.20) 

where E~c is the combination of anode and cathode voltages. If the 
welding current I is nearly constant, then the arc column E~ot is ob- 
served to be directly proportional to the arc length l~. Then 

E~ = Eac -4- "yla (2.21) 

where -y is the gradient of the arc voltage divided by the arc current, 
which is mainly a function of the composition of the shielding gases. 
Alternatively, arc voltage E~ has been determined to be a more com- 
plicated function of current [117]: 

Ea - "70 -Jr- ")'1I + "72 (2.22) 
I 

where 70,'~1, and "y2 are constants. On the other hand, taking the arc 
column as a conductor of current, we can write 

la I (2.23) E a - R a l - P a A a  

where Ra is the effective resistance of the arc, la is the arc length and 
A~ is the effective cross-sectional area of the arc. 

2 .6 .3  S t i c k - O u t  Voltage 

Stick-out voltage (E~ti~k) is also called the electrode extension voltage, 
which is given from the fundamental relation 

lso E o- R j -  (2.24) 
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where Rso is the resistance of the stick-out, K is the welding current, 
Ps is the resistivity of the stick-out material, l~o is the stick-out length, 
and Aso is the area of cross-section of the stick-out. 

2.6.4 Contact Tip Voltage 

The contact tip voltage (Er is the voltage between the electrode and 
the contact tip and depends on the condition of the contact tip. 

2.7 Heat  and Mass  Transfer 

2.7 .1  M o d e l  for  Heat and M a s s  T r a n s f e r  

This material is from the work of Smartt  and Einerson [148], in which 
a steady-state model of the GMAW process is obtained for electrode 
melting and heat and mass transfer from the electrode to the workpiece. 

The electric power consumed by the process is approximately equal 
to the sum of that  consumed by the resistive heating of the electrode 
and that  consumed by the arc, or 

P = I E  = IV~ + IV~,.~ (2.25) 

where I is the current from the electric source, E is the secondary 
circuit voltage drop, V~ is the voltage drop across the electrode, and 
V ~  is the voltage drop across the arc. Next, the heat input H to the 
base metal per unit length of weld is given by 

H = EI~7 _ _ I(V~ + V~)~7 (2.26) 
R R 

where 77 is the heat transfer efficiency from the process to the base 
metal, and R is the weld speed. The weld reinforcement G, defined as 
the transverse cross-sectional area of the deposited metal, is given as 

G = A S  = M R  (2.27) 
R R 

where A is the cross-sectional area of the electrode, S is the electrode- 
feed speed, and M R  is the melting rate. These above relations will be 
used later on in obtaining the necessary control actions for heat and 
mass transfer. 
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Since the mass G and heat H transferred to the workpiece determine 
the quality of welding, it is necessary to investigate the relation between 
G -  H and the welding parameters. In other words, determine what 
the welding parameters are for given desired G -  H values. Details of 
this topic are given in Chapter 5 and by Ozcelik, et al. [149]. 

2.8 P r o c e s s  Var iables  

According to Dornfeld, et al. 
categorized into three types: 

[150], GMAW process variables can be 

1. Variables that can be varied on-line during the process. 

2. Variables that are set prior to the beginning of the process. 

3. Variables that cannot be modified. 

For the GMAW process, the key process variables of the first category 
are the power supply voltage and polarity, the wire-feed rate and the 
resulting current, and the torch speed; the key variables that are set 
before the start of the process are the shielding gas flow and composi- 
tion, the torch angle, the contact tube-to-workpiece distance, and the 
electrode material and size; the key variables belonging to the third 
category are the workpiece (plate) thickness, the joint geometry, and 
the physical properties of the base metal. 

The weld penetration, bead geometry, and quality of weld are af- 
fected by 

1. Welding current (electrode-feed rate). 

2. Polarity of power supply. 

3. Arc voltage (arc length). 

4. Weld torch travel speed. 

5. Electrode extension (stick-out). 

6. Electrode diameter. 

7. Electrode orientation. 
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8. Shielding gas composition and flow rate. 

In the remainder of this section we will briefly discuss these variables. 

2.8.1 W e l d i n g  C u r r e n t  

Keeping all other variables constant, welding current varies directly 
with electrode wire feed speed (rate) (WFS) or melting rate as 

W F S  - aI + b4oI 2 (2.28) 

where W F S  is the electrode wire feed speed; a is a proportionality 
constant for anode or cathode heating, whose magnitude is dependent 
upon polarity, composition, and other factors; b is another propor- 
tionality constant for electrical resistance heating; 40 is the electrode 
extension or stick-out, and I is the welding current). 

Note that as the electrode wire diameter is increased (while main- 
taining the same electrode wire-feed speed), higher welding current is 
required. Also, higher welding current (with all the other variables 
being kept constant) results in 

1. Higher deposition rates. 

2. Increased depth and width of weld penetration. 

3. Increased size of the weld bead. 

The influence of arc current on the mechanical properties of weld 
joints are experimentally reported in [151]. 

2.8.2 P o l a r i t y  

The term polarity is used with the type of electrical connection of the 
welding gun with the electrical power supply. With gun power terminal 
connected to the positive terminal of the power supply, it is called direct 
current electrode positive (DCEP) or straight polarity, which provides 
desirable features of stable arc, smooth metal transfer, low spatter, 
good weld-bead, and good penetration. Direct current electrode nega- 
tire (DCEN) connection is rarely used since the drop size is large and 
the arc forces propel the drops away from the workpiece leading to the 
arc becoming unstable. 
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2.8 .3  A r c  V o l t a g e  ( A r c  L e n g t h )  

Arc length and arc voltage are often used interchangeably although 
they are different but related. Arc length is an important variable in 
GMAW process. It is important to note that arc length is an inde- 
pendent variable and arc voltage is dependent on arc length as well as 
on many other variables. Arc voltage often includes the voltage drop 
across the electrode extension (stick-out). With all other variables kept 
unchanged, the arc voltage is directly related to arc length. 

2 .8 .4  T r a v e l  S p e e d  

Travel speed is the rate at which the welding gun is moved in the di- 
rection of welding or along the weld joint. With low travel speeds, the 
filler metal deposition is high and at very low speeds the welding arc 
impinges on the molten pool rather than the workpiece. With increased 
travel speeds, the thermal energy per unit length of weld transmitted 
first increases and then decreases. At very high speeds, there is insuf- 
ficient deposition of filler metal. Hence, with all other things being the 
same, the weld penetration is maximum at some moderate speeds of 
the weld torch. 

2 .8.5 E l e c t r o d e  E x t e n s i o n  ( S t i c k - O u t )  

The stick-out or electrode extension is the distance between the tip of 
the contact tube and the end of the electrode. An increase of elec- 
trode extension obviously increases the electrical resistance of the cir- 
cuit, which in turn increases the heating and hence the temperature, 
leading to increased melting rate. But on the whole, this increased 
resistance absorbs higher voltage across it and as a result, the power 
supply decreases the welding current. This decreased current reduces 
the melting rate resulting in shorter arc length. Thus the stick-out is 
said to be "stabilized." The stick-out is usually in the order of 1/4 to 
1/2 in. Calculations of the resistance of the wire extension using Joule 
heating principle are given by [152]. 
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2.8.6 E l e c t r o d e  O r i e n t a t i o n  

The orientation of the welding electrode with respect to the weld joint 
affects the weld bead shape and penetration to a greater extent than 
the arc voltage or travel speed. 

2.8.7 E l e c t r o d e  Size 

A large electrode size (diameter) requires higher current for melting, 
other variables being the same. Higher currents also produce higher 
melting rates, leading to higher deposition rates. 

2.8.8 S h i e l d i n g  G a s e s  

The primary function of shielding gases is to protect (shield) the molten 
weld metal from contact with the atmosphere, thereby avoiding the 
formation of oxides of the metal. Further, the shielding gases and 
their flow rates have a great effect on arc characteristics, metal transfer 
mode, penetration and weld bead profile, weld speed, etc. 

The main gases used in (]MAW process are inert gases (argon and 
helium) and small quantities of oxygen or carbon dioxide. Argon, be- 
ing heavier (1.4 times) than air, is most effective in shielding the arc 
and blanketing the weld pool area. Helium, being lighter (0.14 times) 
than air requires flow rates to be 2 to 3 times greater than the flow 
rates needed for Argon, but has a higher thermal conductivity than 
argon thereby producing a uniformly distributed arc plasma. Usually 
a mixture of Argon and Helium (50 to 75%) is used. Also, addition of 
1 to 5% of Oxygen or 3 to 5% of CO2 with Argon causes improvement 
in arc stability and weld appearance. 

The importance of shielding gases in GMAW has been very well 
articulated in [153] by first noting that the shielding gases around the 
molten metal weld pool keep out the harmful atmospheric gases, such 
as oxygen, nitrogen, hydrogen, and moisture, which otherwise produce 
oxidation and other weld defects such as porosity, pinholes, and weld 
brittleness. Also, refer to [154] for a study on the effect of shielding 
gases in GMAW. This study concludes that by using shielding gases 
with lower content of oxidizing components (02 and/or CO2), it is 
possible to influence the toughness and strength of the weld. See [155] 
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for a study on the effect of shielding gas composition on the formation 
of desirable microstructure of welded metals. 

2.8.9 Class i f i ca t ion  of P r o c e s s  P a r a m e t e r s  

An alternate approach to classifying welding parameters or variables 
from that of [150] as presented above is to consider variables as ei- 
ther direct weld parameters (DWP) or indirect weld parameters (IWP) 
[156, 157, 158]. DWP are those relating to the weld reinforcement, fu- 
sion zone geometry, mechanical properties of the completed weld, weld 
microstructure, and discontinuities. IWP are those input variables that 
collectively control the DWP, such as welding equipment setpoint vari- 
ables, such as voltage, current, torch travel speed, wire-feed speed, 
travel angle, electrode extension (stick-out), focused spot zone, and 
beam power (see Figure 2.7). The objective of a welder is to determine 
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Figure 2.7: Input and output variables of the welding process. 

a set of IWP that will produce the desired DWP. Figure 2.7 makes it 
clear that the welding process is a multi-input, multi-output (MIMO), 
multivariable system. Also, note that the relation between the input 
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and output variables is dynamic, highly nonlinear, and strongly cou- 
pled. A schematic of the effect of some IWP on some DWP is shown 
in Figure 2.8 [159], where (+) indicates an increase is followed by an 
increase and (-) indicates an increase is followed by a decrease. 

Feed Spee~ 

Current 
Penetration 

Penetration 

Travel Speed 

~;ource Voltag~"~-------- ' ---~ransfer  Mode 

Groove Fill In 

Composition 

Figure 2.8: Relationship between welding parameters of the GMAW 
process. 

2.9 INEEL/ISU Model 

In this section, we briefly describe the GMAW system and its modeling 
as developed by a collaborative team of researchers from Idaho National 
Engineering and Environmental Laboratory (INEEL) and Idaho State 
University (INEEL/ISU)over several years [160, 161]. 

A schematic representing the GMAW system along with the electric 
power supply is shown in Figure 2.9 [162]. The power supply consists of 
a constant voltage source connected to the electrode and the workpiece. 
Wire speed S, travel speed R of the torch, open-circuit voltage Vow, and 
contact tip to workpiece distance CT are adjusted to get the desired 
weld. Here, x is the distance of the center of the mass of the droplet 
above the workpiece. 

Modeling of the GMAW process dynamics produces a fifth-order 
nonlinear differential equation. The model that we are using is a fourth- 
generation derivative that originated at INEEL and has been subse- 
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quently developed by INEEL researchers as well as ISU researchers 
[160]. We do not describe these results in detail but refer the interested 
reader to the following earlier works in GMAW modeling [109,117, 163]. 
We first list the various variables used in obtaining the model equations 
below. We then separately give the equations describing the dynam- 
ics of the droplet and the forces acting on the drop. Next, we give a 
concise state-space representation of the resulting equations. We then 
describe the reset condition that governs droplet detachment. 

Figure 2.9: Schematic diagram of the GMAW process. 

2 .9 .1 N o m e n c l a t u r e  

a : Lorentz force constant = 0.641 
b: Lorentz force constant = 1.15 
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B "  damping coefficient - l e -  5 ~  

c �9 Lorentz force constant  - 0.196 

Ci " melting rate constant  - 2 . 8 8 5 5 e -  10 

6'2 �9 melting rate constant  - 5.22e - 10 

Cd" aerodynamic drag coefficient - 0.44 
C T "  contact tip-to-workpiece d i s tance-  l e -  3 _< C T  <_ 0.025m 
E~" arc length f ac to r -  1500 V 

Fd" force due to aerodynamic d r a g -  N 

F~m " force due to electromagnetic induction - N 

Fg �9 force due to gravity - N 

Fm " force due to m o m e n t u m -  N 

F~" surface tension force-  N 

I "  c u r r e n t -  25 < I < 565A 

K "  spring c o n s t a n t -  2.5 g 
m 

larc" a r c  l eng th -  m 
l~ �9 stick-out - l e -  3 <_ l~ <_ C T m  
L~ "source induc tance -  0 . 1 4 e -  3H 

rod" droplet m a s s -  kg 
MR"  melting r a t e -  m---~3 

8 

rd" droplet r ad iu s -  m 
rw" electrode r ad iu s -  0.0004445m 

R" relative speed of weldment to t o r c h -  m 

R~" arc res is tance-  0.022~ 

RL"  electrode res is tance-  ~t 
R~ "source res is tance-  0.004~t 
S"  wire feed speed -  0.021 < S < 0.33 m 

Ub" relative fluid to drop veloci ty-  10 -m 
8 

Va~ "arc  vo l tage-  V 

V0 �9 arc voltage constant  - 15.7V 

Vo~ "open circuit vo l t age-  29V 

x"  droplet d i sp lacement -  m 
2 �9 droplet ve loci ty-  m 

8 

2 �9 droplet acceleration_ ~m 

p" resistivity of the electrode - 0.2821-~ 
m 

pp" plasma dens i ty -  1.6m~ 

p~" electrode dens i ty -  7860m~ 

#0 " permeabil i ty of free space - 1.25664(10 -6) ~ k  m 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


46 C H A P T E R  2. GAS M E T A L  A R C  WELDING: M O D E L I N G  

3" surface tension of liquid steel 2 N - 

2.9.2 Forces  A f f e c t i n g  D r o p l e t  D y n a m i c s  

We consider four forces to be acting on the droplet [117]: gravitational, 
electrodynamic, aerodynamic, and momentum. 
F o r c e  due to Grav i ty  

F 9 - 9.8lind (2.29) 

F o r c e  due to E lec t romagne t i c  Induc t ion  ( L O R E N T Z )  

 012[ a ] 
- ~ c] (2.30) 

47r l + e x p [ ( b -  ) + 

where 
1 

rd--  47rp~ (2.31) 

Force due to A e r o d y n a m i c  Drag  

Fd = Cdfr~ -- r2w]TrppU 2 (2.32) 
2 

Force due to M o m e n t u m  

Fm = MRpwS (2.33) 

where 

MR -- C212pl~ + CI I  (2.34) 

S u r f a c e  T e n s i o n  F o r c e  

The surface tension of the droplet will also be considered. It is given 
a s  

Fs - 27rTrw (2.35) 

An experimental investigation of the forces (gravity force, drag force 
due to flowing gas, electromagnetic force, and the retaining force by the 
surface tension) acting on a droplet, by measuring the drop mass as 
function of the gas flow rate and the electric current, are presented in 
[164]. 
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2.9.3 Droplet  Dynamics  

Here, the droplet is characterized as a typical spring-mass-damper me- 
chanical system, analogous to water droplets dripping from a leaky 
facet [165] 

Ftot 

Rewriting the above, we have 

md~ + B~c + Kx  (2.36) 

Ftot - B~c- K x  

m d  

Ftot - F~m + Fd + Fm + Fg (2.37) 

Current" The current is obtained from a simple electrical circuit prin- 
ciple as [1621 

Voc- R L I -  V ~ c -  RsI 

] = Ls  

Varc = Vo + RaI + E a ( C T -  ls) (2.38) 

[1  1 
Stick-Out" Using the melting rate [68], we have stick-out as 

MR 
l'~ - -  S 

~r~ 

Mass:  The mass is given as 
r S d -  p~M~ 

(2.39) 

(2.40) 

Also, see [166, 167, 168] for developing an alternative formulation 
for contact-tip-to workpiece distance as a function of welding current, 
voltage, and wire feed speed. 
Detachment Criteria 

�9 Due to force imbalance 
Ftot > Fs (2.41) 

�9 Due to shape instability 

7r(rd + r~) (2.42) 
rd > 1 

) 
rd 2r2~/(rd+rw) / 
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Drop Volume 

detach volume = md ( 1 ) 
2p~ 1 + exp ( -  100~) + 1 (2.43) 

In [40], for the GMAW process, the authors conducted experimental 
investigations on the measurement of the velocity of drops detached 
from the electrode and the diameter of the drop neck during detachment 
using high-speed photography. It was found that the pendent drop 
contracts at the start of the pulse and becomes unstable when the 
diameter of the droplet attains some critical value. Further it was 
found that the drop velocity at detachment is controlled by Lorentz 
force [117]. 

A derivation of a dynamic growth and detachment droplet model 
for a GMAW process by using a second order spring-mass model is 
presented in [109] with experimental results. In [169], it was found 
that character of the evolution of a pendent drop at the end of a nozzle, 
depends strongly on the growth rate of the drop and the radius of the 
nozzle and that  the drop becomes unstable. 

2 .9 .4  M o d e l  E q u a t i o n s  

We now combine the equations presented in the previous section so as 
to develop a state-space model. Define the state variables as 

X l = x: droplet displacement - m 
X2 - - ~ : :  droplet velocity- m/sec 
X3 -~ rod: droplet mass -  kg 
x4 - l~: stick-out - m 
x5 = I: cur rent -  A 

Then the nonlinear state equations can be written as 

X l  - -  x 2  

- K x l  - Bx2 + Ftot 
Jc2 -- 

X3 

2 a -  Mnp~ (2.44) 
MR 

X4 - -  U l 7rr2 w 

~2 - (na + n~ + RL)~5 - Vo - So ( C T -  x4) 
x5 - -  

L8 
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Melting rate MR and the electrode resistance RL are given by 

MR -- C2px4 x2 Jr- C1 x5 

The output equations are 

(2.45) 

Yl = Vo + RaX5 + E a ( C T -  x4) 

Y2 = x5 (2.46) 

where the output variables are 

Yl -- garc = Vo -~- R a t  @ g a ( C T -  x4): arc voltage (g)  
Y2 = I: current (A) 

and the control variables are 

Ul = S: wire-feed speed- m/sec; 
u2 = Voc: open-circuit voltage- volts; 
u3 = CT: contact tip-to-workpiece distance- m; 

R e s e t  Condi t ions  
States of the system must be reset after each detachment of a drop 

takes place. Therefore, whenever 

Ftot > Fs (2.47) 

o r  

7r(rd + r~) (2.48) rd > 
(1 + ,0i  ) 5 

�9 rd ] 2 7 r 2 ~ ( r d + r w )  ! 

where 
1 

_ ( 3x5 5 
4~0~)  (2"49/ r d  

the volume of the droplet Vd that detaches (based on a function of 
drop velocity) is taken to be 

Va = 2p~ 1 + exp(-100:i:) + 1 (2.50) 
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After each detachment, the states are updated as follows 

Xl -- rd 

X2 -- 0 
X 3 (  1 ) 

X3 -~ V 1 -- 1 + exp(--100x2) (2.51) 

X4 - -  X4  

u2 - Vo - E a ( C T -  x4) 
x5 - x5 + 

Ra + Rs + RL 

u2 - Vo - E a ( C T -  x4) 
Ra + Rs + RLold 

where RLold is the value of RE before detachment. Otherwise, 

X l  - -  X l  

X2  ~ X2 

X3  ~ X3  

X4 - -  X4  

X5  ~ X5  (2.52) 

Combining all these equations, the model of the GMAW process can 
be written in the following general form: 

- f ( x )  + g ( x ) u  

y - h ( x ) + i ( u )  

x - k ( x )  if L ( x , u ) > 0  

(2.53) 

In [163, 101], ISU and INEEL researchers developed the above model 
for the GMAW process based on some physical phenomena of the 
process. Further, the model was calibrated with experimental results 
obtained at the INEEL facility. The experimental hardware from Ad- 
vanced Manufacturing Engineering Technologies (AMET) was used to 
have a computer-controlled welding of a rotating flat plate. Several 
other advanced techniques and equipment were used in the experimen- 
tal facility. Other related works can be found in [109, 108]. 

2.9.5 Model  Simplification and Linearization 

Let us note that the GMAW model dynamics as described by the fifth- 
order differential equations (2.45) are highly nonlinear, which makes it 
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difficult for many of the modern control strategies to be used success- 
fully. To help overcome this, we present a simplified model based on 
some approximations. First, let us rewrite the current I and stick-out 
ls relations from (2.45) as 

where 

M R  
:~4 --  Ul 7rr2 w 

U2 -- ( R a  "~ R s  + R L ) X 5  - Yo - E a ( C T -  x4) (2.54) 
x5 = Ls 

R L  --  p ( x  4 + 0.5(rd + Xl)) (2.55) 

and C T  = u3 is assumed to be constant, which facilitates two-state, 
two-input system instead of a two-state, three-input system. Now, 
we make the following valid approximation that the stick-out distance 
(ls = x4) is much larger than the sum of the droplet radius rd and the 
drop distance x l. That  is 

X 4 > > 0.5(r  d -~- x 1) (2.56) 

Note that  pictures obtained using a high-speed camera show the va- 
lidity of this approximation (see [170], for example). Using the above 
simplification in the current relation (2.54), we have 

M R  
x4 -- Ul 7rr2 

u2 - (Ra + Rs + px4)x5 - Vo - E a ( C T -  x4) (2.57) 
it5 = Ls 

which can be written as 

• = A x ( t ) +  f ( x ) +  Bu(t)  (2.5s) 

Linearization of the above equation about steady-state is used to obtain 
adaptive control of the GMAW process [149]. This is described in 
Chapter 5. Alternate derivations of the model using the weld current 
I and stick-out ls are given in [171]. 
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2.10 Empirical and Statistical Models 

In practice, the most common technique to control the welding process 
variables is to obtain a model based on some empirical data. For exam- 
ple, one can conduct a number of experiments to determine the effect 
of a certain input variable, say on the weld bead geometry, and then 
mathematical expressions can be found to fit the experimental data 
[172,173, 174, 175, 176, 177]. It so happens that  due to the complexity 
of the welding process, one has to perform a number of experiments. 
However, using statistical analysis, it may be possible to reduce the 
number of experiments [178]. 

In [179], an efficient method of solving the problem of rational selec- 
tion of welding conditions using mathematical methods of multicriteria 
optimization based on statistical models of the welding process is given. 
A formal description of the dependence of joint properties on welding 
parameters treated as regression models makes it possible to derive an 
automatic control system for the process. 

Semi-empirical models of the fume formation in GMAW are dis- 
cussed in [180]. The work examines the fundamentals of welding-fume 
formation. A physical chemistry model of the metal vapor mecha- 
nism for fume formation has also been developed for nonshort-circuiting 
transfer GMAW. The model includes the important contribution made 
by direct condensation of metal vapor onto the weld pool and the work- 
piece in removing a substantial fraction of the fume. 

Kang [181] developed statistical models for estimating the amount 
of spatter quantitatively using the wave forms in the short circuit trans- 
fer mode of GMAW. In this study, the spatter was gathered under 
several welding conditions and, at the same time, the waveforms were 
measured. The factors representing the characteristics of the wave- 
forms were calculated from the measured waveforms. Four different 
linear and nonlinear regression models were proposed to estimate the 
amount of spatter based on a multiple regression analysis between each 
model and the amount of spatter. 
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2.11 Modeling by System Identification and 
Estimation 

Due to the complexity of the GMAW process, Nishar, et al. [182] used 
a standard system identification (ID) and estimation (EST) for model 
rather than deriving the model from the first principles of physical laws 
of the process. Data was obtained for a set of experiments, and the 
averaged set of data  was used to obtain a preliminary model by using 
recursive least squares estimation. This model was further refined by 
using the approximate maximum and minimum likelihood algorithms. 
Although the procedure resulted in system models of order 1 to 10, it 
was decided to use a second-order system that gave one of the lowest 
mean square error. 

In [183] a linear system identification scheme using the input-output 
data in the absence of a mathematical model was proposed for the 
GMAW process where the input is a welding current and output is 
depth, heat-affected zone width, and pool width. 

Distributed Parameter Model 

In order to have combined control of structure, properties and stress 
conditions of the weld material and to estimate the internal thermal 
field, a distributed-parameter model was derived in [119, 184]. 

2.12 Intelligent Modeling 

Here we present modeling techniques using artificial neural networks 
(ANN), fuzzy logic, and expert and knowledge-based systems. Model- 
ing geometrical parameters of a GTAW process using neural networks 
is reported in [185]. A modified back-propagation network to include 
state information of the dynamic system was given in [186]. These 
results showed good agreement between the ANN model and the ex- 
perimental model. 

Andersen [187] addressed the application of an ANN to model the 
map between the indirect welding parameters such as arc current, travel 
speed, arc length and plate thickness and the direct weld parameters 
(DWP) such as weld-bead width and weld penetration of GTAW. In 
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particular, the ANN with back-propagation contained 10 nodes in a 
single hidden layer. 

2 .12.1 O t h e r  W o r k s  on  I n t e l l i g e n t  M o d e l i n g  

An excellent discussion on modeling, sensing, and control of welding 
processes is given by [157]. Kuvin [188] presented a program to revamp 
welding of US Army tanks by General Dynamics using GMAW at the 
rate of 100,000 inches of weld length, 1500 pounds of metal deposit and 
200 hours of arc time per tank, 720 tanks/year. 

Artificial intelligence (AI) methods (in particular, neural networks) 
for process modeling are discussed in [189]. Cook [190] used two-hidden 
layer ANN for modeling a GTAW process, with one ANN being used 
for mapping between desired output features and required equipment 
variables and another ANN being used for estimating output features 
that are not directly sensed. Another application of an ANN to welding 
process parameter modeling is given by [191]. 

In [192, 193], a systematic on-line method for obtaining the proper 
voltage/current combination to provide a stable arc condition in the 
short-circuiting metal transfer mode of a GMAW process is proposed. 
This method uses fuzzy rule-based linguistic rules to represent the com- 
plexity and nonlinearity of the arc behavior, the two fuzzy variables 
used being Mita's arc stability index and its derivative with respect to 
voltage. 

The design of a neural network estimator (NNS) for deriving the 
weld pool size from surface temperatures measured at various points 
on the surface of the weldment in a GMAW process is given by [194]. 
The input to the NNS is the multi-point temperatures at the top-side 
of weldments which are measured by an infrared temperature sensing 
system, and the outputs of the NNS are weld geometrical parameters 
such as top bead width and penetration plus half-back bead width. 
The NNS is shown in Figure 2.10 

Modeling gas metal arc weld geometry using ANN technology is dis- 
cussed in [195]. A back propagation network system for predicting gas 
metal arc (GMA) bead-on-plate weld geometry from current, voltage, 
and wire travel speed is reported in this study. Moreover, work-piece 
thickness is a variable that is taken into consideration because its ef- 
fect on weld shape is at this stage unknown in practice. The database 
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Weld Pool Size (Exptl. Results)  
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Figure 2.10: Neural network estimator for weld pool geometry. 

consists of some ninety six welds. 
Static modeling of the GMAW process using ANN is given by Di 

[196]. In this study, due to the complexity of the welding process, 
neural network-based approaches have been considered as an effective 
way to represent the required model. 

2 . 1 3  O t h e r  I s s u e s  o n  M o d e l i n g  

2.13.1 D a w n  of G M A W  

There is a very interesting article [197] on the recollections of Glen Gib- 
son, one of the three inventors of U.S. Patent 2,504,688 issued April 18, 
1950, which is considered by most experts as the basic GMAW patent 
and the beginning of the modern welding system using the continuous 
consumable electrode welding process. 
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2.13 .2  C o s t  of  G M A W  

The cost of applying weld metal using the GMAW process consists of 
four major items" labor and overhead, electrode, shielding gas, and 
electrical power. For details of these four items refer to [198]. Return 
on investment for an automated arc welding system is discussed in 
[199]. 

Edgards [200] gives suggestions regarding controlling the metal 
volume and hence improving productivity and profit in a particular 
welding process, such as holding fillet welds to specified size, deposit- 
ing equal-leg fillets, minimizing weld face reinforcements, minimizing 
root opening and proportioning groove angles, and finally saying "do 
not over specify and do not overweld." A discussion on quality and 
economy, weld cost analysis, and analysis of individual costs in active 
GMAW is given by [201]. 

2 .13 .3  O t h e r  W o r k s  on  M o d e l i n g  

The influence of welding parameters on droplet temperature during 
pulsed arc welding is discussed in [202]. A systematic technique for 
the analysis of numerical data and its application to the selection of 
four different arc welding processes is presented in [203]. McGlone has 
proposed an approach in [172] for procedure selection in arc welding. 

An interesting article on "how difficult is it to learn gas metal arc 
welding?" [204] says that learning GMAW can take over 30 hours of 
training. A study on fume generation and melting rates of shielded 
metal arc electrodes is given in [205]. In this study, it was found that the 
fume generation rates (g fume/kg electrode melted) increased almost 
linearly with voltage and power and decreased almost linearly with 
current. 

A GMAW process was developed at the Westinghouse R&D Facil- 
ity, Pittsburgh, PA. It added a second power source that preheats the 
filler wire before it emerges from the welding torch. This made it possi- 
ble to break the fixed relationship that for any combination of filler wire 
and power source, the welding current, electrode extension and deposi- 
tion rate cannot be individually controlled, thus providing independent 
and balanced control of the variables so as to make the new process 
extremely versatile and flexible for welding operations [206, 207]. 
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The quantitative relationship of the surface weld bead with stability 
of arc and uniformity of droplet detachment in pulsed GMAW was 
studied in [208]. It was shown that high arc stability and uniform 
drop detachment provide a smooth weld bead surface. Arc control 
experiments in GMAW, plasma arc welding and shielded metal arc 
welding in China are presented in [209]. 

Investigations into the kinetic processes of metal-oxygen reaction 
throughout the stages of heating the covering, drop growth, and weld 
pool formation were made by Chen and Kang [210]. A study on 
modeling the temperature distribution in the electrode for mild steel 
with three different shielding gases (argon, helium and CO2) using the 
PHOENICS computer code and the study of energy balance for heat 
transfer are presented in [211]. Dixon [212] reports a variety of filler 
metals to produce ferrite-free welds (affecting magnetic permeability) 
with low risk of solidification cracking in welded non magnetic steels. 

An expert system-based procedure qualified records (PQRs) data 
base system that combines structural integrity analysis with the AWS 
DI.1 code for quality welding procedure specifications (WPSs) is given 
in [213]. In [214], mathematical models were obtained for predicting 
weld bead geometry and shape relationships for MIG welding of alu- 
minum alloy 5083 using fractional factorial experimental design tech- 
niques. 

Developments in consumable electrode feeding for robotic GMAW, 
with a recommendation for push-pull wire feed, were presented in [215]. 
A theoretical study on the ellipsoidal weld pool during laser welding is 
presented in [216]. In [217], a study is reported on using GMAW for the 
collision repair industry to replace the body-over-frame (unibody) car 
in a quest to reduce the car weight as a means of raising fuel economy. 

The development of a dynamic and steady-state model that pre- 
dicts the electrode extension in the spray mode of GMAW is given in 
[218,219]. This study also shows that GMAW acts like a low pass filter 
for electrode extension with respect to the square of the current (pro- 
portional to power). Development of a GMAW process model based on 
experimentation of three levels (low, medium and high) of power sup- 
ply voltage, wire feed rate, torch speed, and contact tip-to-workpiece 
distance (CTWD) is reported in [220]. Using these results, an em- 
pirical steady-state model was developed using the statistical package 
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SYSTAT to get multiple regression linear models from the weld data 
base. The dynamics were identified by using a step-response test. 

A result indicating that pulsed welding current can reduce fume 
generation rates in GMAW processes compared to steady current can 
be found in [221]. A comparative study of arc and melting efficien- 
cies of the plasma arc, gas tungsten arc, gas metal arc, and submerged 
arc welding processes is presented in [222], leading to the result that 
consumable electrode processes provided the highest efficiencies (0.84), 
followed by gas tungsten arc (0.67), and finally plasma arc (0.47) 
processes. A progress report on computational weld mechanics - a 
structural engineer's point of view of the physics of welding - is given 
in [223]. 

Holm [224] developed a method for the establishment of a frame- 
work by which a state space model for a whole manufacturing control 
system such as welding, can be obtained. An experimental and numeri- 
cal study of power characteristics in GMAW is presented in [225]. This 
study finds that power input to the arc column increases with both 
increasing current and arc length and the power input affects melting 
and tapering of the electrode, size and frequency of droplets, and the 
solidification of the weld. 

In [226], a theoretical model of a GMAW process was developed 
to predict the anode temperature profile, arc length and arc current, 
incorporating a one-dimensional thermal model of the moving consum- 
able anode and a two-dimensional model of the arc plasma, with an 
experimental observation of spray transfer mode for a given welding 
current and wire feed rate. 

Automatic detection of burn-through in GMAW using a parametric 
model is presented in [227]. This work addresses the problem of au- 
tomatic detection of burn-through in weld joints. GMAW with pulsed 
current is used, and welding voltage and current are recorded. As short- 
circuiting is common between the welding electrode and the workpiece 
during burn-through, a short-circuit detector is developed to detect 
these events. 

Another work on the effect of pulsed arc on GMAW and the effect 
of shielding gases is reported in [228]. More experimental works on 
different aspects of GMAW modeling can be found in [229, 230, 231, 
232, 233, 234, 235]. 
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Mathematical models relating welding process parameters (such as 
wire diameter, welding voltage, arc current, welding speed) to the weld 
bead geometry (weld bead width, depth, and height) were developed 
with experimental validation of the results in [236]. 

In [237], the fact that molten metal droplet detachment and plate 
fusion characteristics are influenced by the parameters of pulsed current 
is discussed. The complex interdependence of the parameters makes it 
difficult to select the most suitable combination of parameters for weld- 
ing. To resolve this problem, a first estimate of the pulse parametric 
zone based on burnout, droplet detachment, and arc stability criteria 
was obtained. 

Experimentally-observed manifestations of magnetic forces in 
GMAW are shown and a technique for approximating the temporal 
evolution of the axial magnetic force from experimentally-measured 
drop shapes is reported in [238]. A dynamic model of drop detachment 
in the GMAW is presented in [239] for low and moderate currents in 
an Argon-rich plasma. The comparisons indicate that the experimen- 
tal axial magnetic forces are much less potent than the calculated axial 
magnetic forces when welding-current transients are not present. In 
[240], an improved fume chamber was constructed, and fume rates were 
measured with unprecedented precision for both steady and pulsed- 
current welding of mild steel using 92%, Argon and 8% Carbon Dioxide 
shielding gas. Comprehensive fume maps were constructed depicting 
fume rates over a wide range of currents and voltages. 

The trends of high-efficiency welding processes in automatic weld- 
ing systems in Japanese heavy industries are reviewed in [241]. Metal 
type flux cored wires with CO2 shielding, high speed rotating GMAW, 
and mixed MAG have been applied in thick materials with high depo- 
sition rates. High current, two-tandem one-side GMAW robots have 
been developed, with adaptive welding parameter control for change 
of groove width and joint slope. These results have been applied in 
curved shell assembly in shipyards. 

A study focusing on the properties of SAILMA-450HI plates em- 
ploying the GMAW process and CO2 gas is reported in [242]. Implant 
and elastic restraint cracking tests were conducted to assess the cold 
cracking resistance of the weld joint under different welding conditions. 

In [243], it was argued that twin-wire GMAW systems offer high 
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welding speeds and high depositions rates with a moderate increase in 
the complexity of the welding system. These systems are now gaining 
acceptance in arc welding applications requiring high performance. 

Narrow-gap gas-shielded metal-arc welding in a vertical-up position 
and with a horizontal wire feed has the advantage that the heat input 
is relatively low. Therefore, this process was used for welding tests 
on 10 mm and 15 mm thick plates made of the fine-grained structural 
steels $335NL and S460NL as reported in [244]. Various flux-cored 
wire electrodes served as filler metals. 

A study on the welding procedure of gas metal arc welding using 
cored wire has been reported in [245]. The setting method of the weld- 
ing condition in GMA welding process with flux cored wire is proposed 
and its property is investigated. 

In [246], it is argued that understanding the mechanisms that con- 
tribute to contact tip failure is extremely important to reduce downtime 
and increase productivity in any (]MAW system. The primary function 
of the contact tip is to effectively transfer the welding current to the 
consumable electrode as it passes through the center bore and makes 
electrical contact with the bore surface. 

Weld bead characteristics in pulsed GMAW of A1-Mg alloys were 
investigated in [247] to determine a suitable pulse parameter combi- 
nation to obtain good-quality welds for a given weld bead size. The 
effect of pulsed current parameters on (]MAW bead geometry was stud- 
ied, and a single diagram in the non-dimensional form was developed, 
representing many aspects of weld bead characteristics. 

Finite-element prediction of distortion during GMAW using the 
shrinkage volume approach is presented in [248]. The Shrinkage Vol- 
ume Method is a linear elastic finite-element modeling technique that 
has been developed to predict post-weld distortion. An experimental 
program that investigated the distortion of plain carbon steel plates 
having different vee-butt preparations carried out verification of the 
modeled results. 

A lumped-parameter, analytical model of material and thermal 
transfer is established in [249] for metal deposition by a moving, con- 
centrated source. Dynamic description of the distinct width, height, 
length, and temperature of the ellipsoidal molten puddle is expressed 
with respect to the torch power, material feed and angle, and the source 
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motion. 
Some basic aspects of geometrical characteristics of pulsed current 

vertical-up GMAW are discussed in [250]. The performance of pulsed 
current GMAW in vertical-up position has been studied in reference to 
thermal behavior of the droplet at the time of deposition affecting the 
geometrical characteristics of the weld deposit. 

2.14 Power Supplies 

All welding processes require some form of energy for melting and join- 
ing. In general, the welding energy sources are grouped into the fol- 
lowing five categories: 

1. Electrical sources used for arc welding, resistance welding and 
electroslag welding. 

2. Chemical sources used for oxyfuel gas welding and thermit weld- 
ing. 

3. Focus sources used for lasers, pulsed laser beam welding and con- 
tinuous wave laser beam welding and electron beam welding. 

4. Mechanical sources for friction welding, ultrasonic welding and 
explosion welding. 

5. Other sources for diffusion welding. 

The voltage supplied by electric power companies to most industrial 
operations (120 V, 240 V or 480 V at relatively low currents) is typically 
too high for usage directly for arc welding is relatively low voltages in 
the range of 20 to 80 V at very high currents in the range of 30 to 1500 
A. Hence, some kind of conversion equipment is required to convert the 
high voltage to a low voltage. The power required for welding can be 
either direct current (DC), alternating current (AC) or both DC and 
AC. The conversion equipment generally used is one or a combination 
of: 

1. A transformer for converting AC to AC. 

2. A motor-generator set for converting AC or DC to AC or DC. 
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3. A solid state convertor such as silicon controlled rectifier (SCR) 
or thyristor for converting AC to DC. 

4. A solid state inverter for converting DC to AC. 

A simplified system of classifying various welding power sources is 
shown in Figure 2.11 [18]. 

Power Sources for Arc Welding 
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Figure 2.11: Classification of welding power sources. 

All the power sources are described by two types of operating char- 
acteristics: static and dynamic. A static curve, relating the output- 
voltage and output-current, is obtained under steady-state conditions 
using resistive loads. The dynamic curve is determined by measuring 
the transient variations in output voltage and current. An important 
characteristic of welding power supplies is the duty cycle, defined as the 
ratio of arc time (the load-on time) to the specified test interval time. 
Thus, a 60% duty cycle means that 6 out of every 10 minutes, the power 
source will supply rated current. A 100% duty cycle power supply is 
designed to output its rated current continuously without exceeding 
the maximum allowed temperature. For automatic or semiautomatic 
welding process, the power source should have an 100% duty cycle. 
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2.14.1 C o n s t a n t  C u r r e n t  ( C C )  

A constant current (CC) welding machine is one which has a static volt- 
ampere (V-A) characteristic that tends to produce a nearly constant 
current. Thus, if the arc length varies due to some external conditions 
leading to change in arc voltage, the welding current remains substan- 
tially constant [14]. In the neighborhood of any operating point, the 
change in welding current is much less than the corresponding change 
in load voltage. The no-load or open-circuit voltage is higher than 
the load voltage depending upon the equivalent resistance of the entire 
circuit. 

A typical volt-ampere (V-A) curve for conventional CC welding 
power sources is shown in Figure 2.12(a). Note the drooping feature 
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Figure 2.12: Typical volt-ampere curves for" (a) constant current power 
sources, and (b) constant voltage power sources. 
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of the V-A curve with negative slope. From the operating point P, a 
relatively large increase of voltage would result in a relatively small 
decrease in current. Thus, the higher the negative slope of the V-A 
curve (or parallel to voltage axis), the better it functions as a con- 
stant current source. Therefore, with a consumable electrode welding 
process, electrode melting rate would be nearly constant even with a 
small change in arc length. 

2 .14 .2  C o n s t a n t  V o l t a g e  ( C V )  

In a constant voltage (CV) arc welding power source, the static volt- 
ampere (V-A) characteristic is such that the power source gives a nearly 
a constant load voltage. A CV source is usually used with a welding 
machine with a continuously-fed consumable electrode [14]. 

A typical volt-ampere (V-A) curve for a constant voltage source is 
shown in Figure 2.12(b). Here, from the operating point P, a large 
change in current is tolerated with a relatively small change in voltage. 
This characteristic of a CV power source is suitable for constant feed 
electrode welding process, such as the GMAW process. A small change 
in arc length (and hence, arc voltage) will result in a relatively large 
change in welding current, which will automatically lead to increase or 
decrease of the electrode melting rate to re-establish the desired arc 
length (voltage). This phenomena is called self-regulation. 

2.14 .3  C o m b i n e d  C C  a n d  C V  P o w e r  S o u r c e  

Combination of CC and CV characteristics can be obtained from a sin- 
gle power source by using a variety of electronic and feedback circuits. 
A typical curve is shown in Figure 2.13. 

2 .14 .4  P u l s e d  C u r r e n t  

The most common power supplies for GMAW and GTAW are the 
pulsed current power supplies. Pulsed GMAW power supplies are used 
to reduce the arc power and wire deposition rates while preserving the 
desirable spray transfer mode. For more details of the pulsed current 
operation see the previous section on Metal Transfer Characteristics. 
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Figure 2.13: Typical volt-ampere curves for a combined CC and CV 
power source. 

2 .14 .5  I n v e r t e r s  

With the introduction of microprocessors, the primary power sources 
have become inverters using silicon-controlled rectifiers. A class-H 
power supply that was more efficient than the conventional class-A 
power source was built using switching transistors and diodes [185]. 
This power source delivers up to 45 volts and 500 amperes with a fre- 
quency response up to several decades of kHz. Power supplies using 
solid-state technology and power-inverter technology and capable of 
being easily programmable and delivering controlled arcs are discussed 
in [251,252]. 

A report [253] discusses the choice of inverters as ideal power sources 
for welding due to the fact that increasing the switching frequencies 
decreases the size of the welding power source and produces a smoother 
output. 

2 . 1 5  O t h e r  I s s u e s  o n  P o w e r  S u p p l i e s  

In [254], for GMAW during the short-circuiting welding mode, a cur- 
rent programmer was designed in conjunction with a high performance 
solid-state power source operating in the constant current mode. The 
programmer allows precise control of output current during the short- 
circuiting and arcing phases of welding. Details about power sources for 
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welding and for developing a new power source with new current wave- 
forms, that offers spatter suppression, stability at high welding speeds, 
and improved joint tracking in automatic applications of welding are 
discussed in [255]. 

2.16 Classification of References by Section 

Here, we provide a table containing the various references according to 
each section of this chapter. This will provide a ready reference to the 
interested reader to search for relevant references in each section. 

Table 2.1: Section by Section List of References 

Section Reference Numbers 

2.1 Gas Metal Arc Welding [13]-[19] 
2.2 Physics of Welding [14],[15],[20]-[66] 
2.3 Melting Rate [67]-[72] 
2.4 Metal Transfer Characteristics [14],[67],[73]-[117] 
2.5 Weld Pool [32],[37],[63],[118]-[146] 
2.6 Process Voltages [117],[147] 
2.7 Heat and Mass Transfer [148],[149] 
2.8 Process Variables [150],[159] 
2.9 INEEL/ISU Model [101],[108],[109],[117],[149], 

[160]-[171] 
2.10 Empirical and Statistical Model [172]-[181] 
2.11 Modeling by System Id. and Est. [182],[183] 
2.12 Distributed Parameter Model [119],[184] 
2.13 Intelligent Modeling 
2.14 Other Issues on Modeling 
2.15 Power Supplies 

[157],[1851-[196] 
[172],[197]-[250] 
[14] ,[18],[185] ,[251]- [253] 

2.16 Other Issues on Power Supplies [254],[255] 
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Chapter 3 

Gas Metal 
Sensing 

Arc Welding: 

Measuring, sensing, or monitoring of process parameters of a physical 
system is of primary importance in the application of any automatic 
control technique to the system. In this chapter, we discuss the sensors 
and sensing techniques for use in the Gas Metal Arc Welding (GMAW) 
process for monitoring welding parameters, welding process variables, 
and for calibration of welding equipment. A sensor for a welding process 
is an instrument or device that can be a part of the overall mechanized 
welding system (automatic or not) and that can transform the value 
of any welding variable or condition (state) of the process into a form 
that can be accurately measured, mostly in electrical or electronic form, 
such as a voltage, current, or digital signal. 

3.1 Class i f icat ion of Sensors  

Brief accounts of the main principles and operation of sensors for weld- 
ing can be found in [256, 257]. A more extensive overview of sensors 
for arc welding in general is found in [258]. The works [259, 260] also 
give a very good introduction and the state-of-the-art on sensors and 
their applications to arc welding processes. The development of sensors 
for welding processes is in general not easy due to the nature of the 
welding process [261]. One approach to classification of on-line sensors 
for welding, taken from [262], follows. An alternate classification of 
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sensors available for arc welding is presented in [263]. 

1. Before  t he  Weld ing  Spot :  This refers to the position and 
shape of the seam to be welded. 

(a) Contact or Tactile Type: This is perhaps one of the earliest 
technique for any kind of sensing of welding. 

i. Stylus or Wheel" A stylus or wheel mounting is pulled 
through the seam, and the position of the seam is sensed 
by the position of the stylus or wheel [264]. 

ii. Electrical Contact with Workpiece" Another form of a 
tactile sensor consists of the movement of the torch to- 
wards the workpiece until it makes electrical contact 
with the workpiece [265]. An ultrasonic sensor having 
contact with the workpiece over the workpiece surface 
while sending the ultrasound pulses into the workpiece 
and measuring the reflections [266]. 

(b) Non-Contact Type 

i. Inductive Sensors: These are used to measure the rel- 
ative position of the sensor with respect to the seam 
[267]. Using eddy current sensors, the seam shape and 
position are measured for seam tracking [268]. 

ii. Capacitive Sensors: These again measure the distance 
or position just like the inductive sensors. 

iii. Ultrasound or Ultrasonic Sensors" These sensors oper- 
ate on the principle of sound measurement by indirectly 
measuring the time of flight for the sound to travel a 
distance [269]. 

iv. Optical Position Sensors: The arc radiation is used as a 
source of light for determining the position of the seam 
[270]. 

v. Optical Profile Sensors: These sensors use the optical 
principle where light, emitted by a laser to the work- 
piece and a sensor, is used to determine the position 
of the light falling on the workpiece. This was devel- 
oped commercially for use in welding cars [271]. The 
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same principle is extended to measure the surface pro- 
file [272,273] 

vi. Infrared Scan Sensors" Here the radiation emitted by 
the workpiece ahead of the weld pool is used to deter- 
mine the torch position with respect to the seam [274]. 
Also, infrared thermography can be used for measuring 
weld penetration [275, 276] 

2. At the Welding Spot 

(a) Non-Contact 

i. Electrical Arc Sensors)" These sensors are based on of 
resistance of the arc and that of the electrode extension 
(or stick out). By moving the torch in the transverse to 
the direction of welding, the resistance is calculated and 
used to determine the center of the seam. This method 
is rarely used [262]. 

ii. Arc Length (Optical) Sensors: Here, the basic principle 
is that the sensor measures the intensity of the radiation 
from the arc, thereby measuring the arc length [277]. In 
another report, the arc length is measured by deflect- 
ing the arc with an electromagnet and the arc image 
is captured by a charge-coupled device (CCD) camera 
[278]. 

iii. Pool Resonance (Optical or Electrical) Sensors" We note 
that the weld pool oscillations are caused by current 
pulsing and these oscillations are different depending 
upon the weld penetration. With incomplete penetra- 
tion, the oscillations are higher than those with full 
penetration (see Figure 3.1). An excellent account of 
weld pool oscillations, their sensing and control used in 
GTAW is given in [279]. The frequency of weld pool os- 
cillations is determined by measuring the arc radiation, 
which changes with the frequency [280], or by measuring 
the arc length [281]. 

iv. Pool (Spectral Lines) Sensors: The light intensity of 
the radiation emitted during a welding process is sensed 
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Partial Penetration Full Penetration 

Figure 3.1: Principle of weld pool oscillations. 

with an infrared detector and used for measuring the 
weld penetration [282]. 

v. Backside Radiation (Optical) Sensors: These sensors 
use the measurement of the width of the back bead in 
a full penetration weld [283]. 

vi. Pool Geometry (Optical) Sensors: Here the sensor uses 
a camera to capture the weld geometry. Pool geometry 
measurements are used for seam tracking [284]. Other 
systems used to measure the pool width are described 
in [285, 286, 270, 287, 288, 289]. On the other hand, 
[290] measures the distance from the electrode tip to 
front of weld pool. Other works in this category are 
[291,290, 292, 293, 294]. 

3. B e h i n d  the  Weld ing  Spot :  These are typically non-contact 
sensors used for inspection of welds already completed. A sensor 
is developed for inspecting workpiece profile using the principle of 
optical triangulation on a circle around the torch [295]. A system 
for three-dimensional inspection of the weld with projection of 
laser stripes over the weld was reported in [296]. 

In the remainder of this chapter we summarize various techniques 
available for measurement of specific weld parameters, including those 
listed below: 

1. Conventional methods. 

2. Computer-based methods. 

3. Welding parameter monitoring (temperature and current). 
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4. Sensors for line-following and seam-tracking. 

5. Arc length sensors. 

6. Sensors for weld penetration control. 

7. Sensors for weld pool geometry. 

8. Optical sensors. 

9. Miscellaneous. 

3.2 Convent ional  M e t h o d  

Basically, we have analog and digital measuring techniques. In analog 
sensors, the quantity to be measured is converted into a deflection of an 
indicating needle or, if the signal to be measured is rapidly changing, 
an oscilloscope is used. In digital sensing system, the analog signal 
is converted into digital form by using an analog-to-digital convertor 
(ADC). Digital instruments are more robust than analog meters. 

3.3 C o m p u t e r - B a s e d  M e a s u r e m e n t s  

The basic principle of computer-based instrumentation is shown in Fig- 
ure 3.2 [297]. The sensors from the welding process provide analog 
signals that are conditioned for amplification, attenuation, or filter- 
ing. The filtered analog signal is to be converted into digital from by 
passing it through an analog-to-digital conversion (ADC) device. Vari- 
ous devices such as microprocessors, programmable read-only memory 
(PROM), random-access memory (RAM), and input/output (I/O) de- 
vices are used in the system. The signal from the ADC is sampled at 
a rate higher than twice the frequency of the signal frequency in order 
to avoid the aliasing phenomena [298]. 

A typical welding equipment and instrumentation with a constant 
current power source for droplet detachment frequency measurement 
is given in [299]. 
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Figure 3.2: Principle of computer-based measurements. 

3.4 Welding Parameters Monitoring 

3.4.1 T e m p e r a t u r e  

The various types of measuring techniques or devices for measuring 
temperature during welding are contact devices such as temperature- 
indicating crayons or paints, bi-metal thermometers, thermocouples, 
and non-contact devices such as infrared thermometers or thermal 
imaging devices [300]. A very good introduction to the state-of-the-art 
of temperature sensors and their applications to arc welding processes 
are given in [259, 260]. 

Nishar, et al. [301] used infrared thermography for measuring weld 
pool temperature similar to that of [302]. The principle of infrared ther- 
mography is that all objects having a temperature above the absolute 
zero will radiate energy En, which is related to the surface temperature 
by Stefan's law as 

E n  = e a t  4 (3.1) 

where e is emissivity of the surface (lying between zero and unity) and 
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a is the Stefan-Boltzman temperature coefficient. For temperatures re- 
sulting in arc welding, the wavelength distribution (greater than 1 #m) 
lies in the infrared region of the spectrum [303, 304, 305]. Somewhat 
inexpensive infrared sensors with shorter wavelengths (less than l#m)  
have been built [306]. 

3 .4 .2  W e l d i n g  C u r r e n t  

Sensing of welding currents which are in the range of 200 to 500 am- 
peres, is often done by measuring the current waveform using oscillo- 
scopes. The devices normally used for this purpose are current shunts, 
current transformers, or Hall effect probes. 

Current shunts have low resistance values and are used to measure 
high currents. When connected in a circuit for measuring high welding 
currents, the voltage drop across the current shunt is low (50 to 200 
mV), which can be easily measured by an oscilloscope. Current trans- 
formers, used for welding equipment using AC power supplies, are in 
the form of a toroid or a circular coil (sometimes with a clamp) that  are 
placed around the conductor carrying the welding current. Here, the 
welding current conductor acts like the primary winding and the toroid 
acts like the secondary winding of a transformer. Hall effect probes are 
based on semiconductor materials that  respond to the magnetic fields 
produced by a current-carrying conductor. 

3.5 Sensors for Line Following/Seam Tracking 

These sensors are meant for joint detection and/or  seam tracking, which 
are important for robotic arc welding [307]. In particular, seam tracking 
has been developed for robotic arc welding processes [300, 308]. Some 
of the sensors used for seam tracking and other types of processes are 
given below. 

1. Tactile sensors use a spring-loaded guide wheel that  maintains 
a fixed relationship between the welding torch and the tracking 
joint. 

2. Pre-weld sensing/joint location [309] may be accomplished by 
using the end of the GMAW electrode as a contact tube. Pre-weld 
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sensing with optical sensors is done for building large aluminum 
structures using GMAW. 

3. Through-the-arc sensors [310] utilize the change in one or more 
electrical parameters of the arc during oscillation of the torch tip 
to locate the joint position. Cook [311,312] suggested a method 
where the resulting welding current is proportional to electrode- 
workpiece distance. 

4. Inductive and eddy current sensors. 

Photoelectronic sensors [313] use a photo-emitter and photo- 
collector directed at a clearly defined (by using a tape if required) 
joint line. 

. Structured light/vision sensors [314] use a small CCD video cam- 
era to capture the image of a line of structured light projected 
onto the weld seam in a transverse direction. Using a strip of 
light, it is possible to detect a but t  joint [315, 316]. 

7. Laser sensors are based on the laser technology. 

8. Direct vision sensors [317] use a CCD video camera with the torch 
and may be used to view the weld area without s tructured light. 

9. Ultrasonic sensors [318] are used to detect the infused joint line 
in the parent plate. 

10. Chemical composition sensors use a component of the arc's spec- 
t rum to detect the presence of a particular chemical element and 
passing it through an on-line analysis device [319]. 

In the case of joint detection, a television-based optical sensing 
system was given in [320,321,317] for tracking but t  joints in a GTAW 
process. Also see [322] for the same coaxial vision-based sensing and 
control in the GMAW process. Other apparatus using arc light for 
detecting the joint are given in [315]. 
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3.6 Arc Length Sensors 

There are basically two methods for estimating the arc length during a 
GMAW process. The first one is based on the measurement of signals 
inherent to the welding process, also called "through-the-arc" sensing. 
The second method is based on the use of external sensors not inherent 
to the process [299, 300]. 

3 .6 .1  V o l t a g e  Measurement 

In general, with a constant-current power source, the arc voltage gives 
a good indication of arc length at a given current. In order to control 
the arc length, the measured arc voltage is compared with the desired 
(reference) voltage and the error is used to control the torch height in a 
typical GTAW process. A more detailed method of sensing arc length 
involves the process voltage [323]. 

3 .6 .2  S o u n d  Measurement 

Control of arc length may by achieved by applying oscillation frequency 
in the arc and measuring the sound level. The sound pressure is found 
to increase with arc length. 

3.6.3 Laser (Range) Finders 

These sensors employ a low-power solid-state laser and use triangu- 
lation techniques for sensing torch height. Laser range finder sen- 
sors can be broadly classified into those using a strip of light or a 
scanning beam [307]. In the first class, a laser stripe is projected 
onto the workpiece in front of the torch and the measurements are 
made by image sensors. Several works are cited under this category 
[324, 325, 326, 327, 328, 329, 330, 331,332]. 

The second classification is the use of lasers by scanning a beam 
of light across the weld joint thereby obtaining the profile of the joint 
[272,333, 308]. Related work can also be found in [326]. 

A non-contact laser profiling system has been used for measurement 
and prediction of weld pool shape during GMAW [334]. In this work, 
a detailed measurement of the full 3-dimensional weld pool shape for 
the GMAW process is obtained. 
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3.6.4 Light and Spectral Radiation Sensors 

In arc light sensing, the principle used is radiometry, the detection 
and measurement of the radiant intensity of the arc [335]. Here, the 
incident radiant power input is converted into a proportional voltage 
signal [299]. The arc light, which increases linearly with arc length in 
GTAW, can be used to control the arc length using spectral radiation 
techniques [336]. An arc length sensor was developed by measuring arc 
current and arc light intensity using a photodiode detector [299]. 

A simple approach to estimate arc length using arc light for the 
GMAW process was patented by Johnson and Sciaky [337], where a 
light guide attached to the weld torch guides the light to a photodi- 
ode, the output  of which is a voltage used for controlling the wire-feed 
speed, thus controlling the arc light intensity. In trying to investigate 
alternate sensors for the control of the GMAW process, such as electric 
field, vibration, and optical sensors, an empirical model relating arc 
light intensity to arc length and arc current was developed in [338]. 
Further, an arc length sensor, based on an arc length model incorpo- 
rating simultaneous measurement of arc light intensity and arc current, 
was developed [299]. Here, arc length was estimated using a detector 
to measure arc light intensity and a current transducer to measure arc 
current. An expression was obtained for arc length in terms of the arc 
current and the detector voltage as 

la = Ed -- (Co + C2I 2) (3.2) 
CII  

where Ed is the detector voltage, I is the current, and Co, C1, and 
6'2 are constants dependent on various welding parameters and can be 
determined by a calibration procedure. 

It was further found in [299] that  the detector voltage is depen- 
dent on the spectral response of the detector and the orientation and 
location of the detector with respect to the arc source. Bonser [339] 
presents a multi-stripe structured light (MSSL) sensor that  detects and 
measures the position of the saddle type weld joint formed by two small 
intersecting tubes. 

To improve measurement accuracy, Li [340] addresses the theoret- 
ical foundation for arc light sensing. A theoretical model has been 
developed to correlate arc light radiation to welding parameters. It is 
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found that the distributions of the ions of the shielding gas and the 
vapors of the base metal and tungsten are not even. 

3.6.5 O t h e r  W o r k s  in A r c  L e n g t h  Sensors 

A method for obtaining a signal proportional to arc length using spec- 
tral sensors based on the interference of light filters and photo triodes, 
is discussed in [336]. A study on the through-the-arc current and volt- 
age signals of different types of GMAW electrodes to determine sensing 
strategies for the real-time control of the transfer modes is presented in 
[341]. This paper considers using statistical procedures, Fourier trans- 
forms, amplitude frequency histograms, peak-searching algorithms, and 
smoothing techniques. 

An arc hydrogen sensor (AHS) is developed, built, and demon- 
strated in [342] in a laboratory environment. It shows that the hydro- 
gen levels down to 1000 ppm, loss of shielding gas, and the presence of 
grease on the part are detectable. 

A simple through-the-arc sensing technique for real-time monitor- 
ing of weld quality is proposed in [343, 344], where current and volt- 
age records for pulsed GMAW were captured and correlated with high 
speed images of the arc to obtain any defective changes in loss of 
shielding gas, contact-tip-to-work distance wear. Dynamic analysis of 
arc length and the development of a sensor for measurement of high- 
frequency weaving is given in [345]. 

3.7 Sensors  for Weld  P e n e t r a t i o n  Contro l  

These techniques are developed mainly for situations where a full pen- 
etration. In [266], the geometry of the weld pool during the GMAW 
process was detected by using high-frequency sound waves. Further, 
an expert system was used for automatic identification of molten/solid 
interface geometries. Also see other works by the same group [346,347, 
348, 349]. 

An infrared camera is used to obtain temperature profiles for the 
GTAW process and to determine the relationship between weld pen- 
etration variations and plate temperature distributions in [350]. The 
work in [351] describes a proportional-integral-derivative-based control 
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system for controlling weld penetration based on coaxial viewing by 
indirectly controlling the weld pool width. The development of a laser 
fiber bundle array and electromagnetic acoustic transducer (EMAT) for 
the generation and reception of ultrasound for on-line weld penetration 
measurement is discussed in [352] 

3.7.1 B a c k - F a c e  S e n s i n g  

Back-face sensing involves sensing from the underside (below or back) 
of the workpiece. The energy of certain wavelengths of radiation emit- 
ted from the back of the weld pool is a function of the weld bead area 
or width [353]. The signal from the sensor is used to control the process 
variables such as pulse duration in a pulsed GTAW process. This tech- 
nique was also used with pulsed metal transfer in GMAW process to 
control bead width [354]. 

Radiation Sensing 

Here the radiation from the back surface of the weld pool is collected by 
an optical sensor in the form of an optical fiber connected to a camera 
or an optical pyrometer camera. The radiation frequency is directly 
proportional to temperature [353, 355,356]. 

Shadow Motion Sensing 

This technique is based on the sagging effect on weld pool, which occurs 
at full penetration. The sagging is detected from the underside of the 
work piece, as shown in Figure 3.3. A laser beam is passed along 
the back surface of the workpiece. The beam is partially blocked or 
shadowed by the sagging weld pool, with the sagging proportional to 
the weld current [279]. 

3.7.2 F r o n t -  or  T o p - F a c e  S e n s i n g  

Front face sensing involves sensing from the top (torch) side. This 
can be done using light, sound, infrared, radiological, or other energy 
sources. Penetration monitoring from the top face (front face) of the 
weld pool involves the application of a short-duration, high-current 
pulse, which excites the pool and produces oscillation [280]. 
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Figure 3.3: Schematic of laser shadow motion sensing method. 

Radiographic Sensing 

In radiographic sensing, X-rays coming on to the top side of the work- 
piece are reflected two times at the bottom of the weld pool and the 
resulting difference in intensity is passed through a digital image proces- 
sor and a computer for automatic control of weld penetration. Because 
the X-ray source is located at the top of the work piece, it is sometimes 
called top-face sensing [357, 358]. 

Ultrasonic Sensing 

In a simple configuration, two transducers, one acting as transmitter  
T and the other as receiver R, are placed on both sides of the welding 
head, as shown in Figure 3.4[279]. A linear encoder, mounted on the 

Contact Tube ..... ~ Weld Pool 
Stick Out P[[ " [----~Recorder 

. . . . . .  oee,, �9 ~ 

P C  , 

Figure 3.4: Simplified schematic of ultrasonic sensing method 

welding head, receives the ultrasonic signals which are passed on to a 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


108 CHAPTER 3. GAS METAL ARC WELDING: SENSING 

transient recorder and a personal computer (PC) for analysis, display, 
and automatic control [359, 266]. Alternatively, the signals can be col- 
lected by a video system. Additional works were reported with regard 
to contactless transducers and laser sound generation [360, 361]. 

Ultrasonic methods using a dual-element piezoelectric transducer 
were used to detect discontinuities in the weld pool in a (]MAW process 
[361]. Also, expert system principles were used to design intelligent 
controller for manipulating the welding parameters. A method consist- 
ing of a pulsed laser for ultrasound generation and an electromagnetic 
acoustic transducer (EMAT) for ultrasound reception was developed 
by Carlson et al [362] for detection of weld defects. Other works by the 
same group can be found in [346, 347, 266, 348, 349]. 

Other works on ultrasonic sensing include a technique developed in 
[363] using ultrasonic pulse-echo measurements to determine the weld 
pool dimensions. Another sensor capable of simultaneously controlling 
weld joint penetration and joint tracking is developed in [359]. A very 
good introduction to the state-of-the-art of ultrasonic sensors and their 
applications to arc welding processes can be found in [259,260, 364]. A 
novel seam tracking technology based on high-frequency ultrasound is 
developed in [365] to achieve high accuracy in weld seam identification. 

Infrared Sensing 

For sensing the surface temperature of the weld pool, an infrared cam- 
era is mounted towards the weld bead. Perturbations in weld penetra- 
tion are detected from the measured temperature gradient [366, 275, 
367]. A top-side 3-D infrared sensing technique to be used in closed- 
loop control of weld full penetration in the (]TAW was presented in 
[368]. Using front-end (or side) infrared sensors, an on-line scheme for 
monitoring weld geometry was presented for both GTAW and (]MAW 
processes by Banerjee, et al. [369]. 

The application of infrared sensing and computer image process- 
ing techniques for dynamic control of joint penetration parameters is 
presented in [275]. A linear relationship between the weld bead width 
and the infrared thermal image profile was established. Weld faults 
such as arc misalignment, variation in penetration, and impurities are 
found to produce distinct thermal distributions of the weld pool surface 
temperature, as measured by scanning infrared cameras in [274]. 
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One of the earliest works investigating the feasibility of using in- 
frared sensing devices to determine the heat flow pattern with changes 
in welding parameters for both GTAW and GMAW processes is given 
in [370]. Other works include an ultrasonic sensor used for on-line weld 
penetration measurement in [371]. 

A feasibility study has been done in [276] to determine if infrared 
thermography could be used to detect perturbations in the arc welding 
process that  result in defects such as arc misalignment, puddle impu- 
rities etc. An investigation on the feasibility of using infrared sensor 
(camera) to monitor the molten weld pool during GTAW and GMAW 
processes is discussed in [372]. Further investigations on the use of 
infrared thermography to sense the position of the arc and the pene- 
tration depth of the weld can be found in [373, 367]. 

In [374], an infrared camera was used to record temperature gra- 
dients surrounding the welding torch and transmit the images to a 
central computer for image processing. An infrared camera has also 
been used to obtain temperature profiles for GTAW process in [350]. 
Infrared sensing has been used for thermal distribution changes associ- 
ated with GTAW to identify and correct for weld joint offsets for but t  
joints in [375]. 

A very good introduction to the state-of-the-art on infrared sensors 
and their applications to arc welding processes can be found in [259, 
260]. Related works on the topic of infrared sensing can also be found 
in [373, 275, 288]. 

T race  E l e m e n t  M e t h o d  

In this method, prior to the start of the welding process, tracers are 
attached to the back face of the weld piece. When full penetration 
reaches the traces, they are melted and mixed with the weld pool and 
transferred by convection to the surface of the weld pool, where they are 
detected by a spectral emission collector and processed by a computer 
for data analysis. With partial penetration, the tracers are not melted 
and hence are not detected. The choice of the tracer is an important  
factor in this technique [279]. 
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Weld Pool Depress ion  M e t h o d  

In this method [378], the weld pool surface sag is used to estimate 
the weld penetration. A sagging weld pool indicates a full penetration 
whereas no sagging shows partial penetration [376, 377]. 

3.7.3 W e l d  P o o l  Osc i l l a t i on  

Weld pool oscillations are caused by high frequency external forces on 
the weld pool. It was first suggested that the ripple formation in solidi- 
fied welds is explained by the oscillatory behavior of the weld pool [379]. 
Droplet transfer can also generate weld pool oscillation during GMAW 
[300]. It is worth noting that the weld pool oscillation frequency will be 
influenced by the droplet frequency [279]. The measurement of forced 
oscillation of the weld pool via the arc voltage is possible but noise 
seems to be a problem [380]. 

Weld pool oscillations can also be induced by current pulsing and 
monitored using optical sensing. This approach is applied for the 
GTAW process in [381]. In particular, the oscillations are induced by 
a phase-locked loop (PLL) which consists of a phase detector, low-pass 
filter, and oscillator [382, 383,384, 385]. A simplified block diagram of 
the PLL pulsing system is shown in Figure 3.5 []. 
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Figure 3.5: Simplified schematic of phase locked loop method for puls- 
ing 

Weld pool oscillations were also studied in [386]. For further work 
on weld pool frequency and its monitoring, see [387] for a weld pene- 
tration control and monitoring system, called MELODY, that is based 
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on weld pool frequency and uses a fiber optic sensor. Also, see [388] 
for a discussion on the role of weld pool oscillations during arc welding, 
with particular reference to the types of oscillation modes, oscillation 
frequency, weld pool geometry, etc. Further, weld pool oscillations were 
used for weld penetration sensing and control, in particular for GTAW 
[279]. 

3 .7 .4  D r o p l e t  T r a n s f e r  F r e q u e n c y  

There are several droplet transfer and frequency sensing techniques 
that have been developed over the years for GMAW, primarily focused 
on measurement of arc current and/or voltage [341,389], or air-borne 
acoustic sensing [390, 391, 392]. These methods were developed for 
real-time implementation in short-circuit and globular metal transfer 
modes. Alternatively, it was shown that the use of static transfer mode 
maps could be used to off-line by using average values of process voltage 
and current from post-weld inspection of high-speed videos [393]. 

Droplet transfer frequency was obtained from variations in arc length, 
measured by an arc light sensor (detector), caused by droplet detach- 
ment [338, 299]. The sensor is a commercially-available photodiode 
[394]. It was found that the droplet frequency was a function of cur- 
rent, wire feed speed, and electrode extension. 

It was observed that in the case of spray transfer mode, the droplet 
frequency is directly proportional to current [341, 395] and that the 
globular and short-circuit transfer modes can be controlled by current 
and voltage sensing [341,389,390]. Also, see [396] for sensing of droplet 
transfer using an ER100S-1 electrode, and [338] for a study on the use 
of arc light intensity sensors in conjunction with voltage and current 
sensors to determine the droplet detachment. 

3.8 Sensors for Weld Pool  Geometry  

The detection of weld pool geometry can be done using optical sensing 
techniques such as photodiodes or charge-coupled devices (CCD) [397, 
398]. It is found that only 4% of the energy can be detected. In order 
to overcome this, one can momentarily extinguish the arc to record the 
CCD array response [290]. Alternatively, a narrow band filter can be 
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used [399, 331]. Also, one can mount the vision apparatus such that 
the optical axis is aligned with the electrode [286, 321]. In measuring 
the weld pool, which partly includes the arc, there is a large difference 
in emissivity between the liquid and solid metal [307]. 

A measurement system was developed for weld pool geometry in 
GMAW process by observing radiation emitted by the weld pool using a 
solid state imaging camera based on CCD [262]. A dedicated computer 
is used to perform the image analysis based on edge detection rather 
than thresholding the image. Advanced imaging techniques are used for 
on-line measurement of weld pool geometry in [400,401,284, 287, 321]. 

Another class of sensors for measuring weld pool geometry is in- 
frared (IR) vision sensors which detect the changes in radiation on 
the surface of the weld pool with or without correlating them to pool 
temperature [370]. Further applications of IR sensors for extracting 
geometrical features of weld pool are found in [402,288]. 

Using thermographic images of the weld pool, impurities and vari- 
ations in joint geometry were detected in [274]. Sometimes, a complete 
knowledge of temperature distribution is not necessary, but the tem- 
perature at only two points at equal distance from the torch may be 
sufficient for control purposes [403]. 

A vision-processing algorithm was developed to compute weld pool 
(puddle) geometry parameters from the noisy image of the molten 
pool [404]. Infrared thermography was used in determining the puddle 
geometry and cooling rates for the GMAW process in [305, 303]. 

A method for determining the optimum sensor location to measure 
weldment surface temperature, which has a close relation with weld 
pool size in the GMAW process was given in [405]. It was found that 
the correlation significantly changes with measurement location and 
the optimal location occurs at the maximum correlation value. 

Kovacevic and Zhang have developed several novel sensing methods 
for weld pool sensing. In particular, in [406] the specular reflection of 
pulsed laser stripes from the mirror-like weld pool surface was captured 
by a CCD camera and, for monitoring and control of the process, the 
captured image was analyzed to identify the torch and electrode. Fi- 
nally, the reflection image pattern and the pool boundary were used to 
control the weld penetration [407]. Extensive results on this and re- 
lated topics by these researchers are found in [408, 409, 410, 411,412, 
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413, ala, 412, 415,416, 417, als, 419, 420, 421,422, a23, 424,425, 426, 
427, 42s] 

Other works on this topic are listed below. Two techniques of 
measuring weld pool surface size during welding are introduced in 
[397, 398]. One is based on self-scanning photo-diode arrays with mo- 
mentary arc extinction suitable for weld pool control. The other uses 
TV cameras and arc filtering suitable for weld pool monitoring. 

A method of computer analysis for two-dimensional imaging of 
GTAW pools as acquired by a coaxial viewing system was developed 
in [429]. Real-time radiography (x-ray and image intensifier units) was 
developed in [357, 358, 294] for observation of weld pool volume and 
the heat-affected zone during the welding process. 

Investigations to determine the feasibility of using ultrasonic sensing 
technique for weld pool depth and penetration are reported in [366, 
318]. A study on the reliability of vision sensors for recording the 
variation in arc noise by considering the reflection of the base metal 
surface, which is modeled using a bidirectional reflectance-distribution 
function (BRDF), is presented in [430]. Also, using a thermographic 
imaging technique, it may be possible to assess the temperature profile 
of a weld joint thereby controlling the metallurgical properties of the 
weld [402]. 

3.9 O p t i c a l  S e n s o r s  

A temperature control system was designed for a consumable electrode 
GMAW process using an inexpensive optical system for measuring weld 
temperatures [301]. Development of a control system using an opti- 
cal sensor (photodiode array camera) for measurements of the groove 
geometry in front of the welding head is given in [431]. 

The use of coaxial viewing for adaptive welding control of the 
GMAW process is demonstrated in [432]. Coaxial viewing incorpo- 
rates a camera on the torch such that the torch axis is aligned with the 
optical axis. An integrated optical sensor (IOS) for feedback control 
in the GMAW process is developed in [433]. The IOS consists of three 
readily available components: a charge-coupled device (CCD) camera, 
a diode laser, and a processing computer and measured in almost real 
time the parameters such as weld pool position and width, and weld 
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bead centerline cooling rate. In [434], the surface tension of detached 
liquid drops in pulsed GMAW was determined from the period of the 
oscillations initiated by the detachment event. 

Lee, in [435], discusses vision sensors using optical triangulation, 
which have been widely used for automatic welding systems in various 
ways. In this study, the reliability of vision sensors was analyzed for 
the variation of the arc noise by considering the reflectance of the base 
metal surface. The property of the surface reflection of the base metal 
was modeled using the bi-directional reflectance-distribution function 
(BRDF). 

3.10 Sensors for Quality Control 

There are some metallurgical properties, such as porosity and cracking 
that need to be monitored and controlled on-line to ensure proper weld 
quality. Some of the visual indications characterizing the weld quality 
are cracks, porosity, undercuts, micro fissures, etc. [436]. An auto- 
mated system has been developed for visual inspection of weld beads 
and evaluation of their quality [437, 438], using the human techniques 
of observation, inspection and evaluation. A discussion on the sto- 
chastic behavior of arc welding signals with respect to monitoring for 
quality assurance requirements can be found in [439], where a portable 
arc data analyzer was described. 

Statistical process control (SPC) is defined as the monitoring and 
analysis of process conditions using statistical techniques to accurately 
determine process performance and prescribe preventive or corrective 
actions as required [440]. In many cases, if the welding process is oper- 
ated under normal conditions and sufficient data is collected, the eval- 
uated values fall within a standard probability distribution. Dynamic 
resistance monitors are built incorporating statistical process control 
techniques. 

3.11 Intelligent Sensing 

In this section we assemble works on sensing techniques using artifi- 
cial neural networks (ANN), fuzzy logic (FL), knowledge-base systems 
(KBS), and expert systems (ES) [392]. In [266], an expert system was 
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used for automatic identification of molten/solid interface geometries 
during ultrasonic sensing of the GMAW process. Also, see other works 
by the same group [347, 348, 349, 361] as well as [441] for the develop- 
ment of an expert system to diagnose discontinuities in GMAW. Also, 
see [360] for the application of the expert-system approach to analyzing 
ultrasonic measurements of the weld pool geometry. 

An ANN-based technique was developed in [392] for classifying the 
acoustic signals of acceptable and unacceptable welds obtained by the 
GMAW process. Kovacevic and Zhang [426] proposed a neuro-fuzzy 
model for weld fusion to infer the back-side bead width from the pool 
geometry, using the knowledge of the skilled worker (formulated into 
a set of fuzzy rules) and a neural network for learning to adjust the 
parameters in the fuzzy model [442]). In the experimental setup, the 
weld pool image is captured by a CCD camera and processed through 
an image processing unit. Then a neurofuzzy estimator provides the 
weld bead geometry, which are incorporated into a feedback algorithm 
to achieve the desired bead geometry. For extensive results on this and 
related topics by this group, see [408, 411,443, 444, 416,407, 428,427]. 

Other works on this topic are given below. The development of a 
neural network-based system to perform automated visual seam track- 
ing in arc welding is proposed in [445]. The use of neural networks with 
infrared sensing of weld penetration control is reported in [446]. An 
acoustic sensing method was developed using neural networks in [392]. 

The application of a pattern recognition technique to interpret the 
arc weld images for coaxial weld vision based process control is pre- 
sented in [447]. The application of neural networks for identification 
of weld defects is discussed in [448]. Du, et al. in a two part series 
[449, 450], presented a systematic study of various monitoring meth- 
ods suitable for automated monitoring of manufacturing processes and 
their applications to some specific processes, including arc welding, us- 
ing techniques of pattern recognition, neural networks, fuzzy systems, 
decision trees, and expert systems. 

3.12 Other  Issues  on Sens ing  

Further, we review additional works on sensing for the GMAW process. 
In [451], a study was made about the presence of strong environmental 
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noise from arc light and molten-particle emission, leading to the choice 
of effective noise-reduction techniques. In a keynote address, Araya 
and Saikawa [452], gave an excellent account of activities (particularly 
in Japan) in sensing and adaptive control of arc welding. 

Also, see some of the earlier works by Arata, et al. [401] for the 
application of a digital picture processing technique used in automatic 
control of arc welding processes. In [453], the wide use of the arc sen- 
sor to detect the weld seam by monitoring welding current or voltage 
variation during weaving in GMAW is discussed. In this work, the 
arc light intensity and welding resistance are compared when Argon 
and Carbon-Dioxide gas are used for shielding. A method for detect- 
ing flaws in automatic, constant-voltage gas metal arc welding using 
the process current and voltage signals was developed in [454]. Seven 
algorithms process the current and voltage signals to give quality pa- 
rameters. 

It is possible to have a combination of the above sensing techniques 
for obtaining a better indication of the process and its variables. For 
example, combining the torch displacement sensor with through-the- 
arc measurements of voltage and current may be used to distinguish 
between the wire feed slip and torch height variation [300]. 

Spectrographic techniques were used to detect changes in chemical 
composition of the arc in [455]. A discussion on the need for special sen- 
sors for robotic arc welding was made in [456]. The Univision II sensing 
system, which is basically an optical seam tracking system consisting 
of a sensor, a TV camera, and an image processor, was described in 
[351]. 

An excellent tutorial and survey type of discussion on modeling, 
sensing, and control of welding processes can be found in [457]. The 
importance of sensing for automated welding is discussed in [458]. The 
work on the study of arc sensors for GMAW is presented in [459, 460]. 
In this work, the welding current signal was fit to a curve that  is in- 
versely proportional to the trace of the contact tip-to-workpiece dis- 
tance by using a quadratic curve fitting method in order to extract 
useful information on the welding gun position from the welding cur- 
rent signal. 

A direct-view vision system was developed in [461] to track joints 
in both GTAW and GMAW processes, based on the analysis and un- 
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derstanding of the radiation energy from the weld region. Sensors and 
control systems in arc welding used/developed mostly in Japan are 
presented in an edited Book [462]. An excellent introduction to sens- 
ing, its classification and its applications to arc welding processes are 
presented in [259]. 

A state-of-the-art review of sensors and their applications to arc 
welding processes are given in [260]. An interesting discussion of results 
obtained by a questionnaire on sensor applications in welding processes 
is given in [463]. 

Other related works can be found in the section on sensing, control 
and automation in [464]. Future trends for welding sensors are dis- 
cussed in [465]. Chen, et al., [466] used an industrial TV camera as a 
sensor to measure the weld face width of the weld pool, by employing 
computer imaging techniques. In another work, on-line, computer- 
based monitors provide quality assurance, which enhances the reliabil- 
ity of the GMAW process and reduces the need for post-weld testing 
[4671. 
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3.13 Classification of References by Section 

Here, we provide a table containing the various references according to 
each section of this chapter. This will provide a ready reference to the 
interested reader to search for relevant references in each section. 
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Table 3.1: Section by Section List of References 

Section Reference Numbers 
3.1 Classification of Sensors 
3.2 Conventional Method 
3.3 Computer-Based Measurements 
3.4 Welding Parameters Monitoring 
3.5 Sensors for Line Following/Seam Tracking 
3.6 Arc Length Sensors 

3.7 Sensors for Weld Penetration Control 

3.8 Sensors for Weld Pool Geometry 

[256]-[273] 

[297]-[299] 
[295],[296],[300] 
[300]- [316] 
[2691,[299]-[302], 
[3171-[339] 
[263],[271]-[273], 
[276],[277],[285], 
[295],[296], [299], 
[300],[318],[337], 
[340]- [363], 
[369]-[396] 
[2601,[2711,[281], 
[283]-[285],[287], 
[291],[301], [3121 , 
315],[331],[351], 
1352] ,[360],[364], 
1366],[370], 
1397]- [430] 

3.9 Optical Sensors 362],[431]-[435] 
3.10 Sensors for Quality Control 
3.11 Intelligent Sensing 

3.12 Other Issues on Sensing 

340]-[436] 
1263],[341]-[343], 
354],[355],[391], 
407],[408], [411], 
416],[426]-[428], 
441]-[450] 
2951,[2961,[300], 
[345],[401], 
[451]-[467] 
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Chapter 4 

Gas Metal  Arc Welding: 
Automat ic  Control 

In this chapter, we survey the automatic control techniques that have 
been used in the Gas Metal Arc Welding (GMAW) process. Basically, 
in welding operation there is manual control and automatic control. 
We begin with a brief disscusion of manual control. Then we discuss in 
detail many of the automatic control techniques for welding that have 
been reported in the literature. 

4.1 Automatic  Welding 

Traditionally, welding processes have been manually operated and are 
based on trial and error and/or on operator's experience. When im- 
proved control is required under manual control, an automatic welding 
procedure or control is established [468]. 

Automatic welding, simply means that some aspects of the weld- 
ing operation is performed without the intervention of human such as 
welder or welding operator. In most of automatic welding operations, 
a welder is required to make initial preparations and then monitors 
the overall operation. The advantages of an automatic welding system 
include the following: 

1. Consistency in welding quality. 
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2. Increased welding production and consequent reduction of pro- 
duction costs. 

3. Integration with other automatic operations of the industry. 

4. Absence of human fatigue and/or  error. 

5. Absence of loss of human life in case of severe accidents. 

However, automatic welding also has some disadvantages such as listed 
below: 

1. Extensive planning of procedural steps. 

2. Higher capital investments leading to uneconomic investment for 
small operations. 

Robots play an important part in the automation of welding processes, 
particularly for arc welding processes such as GMAW. Robots are ex- 
tensively used in industries such as automobile manufacturing. 

According to Cook, et al. [469], the goals of feedback control in 
welding are" 

1. Producing welds with desired mechanical and metallurgical prop- 
erties. 

2. Controlling the microstructure during solidification and cooling. 

3. Sensing and controlling discontinuous formations to acceptable 
levels. 

There are two basic techniques for controlling any process. 

1. The first one is open-loop control, where the process is driven by 
an input to correspond to the desired output, with the hope that  
the output will be the desired one. 

2. The second technique is an extension of the open loop control ap- 
proach, where we measure or sense the output variables and then 
feed them back to compare with the desired (reference) variables, 
detect the error between them, and then adjust (or control) the 
inputs to the process until the actual output variables exactly 
match the desired output variables. This approach is called au- 
tomatic control, closed-loop control, or feedback control. 
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A simplified diagram showing both open-loop and closed-loop control 
systems is shown in Figure 4.1. Under closed-loop control, we also have 

Input .i Controller ] J Process I Outout.. 

. . . .  q I q I " 

Input 

Error 
Detector 

"+"(- i I '....I....~ - 

(a) 
Disturbance 

Controller ] J Process 
Output 

Measurement t 

(b) 

Figure 4.1: (a) Open-loop and (b) Closed-loop control systems. 

feed forward control as shown in Figure 4.2 [470]. 
There are several forms of closed-loop control strategies, such as 

optimal control [471], adaptive control [472], robust control [473], and 
learning or intelligent control [474]. These will be briefly described at 
the proper places in this chapter. 

We notice from Figure 4.1 that closed-loop control requires that the 
feedback signals are generated by employing sensors or transducers to 
convert the physical parameters into electrical signals. For simulation 
purposes, one also has to obtain a mathematical model in terms of the 
input and output variables of the process. 
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Figure 4.2: Feedforward control system. 

4.2  C o n t r o l  o f  P r o c e s s  V a r i a b l e s  

4.2 .1  A r c  L e n g t h  C o n t r o l  

Control of arc length in the welding process is important to ensure 
consistent heat input, constant melting rate, and stable performance 
of the process. In particular, arc length determines the transfer mode, 
arc stability, and the deposition rate [475]. 

In GMAW, one simple way of controlling the arc length is to control 
the arc voltage. With a constant-current power source and variable 
wire-feed speed (WFS), the arc voltage (i.e., the process voltage) is 
used to drive the wire feed motor which in turn changes the arc length. 
On the other hand, with a constant-voltage power source and constant 
WFS, the changes in current are such as to provide a constant arc 
voltage (i.e., arc length) [475, 476, 477]. 

Using an arc length sensor, a closed-loop controller was developed 
for spray transfer GMAW process in [478]. A simple PID controller was 
designed where the coefficients of PID controller were determined from 
the process characteristics determined experimentally (see Figure 4.3, 
where CTWD refers to contact tip-to-workpiece distance). Based on 
a linearized model of the arc dynamics, a continuous-time arc current 
controller was designed and discretized for computer implementation 
[479]. 
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Figure 4.3: PID control system for arc length regulation. 
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4.2.2 C o n t r o l  of M a s s  and  H e a t  Trans fe r  

Here, we discuss control of mass and heat transfer, including control 
by pulsed current. The control of mass (metal) and/or heat transfer 
during the GMAW process is a very important consideration in em- 
ploying automatic control schemes. For example, an increase of wire 
feed speed causes the increase of weld current which in turn increases 
the heat produced and hence the melting rate. Thus, it is very difficult 
to decouple the control of heat transfer from that of the mass trans- 
fer. However, the problem can be tackled by using the pulsed (current) 
control [480, 481]. 

In another investigation, Smartt and Einerson [482] considered a 
steady-state model for heat (H) and metal (G) transfer from the elec- 
trode to the workpiece in GMAW process. Using the relations between 
G and H, a PI-based control system was developed for maintaining the 
desired G and H by regulating the current. 

By using pulsed current, desired characteristics of spray and dip 
transfer are obtained. A significant contribution to the advancement 
of pulsed GMAW technology is believed to be available through a sys- 
tem developed by the Welding Institute of Canada [483, 484]. A system 
where the pulsed current is generated by using arc voltage instead of 
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wire-feed speed is shown in Figure 4.4. 

Power 

Source 

Reference 
Parameters 

[ Current L 
] Controller 

t t 
Pulse Voltage L 

Parameters OscillatorC~176 I" 

Essentially, the arc voltage 

Arc ~/~'k "1 

Arc Voltage 
Sensor System 

+ 

Refere ltage 

Figure 4.4: Frequency Modulated Pulse Current Feedback System 

feedback signals control the pulse frequency to maintain a stable arc 
condition. The frequency modulated (FM) method of pulsing the cur- 
rent seems to be better than other methods because the parameters of 
the pulse (high current, low current, pulse duration) remain constant 
and hence result in regular and consistent metal transfer. 

A synchro-pulse GMA method of pulsed power welding has been 
reported in [485]. The arc length is held constant by using arc voltage 
as the reference for a feedback control system. 

4.2.3 C o n t r o l  of Weld  T e m p e r a t u r e  a n d / o r  Cool ing  R a t e  

A temperature control system was designed for a consumable electrode 
GMAW process using an inexpensive optical system for measuring weld 
temperatures [486]. Dorfeld et al. [487] addressed the problem of 
controlling the temperature on the back side of weld plate using infrared 
thermography. In another work [488], a PID controller was designed 
to control the cooling rate. 

An intelligent control system using both neural networks and fuzzy 
logic was developed by Einerson, et al. [489], for cooling rate and fill 
control. See also [490] for other works on controlling the temperature. 
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4.2 .4  C o n t r o l  of  W e l d  P o o l  a n d  i ts  G e o m e t r y  

A distributed source conduction model was presented in [491] for pre- 
diction and control of weld geometry with a real-time calibration of 
the model as shown in Figure 4.5, was discussed. Here Dd, Wd are the 

Pro  
Mo~e l  

Dd ~ -  r-[Welding I JWelding 
~-0 ~. Controller[ "! Process 

Wd+ T - ., 

D 

(x,y) 

(x,y) 

W 

Figure 4.5: Schematic for a weld pool geometry (width and depth) 
control system. 

desired and actual depth and width, respectively, of the weld pool and 
0(x, y), 0(x, y) are the estimated and actual temperature distributions, 
respectively. 

A feedback control system for weld penetration control based on the 
weld oscillation mode was developed for a fully automatic GTAW unit 
[492]. In this system, programming and implementation were carried 
out using the LabVIEW software of National Instruments [493]. Such a 
system is called in-process penetration control (IPPC), and the system 
was implemented for orbital tube welding. 

An experimental facility was built for controlling the puddle geom- 
etry using a pseudo-gradient adaptive algorithm for self-tuning a PI- 
based puddle width controller for a consumable electrode GMAW process 
[494, 495,496, 497]. A microprocessor-based control system was devel- 
oped to join sheet metal parts for a GTAW process [498, 499], where 
the desired puddle area and puddle width are achieved by feeding back 
the measured area and width using a vision system. For the GMAW 
process, a multi-input (wire-feed rate and travel speed) and multi- 
output (weld bead geometry: width, depth and reinforcement) model 
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was used in a scheduled-gain multivariable controller [500]. 
Using front-end (or side) infrared sensors, an on-line scheme for 

monitoring and controlling the weld geometry was presented for both 
GTAW and GMAW processes by Banerjee et al. [501]. In particu- 
lar, the applicability of infrared thermography in sensing variations in 
bead width and depth of penetration due to variations in plate thick- 
ness, shielding gas composition, and minor element content was demon- 
strated by experimental verification. 

4 .2 .5  O t h e r  W o r k s  on  C o n t r o l  of  W e l d  P o o l  G e o m e t r y  

One of the earliest studies on methods for full penetration sensing and 
the use of steady-state puddle depression measurements in a closed- 
loop control experiment was reported in [503]. It suggests the use of 
smart or intelligent welding machines consisting of sensors, actuators, 
artificial intelligence, and automatic control. 

A study of a welding control system, which used a line scan cam- 
era focused on the molten weld puddle to provide puddle width, along 
with an analog computer, was used to adjust electrode holder speed to 
maintain constant puddle width, is presented in [502]. A vision based 
system for control of GTAW pool width and, hence, weld penetration, 
was used in [504], with a real-time proportional control algorithm. A 
model-based visual feedback control system for detecting various weld- 
ing parameters was designed in [505]. A backface penetration control 
system for DC pulsed TIG welding, utilizing a coherent optical bun- 
dle to transmit the image of backface bead to a video camera, was 
developed in [506]. 

4 .2 .6  C o n t r o l  of  D r o p l e t  T r a n s f e r  F r e q u e n c y  

It is desirable to develop a method of measuring droplet transfer mode 
and its frequency to monitor and control the GMAW welding process 
and achieve a desirable weld quality [507]. 

With droplet transfer frequency determined by arc light sensing, a 
closed-loop PID controller was developed for the GMAW process un- 
der spray transfer mode [478](see Figure 4.6). In this figure, Kp, KI, 
and KD are proportional, integral and derivative constants (tuned em- 
pirically) of the PID controller, fD and fo are the desired and actual 
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droplet transfer frequencies, and ED is the output of the arc light de- 
tector. In particular, the droplet frequency was obtained by finding 
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Figure 4.6: PID control system for droplet frequency regulation. 

the frequency at which the maximum amplitude occurs in the power 
spectrum density (PSD) of the sensor (detector) frequency response. 

At the Colorado School of Mines, a complete equipment instrumen- 
tation system was set up for experimental investigations on controlling 
the GMAW process using arc length and droplet detachment frequency. 
A typical welding equipment and instrumentation assembly with a con- 
stant current power source for droplet detachment frequency measure- 
ment is shown in Figure 4.7 [478]. In estimating droplet detachment 
frequency using an optical sensor, Madigan [478] measured voltage arc 
current, process voltage, wire feed speed, and detector voltage. These 
signals, sampled at 3000 Hz by the data acquisition computer, are 
passed through a low-pass filter with a cut-off frequency of 1000 Hz, 
which is sufficiently below the Nyquist frequency of 500 Hz to avoid 
aliasing [508]. Further, these signals are evaluated using power spec- 
tral density in order to express the time-domain data in terms of the 
frequency-domain data for analysis [509]. 
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Figure 4.7: Welding equipment and instrumentation for experimental 
facility. 

4 .2.7 C o n t r o l  of  W e l d  P e n e t r a t i o n  

Control of weld penetration is one of the most challenging problems 
in arc welding. Here the objective may be to maintain a constant 
weld penetration along the joint in spite of irregularities in the joint 
geometry. For full penetration, there are a number of control schemes 
suggested using a variety of measuring techniques, such as the back-face 
method [510, 511] or by measuring back-bead width [512, 513]. 

By locating a thermocouple near the weld pool to measure the 
temperature, a feedback signal proportional to weld penetration was 
generated in a control system for maintaining uniform penetration with 
torch speed as the control variable [514]. 

Madsen and Chin [515] used an IR sensor to predict the depth of 
penetration by scanning the weld pool in a direction transverse to torch 
travel. A correlation between the depth of penetration and the solid- 
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ification time of the weld pool was found in [516]. Using a functional 
relationship between weld penetration, weld pool width, current, and 
torch speed, Rider measured the weld pool width to control the pene- 
tration by controlling the welding current and torch speed [517, 518]. 
Further, measuring the weld pool width and comparing it to the de- 
sired width, a feedback control system was reported in [519] for joints 
having fixed weld geometry. Also, using front-face ultrasonic measure- 
ments of the weld pool, a real-time weld penetration control system 
was suggested [520, 521]. 

Andersen, et al. [522], proposed a penetration control system based 
on the weld pool natural frequency of oscillation using a phase-locked 
loop (PLL), where the actual weld pool frequency is synchronized with 
the PLL, which locks and tracks the natural frequency of weld pool, 
being a function of the pool mass and hence, indirectly, of the pool 
geometry [523]. 

Some other works on this topic are listed. A method of calculating 
the dependence of the radiation of the controlled section of the weld 
pool on its geometrical parameters, without backing strip and full pen- 
etration, was discussed in [524]. A weld penetration control system was 
designed in [520], in which ultrasonic signals were employed to mea- 
sure weld penetration by placing the transducers along the side of the 
molten weld pool. In [525], a feedback control system was designed to 
assure constant heat input to the workpiece, which resulted in more 
consistent weld penetration. Further works can be found in [511,526]. 

4 .2.8 C o n t r o l  of  J o i n t  P ro f i l e  (Fi l l  R a t e )  a n d  T r a j e c t o r y  

A control system for controlling the joint profile is given in [527]. The 
trajectory controller is meant for providing the torch orientation and 
its path, where the orientation is defined by the longitudinal angles 
and the path is the change of positional coordinates with respect to 
time. In the design of a typical trajectory controller, the control law is 
obtained as [528] 

ut = f l (G) + f2(Wp) (4.1) 

where ut is the torch lateral position, G is the joint profile geometry, Wp 
is the weld pool center position and fl and f2 are functional relations, 
provided by the welding data base in accordance with the type of joint. 
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A simple seam tracking controller (]'2 = 0) is given by Khosla et al. 
[529]. 

Einerson, et al. [489] developed a strategy for GMAW for control- 
ling the reinforcement (mass deposited) and the weld bead centerline 
cooling rate. The strategy involves the measurement of the weld joint 
transverse cross-sectional area ahead of the welding torch and the weld 
bead centerline cooling rate behind the weld pool, using a video cam- 
era. Further, the control scheme employed an intelligent component 
in terms of a combination of a neural network for controlling electrode 
speed and torch speed and a fuzzy logic algorithm for controlling the 
reinforcement G and the heat input H (see Figure 4.8, where R and S 
refer to torch speed and wire feed speed respectively). 
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Figure 4.8" Intelligent control of the GMAW process. 

A noncontact TV tracking system was built in [530]. It was suit- 
able for flat horizontal welding of box section fabrications, incorporat- 
ing video processing features specially suitable for real-time adaptive 
control of position and welding parameters. 

A coaxial welding viewing system to accomplish automatic weld 
joint tracking for the GTAW process was developed and tested in [531, 
504]. Richardson has performed the same work for the GMAW process 
[532]. A joint-tracking system was developed in [533, 534] using a new 
formulation for contact-tip-to workpiece distance. The system operates 
not only on welding current, but also on welding voltage and wire 
feed speed. Tomizuka in [535] gives a general exposition of the design 
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of digital tracking controllers for manufacturing applications such as 
machining and welding. 

4 .2.9 C o n t r o l  of  O t h e r  V a r i a b l e s  or  C o n d i t i o n s  

In this subsection, we survey items not covered in the other sections. In 
a keynote address, Araya and Saikawa [536], gave an excellent account 
of activities (particularly in Japan) in sensing and adaptive control 
of arc welding. Sometimes, an automatic control system may also be 
required to detect any shortage conditions such as that of electrode and 
shielding gases [537] 

In many industrial applications using robots, such as filling wide 
joints, arc welding requires the weaving of torch in a particular pattern 
(square, sinusoidal, sawtooth) depending upon the geometry of the 
weld [538, 539]. Early studies on control of joint configuration, control 
of weld line position, and control of molten pool condition can be found 
in [540],[541], and [542], respectively. 

An active metal transfer control by monitoring excited droplet os- 
cillations was presented by [543]. Controlled metal transfer implies 
controllable heat and mass inputs and improved weld quality. A com- 
bined primary and secondary power supply has been developed in [544] 
for gas-shielded metal-arc welding with a pulsed arc. The process con- 
trol system incorporated additional functions of pulse control. 

Tao in [545] conducted an experimental study to assess the impact 
of the weld power source control on feedback values of welding current 
and voltage relevant to seam tracking. In [546], it was noted that 
a low-cost, non-intrusive sensing technique, known as through-the-arc 
sensing, involves collecting and analyzing welding current and voltage 
signals. 

An efficient method of identifying power supply pulsing parameters 
was developed in [547] for pulsed GMAW, based on statistical experi- 
mental design. Cullison in [548] notes that spatter is a result of unstable 
conditions in the arc. One way to reduce this problem is to stabilize 
the arc. 

In [549], the results of an investigation dealing with the short gas 
metal arc welding with the emphasis on process stability are presented. 
Welding runs were made under different conditions and during each run 
the different process parameters were continuously monitored. 
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4.3 Classical Control" PI, PID and Others 

Here, we review the GMAW process being controlled by classical tech- 
niques, particularly proportional-integral-derivative (PID) control. 

One of the earliest applications of automatic control in a welding 
process is found in [514], which described the development of a servo 
(automatic) control system using feedback signals from temperature 
(thermocouple) measurements to maintain a constant weld penetration 
by adjusting the weld travel speed. For historical significance, the 
corresponding feedback control system is shown in Figure 4.9. 
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Figure 4.9: An early feedback control system for a welding process. 

Although the title of the paper indicates "intelligence" as part of 
the system, there is no reference to any modern terminology, such as 
artificial neural networks, fuzzy logic, genetic algorithms, AI, or expert 
systems. Of course, these fields were not formally in existence at that  
time. Perhaps during those days, the action "automatic" was enough 
to qualify as an intelligent action! 

A simple combined (voltage and current) control was advised for 
DC arc welding in [550, 551]. Here, two controllers were developed, one 
is based on a quadratic power-current relation and the other controller 
is based on an approximate linear relation. 

A proportional-integral (PI) controller was used by Smartt  and Ein- 
erson [482] to achieve a desired heat H and metal G transfer from the 
electrode to the workpiece in a GMAW process with spray transfer 
mode. The difference between a welding current based on model and 
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that of the actual measured current was used as a feedback to obtain 
correct wire feed speed and torch speed as shown in Figure 4.10 where 
R and S are the travel speed and wire feed speed, respectively, and I 
and Im are the model and measured currents, respectively. Also, see 
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Figure 4.10: PI control of the GMAW process. 

other relevant works by this group [552, 553, 554, 555, 556]. 
A 3-dimensional positional control system is discussed in [557] for 

both GTAW and CMAW that permits automatic correction for devi- 
ations in the actual weld path trajectory from preprogrammed antici- 
pated trajectories. An international project involving different Scandi- 
navian (Sweden, Denmark, Norway and Finland) Institutes to develop 
a control system using an optical sensor (photodiode array camera) for 
measurements of the groove geometry in front of the welding head was 
presented in [558]. 

Farson et al. [488] gives the design and simulation of a PID con- 
troller to control the cooling rate of a GMAW system. A simple feed- 
back control system for a GMAW process was designed in [559], where 
the process was modeled as a first-order system with input as wire feed 
rate and output as arc length (arc voltage). 

4.4 Mul t ivar iab le  Control  

Hardt in [560] addressed the multivariable feedback control system to 
control the five output variables: weld geometry variables (width, depth 
and height) and thermal properties (CR and HZ), as shown in Fig- 
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ure 4.11 Here, H A Z  is heat-affected zone, CR is the maximum cooling 
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Figure 4.11: A multivariable feedback control system for the GMAW 
process. 

rate. Also, see [561] for further discussion on a multivariable control 
system approach to GMAW. The work in [562] presents a similar treat- 
ment except the outputs to be controlled are bead width and depth. 
In another investigation on multivariable control of welding processes, 
Hardt and his associates [563, 564, 565] showed that high-frequency (3 
to 10 Hz) weaving changes the temperature distribution in the weld- 
ment and significantly reduces the coupling between the desired out- 
puts, the weld pool width, and the heat-affected zone width. 

For other related work, see [566] for investigations on both single- 
input, single out-put (SISO) and multi-input, multi-output (MIMO) 
adaptive control schemes for a GMAW process using a discrete-time 
transfer function model that takes the inherent time delays in the 
process into account. Also, see related works [567, 568, 569, 562,570]. 

In another multivariable control framework for GMAW process, 
Huissoon, et al. [571,572], present a traditional guidance and control 
technique using a linearized model (based on analysis of small devia- 
tions from the nominal) of the original (nominal) nonlinear system and 
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then controlling the system around the nominal states or conditions 
[573]. Here, the original GMAW process is a nonlinear system, and the 
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Figure 4.12: A multivariable linearized feedback controller for the 
GMAW process. 

linearized system is obtained for the purpose of controller design. 
Also, see [574] for a presentation of a multivariable linear con- 

troller designed to regulate the width and throat thickness of fillet 
welds during a GMAW process by simultaneously manipulating torch 
travel speed, power supply voltage, and wire-feed rate to achieve de- 
sired weld geometry. In this work the controller was designed using an 
empirically-derived linearized model of the welding process operating 
at a pre-selected operating point and using optimal control theory to 
ensure reference tracking, disturbance rejection, and robustness. 

4.5 Optimization and Optimal Control 

In a typical optimal control problem, we have a process or plant de- 
scribed by a differential (for a continuous system) or difference (for a 
discrete, digital, or computer controlled system) state equation and a 
performance criterion such as minimizing an error and/or the control 
effort [471]. In [494], both single-input, single-output (SISO) and multi- 
input, multi-output (MIMO) models of puddle geometry for a GMAW 
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process are derived using off-line identification techniques such as re- 
cursive least-square identification and recursive maximum likelihood 
estimation [575]. 

In [576], a control strategy for two-axis welding torch positioning 
and velocity control for a typical GMAW process was developed using 
LQ control methods. The LQ design was compared with conventional 
PID controllers and it was found, via simulation, that high quality 
seam tracking could be accomplished with the LQ control strategy. 
An optimization analysis was carried out to find the optimal welding 
variables (groove area, heat input rate, and heat input per cm of weld 
length) for the minium residual stresses due to welding [577]. 

A simple mathematical method for the estimation of the optimum 
heat inputs in arc welding was developed in [578]. The optimization 
problem is to make the temperature field coincide with the required 
field during welding and is expressed as a quadratic function of heat 
inputs. 

An experimental approach to selection of pulsing parameters in 
pulsed GMAW was proposed in [547]. An efficient method of identifying 
power supply pulsing parameters for pulsed GMAW based on statistical 
experimental design is presented. 

4.6 Adaptive Control 

First of all, let us note that in the control community the term adaptive 
control is used in the literature [472] to mean that the controller is 
designed so as to adapt for parameter variations and disturbances in 
the process. In this context, an adaptive controller is a controller with 
adjustable parameters and a mechanism for adjusting the parameters 
on its own (self-regulation or self-adjustment). But in the welding 
community, the term adaptive control is used somewhat loosely to mean 
that the process can adapt to the changing welding conditions, which is 
nothing but feedback control [469]. Here we take the former meaning. 

A simple block diagram of the principle of adaptive control, in par- 
ticular that of model reference adaptive control (MRAC), is shown in 
Figure 4.13 [579]. The idea is that the adaptive controller drives the 
physical process to follow the reference model over a range of parame- 
ters of the plant, hence it is called the model reference adaptive control. 
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Figure 4.13: Basic principle of adaptive control. 

However, within the welding community, the adaptive control scheme 
takes several forms, for example see Figure 4.14, which was proposed 
with the intention of developing an expert welding robot [528]. The 
overall scheme, self-explanatory, consists of various blocks THAT con- 
sist of several smaller blocks. Several other adaptive control schemes 
exist, especially for welding robots [580, 581,576, 529] 

An adaptive system with a focus on weld quality is given in [582]. 
Henderson, et al. [496, 494], reported a successful application of a 
pseudo-gradient adaptive algorithm for self-tuning a PI-based puddle 
width controller for a consumable electrode (]MAW process. An adap- 
tive control system for trajectory control (joint profile) was presented 
in [583]. An adaptive controller was developed where the controller 
gains were varied depending upon the nominal values of the current 
and WFS in [584]. 

A temperature control system was designed for a consumable elec- 
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Figure 4.14: Alternative scheme of adaptive control. 

trode GMAW process using an inexpensive optical system for mea- 
suring weld temperatures. The system used a pseudo gradient adap- 
tive algorithm for self-tuning a PI bead temperature controller. The 
controller was designed and then illustrated with experimental data 
[585, 486]. A pseudo-gradient adaptive algorithm automatically tuned 
the gains on-line during the welding process. This method based on 
the work [586] is different from other adaptive control works [587, 588] 
in the sense that the pseudo-gradient algorithm does not depend upon 
the number of parameters or controller structure to the order of the 
plant. 

An autoregressive moving average (ARMA) model relating torch 
travel rate and plate temperature was identified on-line using a MRAC 
system [487]. This MRAC scheme, shown in Figure 4.15, included a 
second-level feedback for controlling weld parameters, which indirectly 
determines weld bead geometry and other metallurgical properties of 
the workpiece. 

In other investigations [589, 590, 587], the authors presented a 
method for dynamic modeling and control of two thermal character- 
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Figure 4.15: MRAC for plate temperature. 

istics (heat affected zone and cooling rate) of a welding process. The 
basic model is a distributed parameter nonlinear process, but a lumped- 
parameter, locally linearized model is used to design a dead-beat adap- 
tive control system. In [591], the authors developed a model for in- 
process control of thermally-activated material properties of weld. Also, 
see [587, 588] for the related work on multivariable adaptive control of 
thermal properties during welding. The work in [562] gives a simi- 
lar treatment except the outputs to be controlled are bead width and 
depth. 

In [592, 593, 594], Doumanidis devised an adaptive MIMO scheme 
to control both geometric and thermal characteristics of a weld based 
on lumped-parameter and distributed-parameter modeling and identi- 
fication (see Figure 4.16 where Yd is the desired output and Y0 is the 
actual output.) 

Further results on distributed parameter adaptive control are re- 
ported in [595] where an adaptive thermal control system using a Smith 
predictor to take care of the long transport delays of the thermal process 
[472] and in the present case the delay due to the temperature mea- 
surement at the torch location. Figure 4.17 shows the scheme, where 
Td is the desired temperature distribution and Q is the heat input to 
weld process. 

Doumanidis [593] gives an excellent account of some 25 works relat- 
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Figure 4.16: Adaptive thermal control system. 

ing to control systems in welding research literature, classifying them 
in terms of the welding method, model, control technique, inputs, out- 
puts, and sensors. Adaptation to changes in the geometry of the weld- 
ing joint was carried out using a two-channel system for the control 
of movement of the robot [580, 581]. A system that maintains control 
over process parameters by continuously monitoring welding conditions 
through closed-loop feedback mechanisms was studied in [596] and the 
corresponding system is called adaptive or self-regulating system. 

Other works in this area are [587, 588] where the authors found 
that the minimum number of adjustable parameters in the controller is 
dictated by the order of the plant in order to achieve not only stability 
but exact tracking of a reference signal. 

Cook, et al. [469, 597] addressed the problem of adaptive and de- 
coupling control of MIMO welding processes. The various input and 
output variables are not only related in a highly nonlinear fashion, but 
also they are also strongly coupled. Hence, there is a need for de- 
coupling [598, 599] and adaptive decoupling [600] techniques for these 
MIMO welding systems, particularly for controlling direct weld para- 
meters (DWP). 

Kwak, in [601], considers the application of GMAW with deposition 
shape control for bead width control through the wire feed implemented 
in real time using Smith prediction to cope with sensor delays. Multi- 
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Figure 4.17: Adaptive thermal control system using a Smith predictor. 

predictive adaptive control of arc welding trailing centerline tempera- 
ture was performed in [602] for tor tackling the high level of uncertainty 
in the process. 

4.6.1 I S U  A d a p t i v e  C o n t r o l  S c h e m e  

In order to achieve a desired mass (the transverse cross-sectional area of 
the deposited metal) and heat (given on a per unit length of weld) trans- 
fer values for a GMAW process, a fifth-order model described by highly 
nonlinear differential equations has been considered (ISU/INEEL [603]). 
After some simplification into a second-order model and linearization, 
we have a linear system with two inputs (open-circuit voltage and wire 
feed speed) and two outputs (arc current and arc voltage), where we 
assume the contact-tip-to-workpiece distance and weld torch speed to 
be constant. A direct model reference adaptive control (DMRAC) 
scheme based on the doctoral work of Ozcelik [604], was applied to the 
ISU/INEEL model of the GMAW process. With particular reference 
to our GMAW process, the DMRAC system is shown in Figure 4.18 
[579]. This adaptive system was designed and implemented on the ex- 
perimental facility at Idaho State University. This work is discussed in 
detail in Chapter 5 and in the reports [605, 579]. 
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4.6.2 O t h e r  W o r k s  on  A d a p t i v e  C o n t r o l  

An early development of an adaptive system for resistance arc welding 
control is presented in [606]. In [607, 608, 609], a systems approach 
to model the feedback and adaptive control of process variables in arc 
welding is discussed. A control scheme introduced by Cook [610] co- 
ordinates arc position sensing with manipulator motion to adaptively 
position the welding torch in response to unexpected changes in the 
weld joint trajectory. 

A proof-of-concept of adaptive welding for flux cored arc and GTAW 
for small parts using feedforward control is demonstrated in [611]. Data 
processing problems associated with an adaptive control system for 
GMAW are discussed in [539, 612]. An adaptive control system for the 
GTAW process was designed in [613]. An awareness of the effects of 
weld joint dislocation on weld quality when utilizing robotics, where 
the joint dislocation is defined as the distance between the weld path 
of the robot and the centerline of the weld joint, is discussed in [614]. 

A robotic adaptive welding system is given in [615]. The develop- 
ment of a real-time adaptive spot welding control system was given 
[616]. The application of adaptive control theory to a GTAW process 
were demonstrated in [617, 618]. Two representative adaptive control 
schemes were used: the model reference adaptive control (MRAC) ap- 
proach developed by Narendra and Lin [619] and the self-tuning adap- 
tive control approach with pole placement [620]. An adaptive control 
system for weld penetration was designed in [621]. A good discussion 
of adaptive control of multivariable GMAW processes can be found in 
[561,609]. The use of coaxial viewing for adaptive welding control of 
the GMAW process is developed in [622]. 

An adaptive control system for the GMAW process as a lab model 
is designed in [623]. The welding current and weld speed are controlled 
leading to high quality welds. Design of a model pool controller based 
on MRAC is given in [624]. In [625], an adaptive controller for multi- 
layer GMA welding of thick steel plates is presented. 

A new paradigm for designing controllers for poorly-modeled sys- 
tems with significant time-delay is introduced in [626, 627]. An adap- 
tive, dead-beat compensator was developed, which is significantly dif- 
ferent from the standard Smith predictor, and applied to the exper- 
iments on a GMAW testbed provided by the US Army Construction 
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Engineering Research Laboratory (CERL) in Champgaign, IL. 
An adaptive control system for the GTAW process based on gener- 

alized predictive control was designed in [628, 629, 630,631]. The con- 
troller predicts future outputs based on the present and future inputs 
[632]. The idea is applied to the GTAW process with non-minimum 
phase and variable large orders and delays in [633] and used in an adap- 
tive scheme for robot welding in [634]. Other related works is found in 
[635, 628, 636, 633, 637]. 

An automatic welding system that can simultaneously control the 
bead height and back bead shape during one-sided metal active gas 
(MAG) welding with a backing plate was designed in [638] using a 
newly developed welding parameter control method in which only the 
wire feed-rate and welding voltage are adaptively controlled. 

Tzafestas in [639] investigates the application of conventional and 
neural adaptive control schemes to GMAW with a review of four adap- 
tive control techniques: MRAC, pseudo-gradient adaptive control (PAC), 
multivariable self-tuning adaptive control (STC), and neural adaptive 
control (NAC). In [640] an adaptive controller is introduced that is ca- 
pable of "identifying" the arc sensitivity characteristic and adjusting 
the controller in real time for optimum response, without any a prior 
knowledge of the current/gain relationship. 

4.7 Intelligent Control 

In this section, we describe intelligent control of GMAW process. In- 
telligent control implies the use of neural networks, fuzzy logic, pat- 
tern recognition, expert systems, artificial intelligence (AI), and/or 
knowledge-based systems. These techniques, in particular neural net- 
works and fuzzy logic, do not require precise mathematical modeling 
of the welding process, which is a stumbling block for all control tech- 
niques to be applied to welding processes. 

4.7.1 Fuzzy  Logic 

Fuzzy logic is a concept based on set theory. Proposed by Zadeh [641], 
fuzzy logic was reengineered mostly by Japanese and then United States 
researchers. Fuzzy logic has been heavily used in control applications 
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[642]. Introducing a fuzzy set for, say molten pool width, one can 
define terms such "wide" and "narrow" and incorporate these terms 
into a fuzzy set with no boundary between "wide" and "narrow". See 
[624] for a molten metal pool controller based on fuzzy inference. 

An experimental study of the application of fuzzy linguistic princi- 
ples to control the peak surface temperature of the workpiece with wire 
feed rate as the input for an arc welding process is reported in [643]. 
Problems concerning the sensing of weld phenomena and the effects of 
power source characteristics on the stability of the arc are addressed in 
[644]. 

Sensing of the weld line using fuzzy control is presented in [645]. An 
application of fuzzy logic to spatial thermal control in fusion welding 
is reported in [646]. In this work, the theory of fuzzy sets was used as 
a general framework to interpret the uncertain arc signals and provide 
logic for control. 

4 .7.2 N e u r a l  N e t w o r k s  a n d  F u z z y  Logic  

Einerson, et al. [489], developed a control strategy for GMAW that 
employed an intelligent component in terms of a combination of an ar- 
tificial neural network (ANN) for controlling electrode speed and torch 
speed and a fuzzy logic for controlling the reinforcement G and the 
input H (see Figure 4.8). In another multisensor-based control scheme 
[647], a neural network controller was developed as a bridge between 
the multiple sensor set and a conventional controller that provides in- 
dependent control of the process variables such as torch speed, wire 
feed speed, CT, and open-circuit voltage. 

In [648], the AI techniques involving ANNs and fuzzy logic were 
applied to address the problem of monitoring and controlling process 
variables such as welding power, torch velocity, and shielding gas to 
assure uniform and good quality welds in a GMAW process. In partic- 
ular, the ANNs were applied to monitor weld pool geometry and the 
fuzzy logic controller was used to maintain arc stability and, hence, uni- 
form weld quality. Also, in the experimentation, the fuzzy controller 
was found to be superior to the traditional PID controller. 

Einerson, et al. [489], also developed a strategy for GMAW for 
controlling the reinforcement and weld bead centerline cooling rate, 
employing an intelligent component in terms of a combination of a 
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neural network for controlling electrode speed and torch speed and a 
fuzzy logic controller for the reinforcement (G) and the input (H) (see 
Figure 4.8). Also, see other works by this group on intelligent sensing 
and control [647, 649,650, 651]. 

Based on ANN and fuzzy logic, a self-learning neuro-fuzzy control 
system was developed for real-time control of pulsed GTAW in [652]. 
Here, an industrial TV camera was used as a sensor and by means 
of computer imaging techniques, the weldface width was estimated for 
use as a feedback signal. A block diagram employed by the authors is 
shown in Figure 4.19. Here, Y is the output, Yd is the desired output, 

Yd.~ Fu~z,y 
Contrbller 1 

[ 
U .] Welding I Y 

"1 Pr~ I 

Y IMeasurement L 
MoHel ' [ System [" 

Y 

Figure 4.19: Self-learning fuzzy neural control system for arc welding 
processes. 

Ym is the model estimated by the neural network (NN), and U is the 
control input to the process. 

Kovacevic and Zhang [653] used a feedback algorithm based on a 
neuro-fuzzy model for weld fusion to infer the back-side bead width 
from the pool geometry. A neuro-fuzzy model is one where the para- 
meters of a fuzzy model are trained (adapted) by using neural networks 
[654]. In a typical experimental setup, the weld pool image is captured 
by a CCD camera and processed through an image processing unit, and 
then a neurofuzzy estimator provides the weld bead geometry (top-side 
and back-side widths), which is incorporated into a feedback algorithm 
to achieve the desired bead geometry, as shown in Figure 4.20. 

Extensive results can be found on this and related topics by this 
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Figure 4.20: Experimental setup for neurofuzzy model-based control. 

group in [655,656,657, 658, 633, 659, 660, 661]. Also, refer to [662] for 
the problem of tracking the welding line in an arm-type welding robot 
using fuzzy neural network. 

On-line monitoring of weld defects for short-circuit GMAW based 
on the self-organizing feature map type of neural network was presented 
in [663]. It is based on the extraction of arc signal features as well as 
classification of the obtained features using SOM neural networks to 
get the weld quality information. 

4.7.3 Knowledge-Based and/or  Expert System 

Expert systems in welding are intended to close the gap between a qual- 
ified operator who is inexperienced in welding and the skilled welder. 
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Incorporating extensive intuitive user interfaces and intelligent front- 
ends for encoding welding knowledge and expertise, robotic (adaptive) 
welding system using sensor feedback can compensate for part varia- 
tions [664, 665, 666]. 

An AI system for automatic control of a narrow-gap GMAW process 
was developed in [667]. In order to eliminate the need for an expe- 
rienced operator, the authors examined the application of AI based 
control. One such configuration is shown in Figure 4.21. In the ex- 

i 
! 

' I 
o 
e 
e 

, a 

[ ' ! i 
i 
! 
! 

I 

Input 
Data 

AI Control System 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 

! 
! 

i 

Expert Data 
System *--- Analysis 

/ W e l d i n g  Controlle  Welding 
Process 

v 

Output 

Sensor ~ llmag e 
Processin~ "~ I Sensor 

Figure 4.21" Artificial intelligence system for a welding process. 

pert system the welding data is inferred both from the control codes 
and from the knowledge of the data base that is collected from the 
experience of skilled operators and from the measurement data. 

An expert system called WELD-ASSIST for a robotic GMAW process 
used with low-carbon steel and mild steel is presented in [666]. The 
use of expert systems for adaptive control strategies were investigated 
in [668] for small batch arc welding to significantly improve the pro- 
ductivity, quality, and reliability of naval shipyard welding activities. 

The development of an expert system for GMAW of aluminum and 
its alloys in Turbo-Pascal were developed in [669]. The expert system 
gives the complete procedure and provides recommendation on the type 
of power source, the type of welding current, the electrode angle, and 
a host of other welding parameters. In addition the neural networks 
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are used as target functions for genetic programming in order to find 
an optimized welding parameter set [670]. 

4 .7.4 O t h e r  W o r k s  on  I n t e l l i g e n t  C o n t r o l  

In [671] pattern recognition techniques are employed for feedback po- 
sition control using the arc signals and establishing a relationship be- 
tween the electrode-to-workpiece spacing and arc signals. Intelligent 
control of welding processes in general can be found in [514, 672,673]. 

An expert system-based control system for positional control sys- 
tem is presented in [674]. The Adaptweld System T M  is used in [538] 
to provide an expert welding system incorporating the knowledge of 
several skilled human welders in its information and control knowledge 
base. A hybrid hierarchical controller capable of compensating for in- 
complete modeling of the welding process was presented in [675] using 
a variety of expert systems, artificial neural networks and adaptive 
algorithms. 

Intelligent sensing and control in arc welding processes in general 
and in GMAW in particular were discussed in [651]. The author draws 
an interesting distinction between the application of intelligent tools to 
process control examines various "objectives" such as process modeling, 
sensing, control theory, and artificial intelligence. 

The application of neural networks to model a GTA welding process 
with experimental verification was reported in [676]. It was noted that 
such intelligent modeling techniques are needed for the application of 
Intelligent Processing of Materials (IPM) concepts to real manufactur- 
ing situations. A computer-aided-design (CAD)-based expert system 
for a GMAW process equipped with a six-axis industrial robot was 
presented in [677]. 

SmartWeld, a system for intelligent design and fabrication of weld- 
ing components, developed by Sandia National Laboratories, Albu- 
querque, New Mexico was introduced in [678]. Siewert [679] discusses 
that welding problems such as the melting of the contact tube in 
GMAW can now be quickly corrected by employing automated in- 
telligent control systems. Some other experimental results of intelli- 
gent/robust control and neural networks as applied to welding processes 
can be found in [680, 681,682, 683, 684, 685]. 

Cook [686] considers three aspects of robotic arc welding of alu- 
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minum: coordinated motion control and weld path programming, pen- 
etration control, and joint tracking with through-the-arc sensing. A 
fuzzy logic system for process monitoring and quality evaluation in 
GMAW is designed in [687]. In this work, a fuzzy logic system that 
is able to recognize common disturbances during automatic GMAW 
using measured welding voltage and current signals is introduced. 

4.8 Stat is t ical  Process  Control  and Quali ty  
Control  

Here, we briefly review statistical process control, quality control, and 
quality assurance issues related to GMAW. Statistical quality control 
(SQC) is the application of statistical methods for the purpose of deter- 
mining if a given component of production (input) is within acceptable 
statistical limits and if there is some result of production (output) that 
may be shown to be statistically acceptable to required specifications 
[688]. On the other hand, statistical process control (SPC) is the appli- 
cation of statistical methods for the purpose of determining if a given 
process is within the operating control parameters established by sta- 
tistical procedures [689]. 

In [690, 691,692], a statistical process control (SPC) technique was 
applied to a GMAW process to provide weld process quality control by 
using standard statistical process techniques, trending analysis, toler- 
ance analysis, and sequential analysis [693]. Also refer to the work in 
[694] on SPC applied to GMAW. 

A conceptual model of a pipeline welding quality control system was 
designed in [695,696]. A weld process control system for computerized 
control and maintenance of the appropriate weld quality was designed 
in [697]. The information extracted from the real-time radiographic 
images about weld quality, supplemented by sensor data on weld cur- 
rent and voltage, was used for weld power-supply control. A discussion 
on the use of SPC for detecting defects in arc welding is given in [698]. 

A totally integrated weld quality monitoring system for GMAW 
was developed in [699] for recording, analyzing, and modifying welding 
parameters for quality verification of the weld and for tracing discon- 
tinuities. The application of SPC techniques to assess the quality of 
welds produced by the GMAW process is given in [700]. The control 
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charts for use in tracking voltage and current resulted in many false in- 
dications of acceptable welds and lack of indication of defective welds. 
Prediction of process parameters for GMAW by multiple regression 
analysis was reported in [701]. In this study a regression model was 
obtained from welding process parameters through the correlation of 
the parameters of the back-bead, to which an inverse transformation is 
performed. 

On-line control of robotized GMAW was reported in [702]. The 
proposed control system aims to detect the most critical defects in 
industrial applications. 

4.9 Other Control Methodologies  and Issues 

Under this section, we first review some specific control methodologies 
that have been applied to GMAW and then survey various issues not 
covered above. 

4 .9 .1  I t e r a t i v e  L e a r n i n g  Control  

Iterative learning control (ILC), a relatively a new technique within 
the arsenal of the control engineer, is a technique for improving the 
transient response and tracking performance of any physical system 
that is required to execute a particular operation repeatedly (such as 
a manipulator that might be programmed to do spot welding in an 
automobile manufacturing assembly line). By observing the error in 
the output response after each operation and using the error to modify 
the input signal to the system, ILC attempts to improve the system 
performance [703]. In other words, ILC is a technique for systems 
with repetitive or iterative operations, which are modified based on the 
observed error (or are programmed to learn) to control the input signal 
at each repetitive operation. 

In another contribution to the development of ILC scheme to GMAW 
process [704], where the time interval between detachments of mass 
droplets from the end of an electrode is considered as a trial, the ob- 
jective of ILC is to force the mass to detach at regular intervals with a 
uniform amount of mass in each detached droplet. 
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4.9 .2  F e e d b a c k  L i n e a r i z a t i o n  

Feedback linearization is a powerful techniques for analysis and design 
of nonlinear systems. The central idea of this approach is to alge- 
braically transform the nonlinear system dynamics into a fully or par- 
tially linearized system so that the feedback control techniques could 
be applied [705, 706]. Note that this linearization technique, which is 
an exact state transformation and feedback, is entirely different from 
the conventional linearization based on Taylor series approximations. 

In another investigation, the feedback linearization technique was 
applied to the fifth order, nonlinear model developed by ISU/INEEL 
researchers [603, 707, 708, 709] for a GMAW process. The fifth-order 
model (2.55) was first approximated into a second-order nonlinear model 
(2.61) in terms of two states current and stick out and three inputs: 
wire feed rate, open-circuit voltage and contact-tip-to-work piece dis- 
tance. Using this second-order model and the steady-state models for 
heat and mass transfer [482], it was shown that it is possible to inde- 
pendently control current and arc length (effectively stick out) using 
the open-circuit voltage and wire feed speed. This result is described 
in more detail in the next chapter. 

4.9.3 Relative Gain Array 

In any study of control of multivariable physical systems, the process 
interaction is an important factor influencing the system behavior. A 
quantitative measure of interaction is needed to apply a multiloop con- 
troller and the relative gain array (RGA) is a useful technique for de- 
termining the appropriate loop pairing [710]. 

The RGA method was applied to the ISU/INEEL model [603, 579]. 
It was found that the correct pairing is that wire feed speed should be 
used to control the current and the open-circuit voltage should be used 
to control the arc voltage. Based on these loop pairings, several multi- 
loop controllers were designed. The complete details can be found in 
Chapter 5 and [711]. 

4 .9 .4  O t h e r  W o r k s  on  C o n t r o l  

On-line control of arc welding processes by obtaining a relation in equa- 
tion form between the inputs (such as arc applied voltage, current, wire 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


4.9. OTHER CONTROL METHODOLOGIES AND ISSUES 181 

feed rate, welding gun position and speed) and outputs (such as weld 
bead dimensions) of the welding process was performed in [712]. Au- 
tomatic precision TIG welding techniques were developed in [713] for 
welding all types of joints required on nuclear fuel elements by the 
Springfield Nuclear Power Development Laboratories (SNPDL), Sal- 
wich, Preston, UK. 

Cook, in [714], gives a distributed microcomputer control system 
used in the programming, sensing, and feedback control of the welding 
process parameters. An interesting general discussion on the need for 
automation in welding processes aiming towards flexible manufacturing 
facilities is given in [715]. An automatic weld-line tracking system was 
developed in [716] by employing a light scanning technique using a laser 
and an image sensor for the sectional pattern of the joint groove. 

A real-time machine vision-based feedback control system was de- 
signed in [717] to compensate for static and dynamic geometry vari- 
ations as well as control of welding process parameters. A general- 
purpose, real-time seam tracking algorithm was developed in [529] for 
implementation on any six-degree-of-freedom robot, where the algo- 
rithm requires knowledge of only one point ahead to track a seam. 

A process control system for arc welding applications was designed 
in [718] to provide advanced capabilities for tracking and analysis of 
welding variables. The requirements for second generation automatic 
welding systems capable of multipass welding, such as the machine in- 
telligence capable of image perception with the ability to think strate- 
gically, were investigated in [719]. A process controller for vertical strip 
cladding using melt level sensing methods and a guide shoe design for 
the GMAW process were presented in [720]. 

An excellent tutorial and review type of discussion on modeling, 
sensing and control of welding processes were given in [469]. In [721, 
722] it was pointed out that a simple automatic voltage control system, 
obtained by using gain scheduling technique, may be unstable over a 
wide range of current settings due to variations in arc sensitivity with 
current. A wire feed control system using a DC motor is given in [479]. 

The use of an infrared feedback signal for the automatic tracking of 
single V-groove prepared butt joints was discussed in [723]. In [722], a 
simple automatic voltage control (AVC) system that was unstable over 
a wide range of welding currents because of the arc sensitivity with 
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current was designed. Digital feedback control of weld penetration of 
a GTAW using ANN for modeling was proposed in [724]. 

An automated robotic variable-polarity plasma arc welding (VP- 
PAW) for the Space Station Freedom Project (SSFP) is presented in 
[725]. The SSFP requires approximately 1.3 miles of aluminum welding 
for the final assembly. The VPPAW was chosen because of its ability 
to make defect-free welds in aluminum and the robotic VPPAW system 
was built by ABB Robotics, Inc., of Greenwood, SC, and installed at 
NASA's Marshall Space Flight Center. 

A very good general presentation on the need for modeling and 
control of manufacturing processes in general and welding in particular 
is given in [726]. The author reviewed two decades of manufacturing 
control research in the ASME Journal of Dynamic Systems, Measure- 
ment and Control and found that there are only 25 articles published 
in the Journal on the whole of manufacturing, and out of them, there 
were only 6 papers on arc welding. 

The work reported in [727] is an edited collection on sensors and 
control systems in arc welding, and, although a very good presentation 
of various topics, almost all the literature is limited to works in Japan. 
Control systems in general and welding process control in particular 
are discussed in [728] and [624], respectively. 

A process control system for the arcing and short-circuiting phases 
and a study of its effect on spatter is presented in [729]. Future trends 
on control systems for arc welding processes, with an overwhelming re- 
sponse towards adaptive control, are discussed in [730]. Holm, in [731], 
develops a method for state space modeling of the whole manufactur- 
ing control system, including welding, and presents the use of state 
space models for improving processing control by articulating issues 
such as stability, disturbance compensation, hierarchical control, state 
estimators, and plant parameter estimation. 

An arc welding penetration control system using quantitative feed- 
back theory (QFT) is given in [732]. QFT is a unified theory that 
emphasizes the use of feedback for achieving desired robust system 
performance tolerances despite structured plant uncertainty and plant 
disturbances [733]. Other works in these areas can be found in the 
section on sensing, control and automation in [734]. A computer simu- 
lation of GMAW start-up was developed in [735] that accounts for the 
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voltage-current characteristics of the welding arc, the welding power 
supply, and the interaction between the moving anode wire and the 
welding arc. 

In [736], it was shown that an arc discharge in a GMAW welding 
process with fusible electrodes starts before a short-circuit bridge, made 
by a metal drop between the electrodes, is broken. The possibility of 
this premature ignition is proved by voltage and current measurements, 
by analysis of the electrical field near the neck of the drop, and also by 
simulation of the increase in current in an electrical discharge. 

A unique excitation, sensing, and control system was developed in 
[737] to predict and control the state of penetration during the GTAW 
process. Excitation of the molten pool is accomplished by synchro- 
nously modulating the arc force in phase with the weld pool's own 
natural frequency using a phase-locked loop (PLL) technique. Regula- 
tion of GMA welding thermal characteristics via a hierarchical MIMO 
predictive control scheme that assures stability has been presented in 
[738]. The work proposes a hierarchical predictive control scheme for 
the metallurgical characteristics of GMAW. 

Numerical analysis of the dynamics of droplet growth in GMAW 
was studied by Zhang in [739]. Feedback of droplet transfer is pursued 
as a solution to produce sound GMAW welds. Zhang has also developed 
a robust control algorithm to control the pulsed gas metal arc welding 
process [740]. In a recent study [741], Zhang also proposed a modified 
active control to ensure a specific type of desirable repeatable metal 
transfer modes. 

Other results that have been reported at various experimental fa- 
cilities for implementing automatic controllers for the GMAW process 
include [526, 501], [478], [489], [603, 579], [742, 561, 560], [633, 637], 
[626, 743, 744, 745, 627]. 

4.10 Safety and Environmental  Issues 

Some of the potential safety hazards associated with welding opera- 
tions are radiation, visible, infrared and ultraviolet light; ionizing ra- 
diation (x-rays) (due to EBW); toxic gases (due to arc processes) and 
noise (due to friction and plasma). Hence, the welding operator is nor- 
mally protected by means of proper protective clothing, head gear with 
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eye protection, local screening and ventilation. A number of different 
hazards present in electric arc welding and their effective control is 
achieved by conventional environmental engineering solutions. Control 
of welding fumes at the source rather than by local exhaust ventilation 
is presented in [746]. In particular, the effect of the rate of fume gener- 
ation of the various welding parameters such as voltage, current, wire 
feed rate, shielding gas and the material to be welded, were studied. 

4.11 Classification of References by Section 

Here, we provide a table containing the various references according to 
each section of this chapter. This will provide a ready reference to the 
interested reader to search for relevant references in each section. 
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Table 4.1: Section by Section List of References 

Section Reference Numbers 

4.0 Gas Metal Arc Welding [468] 
4.1 Manual Control Techniques 
4.2 Automation or Automatic Welding 
4.3 Automatic or Feedback Control Techniques [469]-[475] 
4.4 Control of Process Variables [476]-[549] 
4.5 Classical Control: PI, PID, and Others [482],[488], 

[550]-[559] 
4.6 Multivariable Control [560]-[575] 
4.7 Optimization and Optimal Control [471],[494],[547], 

[576]- [579] 
4.8 Adaptive Control 

4.9 Intelligent Control 

4.10 Statistical Process Control and 
Quality Control 
4.11 Other Control Applications and Issues 

[469],[472],[486], 
[487], [494], [496] 
[528],[529],[539], 
[561],[562],[577] 
[580]-[641] 
[489],[514],[538], 
[625],[634] 
[642]- [688] 

[689]-[703] 
[4691,[4751,[4821, 
[5291,[580], 
[604],[625], 
[704]-[742] 

4.12 Safety and Environmental Issues [743] 

4.13 Experimental Facilities 

[479],[489],[5011, 
[526],[560],[561] 
[580],[604],[627], 
[628],[6341,[6381 
[744]-[746] 
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Chapter 5 

Control of GMAW: A Case 
Study 

In this chapter, we present a case study on the control strategy for the 
Gas Metal Arc Welding (GMAW) process that  was performed by the 
authors and their students at Idaho State University (ISU), Pocatello, 
Idaho. The work was performed in collaboration with the researchers 
at the Idaho National Engineering and Environmental Laboratory (IN- 
EEL). 

5.1 I n t r o d u c t i o n  

The research presented here is based on the following chain of ideas. 
Generally, a good weld is identified by its microstructure and other 
factors (e.g., the amount of spatter, the amount of overfill or underfill, 
etc.). Although these are not easily measured or quantified, they can 
be related to characteristics such as the cooling rate of the weld pool, 
the metal transfer mode, the bead/groove geometry, workpiece defects, 
etc. Likewise, many of these characteristics can be related to the mass 
and heat transferred from the GMAW process to the weld pool. These 
are affected in turn by the properties of the stream of droplets that  are 
melting off the electrode. Typically, we want the stream of droplets 
to be uniform in size and come off the electrode at uniform intervals. 
If a suitable degree of control authority over the droplet properties 
(detachment interval and droplet size) can be achieved, it would be 

219 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


220 CHAPTER 5. CONTROL OF GMAW: A CASE STUDY 

possible to control the heat and mass transfer and, consequently, the 
"goodness" of the weld. Following these ideas, our approach to con- 
trolling the quality of the weld in the GMAW process is to adjust the 
power supply parameters (perhaps based on measurements of process 
conditions) so as to control the heat and mass input to the weld pool 
and, more specifically, the droplet detachment properties. 

Figure 5.1 gives a pictorial description of the interdisciplinary na- 
ture of the GMAW control problem and also illustrates the general 
approach we have taken in our long-term research on GMAW automa- 
tion [747, 748]. The figure also shows an input /output  model of the 
GMAW process as well as the primary signals in the system. We con- 
sider the process to have four inputs (open-circuit voltage, wire-feed 
speed, contact tube-to-workpiece distance, and torch travel speed, or 
Vow, S, CT, and R, respectively) and two measured outputs (current 
and arc voltage (shown equivalently as arc length in the figure), or I 
and V ~ ,  respectively). These primary signals act to produce the heat 
and mass inputs to the weldment (H and G, respectively), which then 
interact with the weldment to produce the thermal and fill properties 
of the weld. We additionally assume that sensors and analysis tech- 
niques exist to measure various properties of the weld pool geometry 
(e.g., seam tracking coordinates or required fill) and thermal proper- 
ties (e.g., centerline cooling rate or penetration). Using the information 
from the available sensors, the task of the controller is to select the best 
values of the process inputs so as to produce "good" welds. 

The results we present are part of the larger project aimed at devel- 
oping methods for controlling GMAW processes, as depicted in Figure 
??. The long-range emphasis is on the control of the mass and heat 
delivered by the process to the weld pool [749,750]. However, as a part 
of the larger project, the variables closest to the process were chosen 
as a starting point, with a focus on regulation of the measured current 
and arc voltage to desired set points. Experimental results showing the 
ability to achieve such regulation using classical controller design tech- 
niques are presented. Also included are the results of the application of 
more modern adaptive control techniques to the GMAW control prob- 
lem, specifically, direct model reference adaptive control (DMRAC). 

Accurate modeling is an important part of any control system de- 
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sign, regardless of the algorithms used in the controller. To under- 
stand the process dynamics, experiments were conducted to calibrate a 
fifth-order, nonlinear dynamic model of the GMAW process for a spe- 
cific experimental apparatus. The fifth-order model is based on past 
research and is derived from a combination of first principles and em- 
pirical results available in the literature [751,748, 752]. A key feature 
of the model is that  it is parameterized by various physical constants 
and in particular by five empirical constants. Experimental data of 
steady-state current and arc voltage was obtained from an automated 
GMAW system over a range of operational conditions defined by vari- 
ations in open-circuit voltage and wire-feed speed. The data is used to 
characterize the optimal values of the five empirical constants used in 
the model where best is defined relative to the error between the actual 
GMAW outputs and those predicted by the model. Consideration is 
given to the optimization of parameters over the complete data set. 
The analysis is not unlike that  in [751], which found the best values of 
empirical parameters from a large data set collected over a wide range 
of operating points. However, here the optimal value of each parame- 
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ter is determined as a function of operating conditions. From contour 
plots of the model error, it is seen that the empirical "constants" of 
the fifth-order model are not constants but instead are a function of 
the operating conditions of the system. This is a key observation that 
motivates the use of the DMRAC later in the chapter. 

In previous works, it was argued that it is reasonable to approxi- 
mate the GMAW process with a two-by-two linear, multivariable sys- 
tem [752,748]. From simple step response tests, it is possible to derive 
an empirical model in transfer function form for nominal operating con- 
ditions. To this end, an empirically-determined dynamic model of the 
GMAW process for use in the controller design is described and model 
analysis, controller design, and experimental results for two controller 
strategies were presented. First, a single-input, single-output (SISO) 
proportional integral (PI) controller for current is given. Next, the rel- 
ative gain array (RGA) technique of process control is applied to the 
empirical model to design a multi-loop PI controller for the process. 
The resulting controller pairs wire-feed speed with current and open- 
circuit voltage with arc voltage to regulate current and arc voltage to 
desired set points. Using the error between the measured values of 
current and arc voltage and the desired values of these variables, the 
controller simultaneously adjusts the wire-feed speed and the open- 
circuit voltage of the power supply, respectively. The basic benefit 
that is derived at this stage is the ability to reduce variability in the 
measured signals combined with the ability to force the measured out- 
puts to their desired values. One of the distinguishing features of much 
of the work has been the model-based approach to the design of the 
controllers for the process [752]. Also, the use of the RGA method to 
select controller loop pairings is unique and offers interesting insight 
into the best ways to control the process [753]. 

5.2 Empir ical  Mode l ing  of a G M A W  Process  

The theoretical modeling of the GMAW process used to derive the 
INEEL/ISU model was given in Section 2.9. In this section, we de- 
scribe the empirical determination of two related models. First, we 
present the calibration of the fifth-order nonlinear model, including a 
description of the data collected and the parameter optimization re- 
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sults. We then present an empirically derived transfer function model 
of the process about a specific operating point. 

5.2.1 C a l i b r a t i o n  of  a G M A W  P r o c e s s  

Experimental Data 

Using an experimental facility constructed to investigate welding con- 
trol and automation, a series of 55 experiments were conducted to 
collect calibration data. In each experiment, a prescribed open-circuit 
voltage and wire-feed speed was applied to the system, and the resulting 
current and arc voltage signals were measured. All experiments were 
run open-loop. Each experiment used the parameters given in Table 
5.1. Table 5.2 shows the measured values of current and arc voltage 
with respect to open-circuit voltage and wire- feed speed as measured 
from the power supply sensors. The actual data acquired from the 
experiments was manipulated to obtain these results as follows. First, 
the transients in the output signals were neglected by deleting the first 
second of data. Then the remaining two seconds of data were averaged 
over time. The final values represent the steady-state values of cur- 
rent and arc voltage with respect to the constant values of open-circuit 
voltage and wire- feed speed. 
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Table 5.1: Welding Parameters Used During the Experiments 

Weldment material 
Weldment thickness 
Torch angle 
Gas composition 
Gas pressure 
Electrode diameter 
Electrode composition 
Initial X-axis speed 
Initial Y-axis speed 
Power supply 

operating mode 
Open-circuit voltage 

operating range 
Wire-feed speed 

operating range 
Contact tip-to-workpiece dist. 
Weld speed 

Flat stock mild steel 
0.25" 
0 degrees 
85% Ar 15% CO2 
30.0 psi 
0.045" 
AWS/ASME SFA5.18 
r3ol ipm 
0.0 ipm 

Constant voltage 

28V to 38V 

250 to 450 ipm 

0.75" 
30 ipm 
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Table 5.2: Results of Steady-State Data Collection 

C u r r e n t  [ A r c  Vol tage  i O p e n - c i r c u i t  Voltage,  Wire-Pbed Speed  ] 

216.7478 34.4912 
220.4587 35.7322 
230.2010 37.1719 
235.2805 38.4670 
243.2863 39.7568 
254.1635 40.8128 
258.5118 41.9084 
266.6107 43.1293 
273.7057 44.3957 
297.9041 45.1733 
346.8698 45.0861 
244.7135 33.9139 
242.9675 35.1938 
244.8064 36.5739 
252.3317 38.0297 
261.3481 39.4294 
279.3352 40.4867 
285.5294 41.6486 
298.0920 42.8244 
308.1061 43.8203 
318.1792 44.7602 
338.1852 45.5200 
264.9320 33.5759 
258.4770 35.1077 
254.8920 36.6484 
266.9976 37.5662 
269.7978 35.8575 
298.3253 40.0642 
313.0345 41.5022 
324.5637 42.7263 
333.2261 43.7379 
339.4062 44.6573 
349.9693 45.2558 
282.7422 33.1027 
282.0588 34.5166 
284.3064 35.7409 
286.9252 36.7601 
297.3010 38.1430 
308.9067 39.7751 
320.1427 41.3663 
328.1787 42.6347 
335.7934 43.5277 
345.9308 44.3625 
374.6583 45.0142 
299.0219 33.0672 
299.1571 34.2059 
301.6897 35.5286 
303.1589 36.6433 
307.9232 37.8335 
320.7758 39.2678 
337.5388 40.4668 
338.6300 42.4248 
352.4701 43.1085 
366.6525 43.9923 
381.3725 44.6221 

28 25O 
29 250 
30 250 
31 250 
32 250 
33 250 
34 250 
35 25O 
36 25O 
37 250 
38 250 
28 300 
29 , 300 
30 300 
31 300 
32 30O 
33 300 
34 3OO 
35 3OO 
36 300 
37 300 
38 3OO 
28 350 
29 350 
30 350 
31 35O 
32 350 
33 350 
34 350 
35 350 
36 : 350 
37 350 
38 350 
28 400 
29 400 
30 400 
31 400 
32 400 
33 4OO 
34 400 
35 400 
36 400 
37 4OO 
38 4OO 
28 450 
29 45O 
30 450 
31 450 
32 450 
33 45O 
34 450 
35 450 
36 450 
37 450 
38 450 
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Using the data in Table 5.2, contour plots were created to show how 
the measured variables behave with respect to open-circuit voltage and 
wire-feed speed. Figure 5.2 shows the contour plot of average current 
with respect to open-circuit voltage and wire-feed speed. Note that 
current depends upon both open-circuit voltage and wire-feed speed. 
This implies that both open-circuit voltage and wire-feed speed can 
be manipulated to control current. Arc voltage is plotted in Figure 5.3 

38 ~ . - ~  - -  , , , 

37 

36 

~ 3 5  

g 

�9 ~ 33 

._ 
O 3 2  
c 

0 3 1  

30 

29 

28 
250 300 350 400 450 

Wire Feed Speed (ipm) 

Figure 5.2: Experimental data-  contour plot of average current (amps). 

with respect to open-circuit voltage and wire-feed speed. Note that un- 
like current, arc voltage is heavily dependent upon open-circuit voltage 
and only slightly dependent upon wire-feed speed. Thus, manipulat- 
ing only open-circuit voltage would enable a controller to achieve the 
desired arc voltage. Also, note that due to an error in measurement 
interpretation, at any given value of open-circuit voltage, the corre- 
sponding arc voltage reading at any wire-feed speed is always greater 
than the open-circuit voltage reading. From physics, and more specif- 
ically circuit theory, we know that this is not possible. Therefore, the 
measurement of arc voltage is incorrect. This effectively eliminates the 
possibility of optimizing the model for arc voltage. However, the gen- 
eral trends indicated in Figure 5.3 are correct, and future work will 
rectify this measurement error. Note that the trends indicated in Fig- 
ures 5.2 and 5.3 are exploited below to develop multi-loop controllers 
for the GMAW process. 
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Figure 5.3: D a t a -  contour plot of average arc voltage (volts). 

Determinat ion  of Empirical  Constants  

A brute force method was used to optimize the fifth-order nonlinear 
mathematical model presented in Section 2.9. A program was written 
that simply ran the model for a given value of inputs and parameters, 
calculated the resulting steady-state current, and computed the asso- 
ciated error from the actual current at the particular operating point. 
This process was iterated to cover both the same range of inputs as the 
experiments described above and a wide range of parameters. 

Analysis of the resulting data showed that the set of empirical pa- 
rameters with the smallest summed squared error over the whole range 
of open-circuit voltage and wire-feed speed operating points was: 

R~ = 0.05 
Vo - 5 
E~ = 800 
C1 - 5  x 10 -10 
C 2 - 5  x 10 -11. 

Figure 5.4 shows the resulting contour plot of current obtained from 
the model using these parameters. Notice that the plot looks similar 
to that of Figure 5.2. Both have hooks at smaller wire-feed speed and 
open-circuit voltage values and straighten out for higher values of the 
inputs. Figure 5.5 is a contour plot of the squared error (the error 
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between Figure 5.2 and Figure 5.4). This represents the difference 

E 3st " \  ] 

%,, 

250 300 350 400 450 
Wire Feed Speed (ipm) 

Figure 5.4: Simulation data-  average current from the fifth-order model 
for the whole data set. 

between the experimental data and the simulated data using the para- 
meter set given above. Most of the error was encountered during high 
open-circuit voltage values and low values of wire-feed speed. An al- 
ternate approach to selecting the empirical parameters is to optimizing 
the model at each point in the range of the two inputs. That is, for each 
given operating point we find the best values for each of the empirical 
parameters. Then, when running the simulation, we use the values of 
the empirical parameters that correspond to the operating point of the 
simulation. Thus, we will have variable empirical "constants," where 
the variation is a function of the operating point. This produces a 
better fit, as seen in Figures 5.6 and 5.7. In contrast to Figure 5.4, 
which shows the simulated current contour for the case of "constant" 
constants, Figure 5.6, representing the simulated current contours us- 
ing "variable" constants (an oxymoron to be sure!), is much closer to 
Figure 5.2, which shows the actual current contours. The difference is 
clear when comparing the error contours in Figure 5.5 and Figure 5.7. 
To highlight the difference in the two optimization strategies, Figures 

5.8 through 5.12 show contours of the parameters that would produce 
the smallest squared error of the average current at each point in the 
operating range of the inputs. Clearly, these "constants" are not con- 
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Figure 5.5: Simulation data-  best squared error for the whole data set 
applications. 

stants but rather depend on the operating condition. This means that 
different controller gains will be required at different operating points. 
Thus, the system is a good candidate for adaptive control. 
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Figure 5.6: Simulation data-  average current from the fifth-order model 
for individual data sets. 

38 = = 

37 

36 

> 3 5  
g 
N 3 4  

~ 33 

3 2 - - . . ~ )  I 05 

0 31 

30 

29 

28 
250 

i J 

30O 350 400 
Wire Feed Speed (ipm) 

0.0105 

~ 0 1 0 5  

45O 

Figure 5.7: Simulation d a t a -  best squared error for individual data 
sets. 
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Figure 5.10: Simulation d a t a -  best Ea parameter for individual data 
sets. 
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Figure 5.11" Simulation d a t a -  best C1 parameter for individual data 
sets. 
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Figure 5.12: Simulation data- best C2 parameter for individual data 
sets. 
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5.2.2 E m p i r i c a l  T rans fe r  F u n c t i o n  M o d e l  

In earlier work it was argued that it is reasonable to approximate 
the GMAW process with a two-by-two linear, multivariable system 
(Yender 1997, Moore et al. 1997a). On this assumption, from sim- 
ple step response tests it is possible to derive an empirical model in 
transfer function form. Figures 5.13 through 5.16 show graphs of the 
conditioned measurements resulting from step changes in both the wire- 
feed speed and open-circuit voltage. Included on the graphs are the 

310 
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wa 290 E 
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2/5 

2/0 

265 

2603 315 

blmUlS[Iorl k)8[~,, ,] 

4:s ; ds 6 
Time (microseconds) x 10 o 

Figure 5.13: Current response to a step increase in the wire-feed speed. 

corresponding empirical models fit to the conditioned response. These 
models were developed heuristically using MATLAB| Fig- 
ure 5.13 shows the rise in current due to a step increase in the wire-feed 
speed from 350 ipm to 400 ipm. Figure 5.16 shows a drop in the mea- 
sured voltage for the same step in wire-feed speed. Figure 5.14 shows a 
rise in the measured voltage for a step increase in open-circuit voltage 
from 28 volts to 32 volts. Figure 5.15 shows the response of the current 
measurement due to the same step in open-circuit voltage. 

A model derived from the step responses in Figures 5.13 through 
5.15, collected in a transfer matrix form, is given as 

I 0.34 6 8 8 0 0 [ ]  [ ' ~  ] 0 1 1 ~ + 1 , + 4 ~ + 0 4 0 0 ~  
V~,c(s) -S.6 x 10 .3 1.35 Voc(S) 

0.034s + 1 0.083s + 1 
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Figure 5.14: 
voltage. 
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where I is current, V,~ is arc voltage (measured from the power sup- 
ply), S is wire-feed speed, and Voc is open-circuit voltage. 

5.3 SISO Current Control Using PI Controller 

In this section, the experimental results obtained using a PI controller 
for the control of single-input, single-output (SISO) current will be 
presented. It was observed from the modeling results of the previous 
section that the step change in open-circuit voltage has more effect on 
the current than a step change in the wire-feed speed. Therefore, for 
the control of current, open-circuit voltage was chosen to be the control 
input. 

The continuous PI controller transfer function is given in general 
form as follows: 

G~(s)-  U(s) 1 
E(s) = Kp + Ki-s (5.1) 

where Kp and Ki are the proportional and integral gains, respectively. 
U(s) is the control signal and E(s) is the error signal. Since the con- 
troller is implemented digitally, a discrete PI controller is used that 
takes the following form: 
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Figure 5.15: 
voltage. 
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Proportional Action" 

P(k) = Kpe(k) (5.2) 

Integral Action: 

I(k) = I ( k -  1)+  K~T~e(k) (5.3) 

PI Action" 

u(k) = P(k) + I(k) - Kpe(k) + I ( k -  1)+  K~T~e(k) (5.4) 

where e(k) and Ts are the error signal and sampling time, respectively. 
The block diagram of the closed-loop system is depicted in Figure 5.17. 
Welding parameters were as defined in Table 5.3. In addition, during 
the experiments, weld speed and wire-feed speed were set to 30 ipm and 
350 ipm, respectively. In each experiment, the controller was turned on 
at 3 sec. In other words, the process was run open-loop for the first 3 
sec. During the experiments, the initial value of the open-circuit voltage 
Voc was set to 28V. Total weld time was 7 sec. for each experiment. 

Numerous experiments were conducted. A representative result is 
shown in Figure 5.18, which gives the current output for a series of step 
changes. In the experiment, the system ran open loop for 3 seconds 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


5.3. SISO C U R R E N T  C O N T R O L  USING PI  C O N T R O L L E R  237 

36 

35.5 l 

35 +., 

g 
g 

34.5 
0 > 
< 34 

33.5 

33 
2 3 4 5 6 7 

Time (microseconds) x 10 ~ 

Figure 5.16" Voltage response to a step increase in the wire-feed speed. 
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Figure 5.17: Closed-loop system with PI controller. 

with Voc - 28V, then the controller is turned on with a set point of 
260A between 3 and 5 seconds and a set point of 240A after that time. 
Note that the effect of the controller, as designed, is to change the 
system response from the nominally underdamped characteristic of the 
open-loop system (see Figure 5.15) to a closed-loop system response 
that is overdamped. As can be seen, the system tracks the set points 
quite well. It is also important to note the associated control input 
voltage and measured arc voltage, shown in Figures 5.19 and 5.20, 
respectively. Clearly, because we are only controlling the current, the 
arc voltage varies as a result of our controller action. 
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Figure 5.18: Current response, Kp - 0.5, K i  - 5, desired cur- 
rent -260A,  actual current=260.0033A for 3 > t _ < 5 and desired cur- 
rent -240A,  actual current=240.0955A for 5 > t _< 7. 
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Figure 5.19: Control signal, open-circuit voltage, for Kp - 0.5, K i  - 5, 
desired current-260A for 3 > t < 5 and desired current--240A for 
5 > t < 7 .  
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Figure 5.20: Arc voltage, for K p -  0.5, Ki - 5, desired current=260A 
for 3 > t < 5 and desired current=240A for 5 > t < 7. 

5.4 Mult i -Loop Control of the G M A W  Process  

Although the previous section showed that single-loop control of cur- 
rent can be effective, it may be desirable to control both current and 
voltage to desired set points (this will eventually allow us to indepen- 
dently control mass and heat transfer in the process). In this case one 
may use a multivariable or a multi-loop strategy. In [754] and [755] and 
later in this chapter, results are presented using adaptive multivariable 
control. In this section results from multi-loop control experiments 
are presented. For a multi-loop control structure the dominant pairing 
must be determined. At the outset, based on the modeling results in 
Section 3, because the wire-feed speed is observed to have such a lit- 
tle effect on measured voltage, it might be suspected that the correct 
pairings are to use wire-feed speed to control current and open-circuit 
voltage to control arc (measured) voltage. As it turns out, the rela- 
tive gain array analysis agrees with this pairing. Relative gain array 
(RGA) analysis is an analytical approach to choosing loop pairings that 
is popular in the process control community [756]. 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


240 CHAPTER 5. CONTROL OF GMAW: A CASE STUDY 

5.4.1 Relative Gain Array Analysis 

The first step to compute the array is to assemble the steady-state 
gains from the system transfer matrix in the following steady-state 
gain matrix, K" 

0.34 10.75 ] 
K - -8 .6  x 10 - 3  1.35 

where the first column corresponds to wire-feed speed, the second col- 
umn corresponds to open circuit voltage, the first row corresponds to 
current, and the second row corresponds to arc (measured) voltage. 
The next step is to determine the inverse transpose of K 

K-1 _ [ 2.4481 0.0156] 
-19.4941 0.6166 

Then the two matrices are multiplied element by element to arrive at 
the RGA 

0.8324 0.1676 ] 
R - 0.1676 0.8324 

Since the values closest to unity appear on the main diagonal, the RGA 
method indicates that wire-feed speed should be paired with current 
and open-circuit voltage should be paired with arc voltage [756]. This 
implies the architecture shown in Figure 5.21. 

cr 

PI Controller S 

- -  PI Controller 

Varc 

Figure 5.21: Multi-loop control of the GMAW process. 

5 .4 .2  M u l t i - l o o p  C o n t r o l  E x p e r i m e n t a l  R e s u l t s  

Once the pairings for inputs and outputs have been found, design of a 
controller can begin. Initially, selection of a control algorithm must be 
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done, and then analysis of the controller's effect on the system must be 
determined. Due to its simplicity to implement and its ability to reject 
steady-state step input, a PI control algorithm is selected to control 
each paired input and output. Because two PI controllers will be used, 
there are four controller gains that  must be tuned based on the desired 
performance criteria of the outputs. Several methodologies exist to 
tune all of the controller gains at once. However, because the wire-feed 
speed has such a little effect on the arc voltage, initial at tempts to tune 
the PI controller gains are constrained to analysis involving only the 
transfer function describing the change in arc voltage due to a change 
in open circuit voltage. This analysis is identical to analysis that  would 
be done in a SISO case where arc voltage is controlled by open-circuit 
voltage. Once the PI controller gains were determined for the simulated 
SISO case, they will not be changed, and a PI controller on the wire- 
feed speed-current pair will be added. The gains for the additional PI 
controller were then determined by trial and error analysis based on 
simulated results utilizing all four transfer functions. In the transfer 
function domain, the resulting P I control structure had the form 

0.25s + 5 
= 

S 
- Yor ) 

and 
O.01s + 5 

S(s) = ( I d -  I) 
8 

As in the SISO case above, in the experiments, these controllers were 
actually implemented with a discrete-time algorithm. 

A variety of experiments were conducted with the multi-loop con- 
troller. Changes in open-circuit voltage and wire-feed speed were made 
about the nominal operating point of 28 volts and 350 ipm (the oper- 
ating point corresponds to the operating point from which empirical 
model identification was done). Figures 5.22 and 5.23 show typical ex- 
perimental results versus simulation results (in the interest of space the 
manipulated variables, Voc and S, are not shown). As shown in Fig- 
ure 5.22, there is agreement between the experimental and simulated 
current, especially in the steady-state tracking property, although the 
transient response is not so close. Figure 5.23 also shows considerable 
agreement between simulated and experimental results. It is clear that  
the PI multi-loop control algorithm provides for set point tracking. 
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Figure 5.22: Experimental results" current response, with simulation 
data. 

5 .4 .3  D i s t u r b a n c e  R e j e c t i o n  T e s t  

A key feature of a control system is its ability to reject disturbances. 
Processes are often subjected to extraneous signals that influence the 
output. The controller should be able to adjust the system inputs 
to counteract the effect of such signals. In the GMAW process, one 
disturbance that  can occur is an unexpected change in the contact tip- 
to-workpiece distance (CT). In an open-loop setting, one expects such 
a disturbance to cause an increase in the measured arc voltage. An 
experiment was conducted to test the ability of the multi-loop control 
system to maintain desired set points of current and arc voltage in 
the face of such a disturbance. The disturbance was simulated by 
welding over the edge of a thin plate tack-welded onto a base plate. 
The thin plate on which the weld was started was 1/8 inch thick so the 
disturbance appeared as a "step" dip in the metal of an eighth of an 
inch when the torch head moved over the edge of the thin plate. 

First, an open-loop test was conducted. The controllable inputs ( 
i.e., wire-feed speed and open-circuit voltage) were held constant over 
the disturbance at values of 340 ipm and 30.5 volts, respectively. The 
results are shown in Figures 5.24 and 5.25. From Figure 5.24, it ap- 
pears that  the average current doesn't seem to change much due to the 
disturbance (which occurred at 4 seconds). However, there does appear 
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Figure 5.23: Experimental results: voltage response, with simulation 
data. 

to be some influence on the variance of the current. The disturbance 
seemed to cause greater variability in the current response. Figure 5.25 
shows that the disturbance has more of an effect on the arc voltage. It 
appears that  the voltage settles at 34 volts with little variance before 
the disturbance. Following the disturbance a somewhat large spike in 
voltage occurred, and after about a second the voltage rose to a value 
near 36 volts with more variance. Next, the experiment was repeated 
with the multi-loop controller in place. Figures 5.26 through 5.29 show 
the resulting signals. The CT disturbance occurs at 4 seconds. Fig- 
ure 5.26 shows that (for a set point value of 270 amps) the current is 
maintained at 270 amps. Note that the variability of the current is 
less affected by the CT disturbance than in the open-loop situation. 
Figure 5.27 shows the commanded wire-feed speed signal that  ensured 
that the current be maintained at 270 amps. Figure 5.28 shows that 
(for a set point value of 34 volts) the arc voltage is maintained at 34 
volts. Again, the variability of the arc voltage is much less than that  
in Figure 5.25. Figure 5.29 shows the commanded open-circuit voltage 
signal that  ensured that the arc voltage be maintained at 34 volts. 
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Figure 5.24: Experimental results" open-loop current response, step 
disturbance. 

5.5 Adaptive Control of G M A W  Process 

In this section we present the design and implementation of a Di- 
rect Model Reference Adaptive Control (DMRAC) for a gas metal arc 
welding (GMAW) process. Two models are used to control the sys- 
tem. First, a highly nonlinear fifth-order mathematical model for the 
GMAW process is used to describe the system dynamics. This model 
is the basis for the process-level control of current and arc voltage to 
desired set points. Second, a model of the heat and mass transfer 
from the process to the weld pool is presented. This model is used 
as the basis for prescribing the desired set points to be used by the 
process-level controller. Specifically, an optimization technique is used 
to find an input vector (contact tip-to-workpiece distance, open-circuit 
voltage, wire-feed speed and weld speed) and a corresponding output 
vector (physically possible current and stick-out) that result in maxi- 
mum production rate for prescribed values of heat and mass transfer. 
For process-level control, the GMAW process is modeled as two-input, 
two-output second-order system of differential equations. Current and 
arc voltage are the process outputs, which are controlled by open-circuit 
voltage and wire-feed speed, which are chosen as the process control in- 
puts. As we have noted, because of the nonlinear nature of the process, 
the system transfer function varies as a function of operating point. For 
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this reason, a DMRAC is designed and then implemented on the ac- 
tual GMAW process. Satisfactory experimental results are obtained. 
Hence, this new direct adaptive control algorithm allows the control 
of both current and arc voltage and consequently makes it possible to 
achieve high quality weldings in GMAW processes. 

5.5.1 O v e r v i e w  

Although industrial practices for GMAW are well-established, in many 
situations, automatic control of the process is highly desirable in order 
to produce improved quality in weld properties. However, the issue 
of optimal strategies and architectures for automated GMAW control 
remains open. The importance of this problem is self-evident. High- 
quality welding procedures are essential to overall product quality in 
any industrial production setting. Through the use of automatic con- 
trol, it may be possible to produce more consistent weld quality as 
well as to eliminate much of the "guesswork" involved in setting power 
supply parameters to the proper value required to achieve good welds. 
Advanced methods for controlling arc welding power supplies can lead 
to significant improvements in the economic competitiveness of indus- 
try. 

Other researchers have considered the problem of GMAW control. 
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Figure 5.26" Experimental results: closed-loop current response, dis- 
turbance rejection. 

In the area of classical control, Smartt  and Einerson [757] developed 
a steady-state model for heat (given on a per unit length of weld) 
and mass (the transverse cross-sectional area of the deposited metal) 
transferred from the electrode to the workpiece in a GMAW process. 
Using the relations for heat and mass, they developed a PI based control 
system for maintaining the desired heat and mass by regulating the 
current. In what follows we will use this same model to determine 
current and voltage set point for our DMRAC. 

In the previous section, we have presented a classical approach to 
controlling the GMAW process. In the area of adaptive control, a 
successful application of a pseudo-gradient adaptive algorithm for self- 
tuning a PI-based puddle width controller for a consumable electrode 
GMAW process was given by Henderson et al. [758, 759]. Doumanidis 
also developed an adaptive multi-input multi-output (MIMO) scheme 
to control both geometrical and thermal characteristics of a weld based 
on lumped parameter and distributed parameter modeling and iden- 
tification [760]. The problem of adaptive and decoupling control of 
the MIMO welding process was also addressed by Cook et al. [761]. 
Other control methodologies have also been developed, including the 
feedback linearization technique that  was applied to the fifth-order non- 
linear model described below [762,763]. Here, a simplified second order 
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sponse, disturbance rejection. 

closed-loop wire-feed speed re- 

nonlinear model and the models for heat and mass transfer were used 
to independently control current and arc length using the open-circuit 
voltage and wire-feed speed. 

In this section, we consider a comprehensive approach to the prob- 
lem of controlling the GMAW process. Since the mass and heat trans- 
ferred to the workpiece determine the quality of welding, it is necessary 
to achieve the desired mass and heat values for a particular welding. 
Assuming contact tip-to-workpiece distance and weld speed are held 
constant during welding, one approach to controlling the quality of the 
weld in the GMAW process is to control the current and arc voltage 
so as to control the heat and mass input to the weld pool. Our ap- 
proach to achieving this is to first use the Smart t /Einerson model of 
the heat and mass transfer from the process to the weld pool [757] 
as the basis for prescribing the desired set points to be used by a 
process-level controller that  regulates current and arc voltage. Then, a 
process-level controller actually regulates the current and arc voltage 
to their prescribed set points. To determine these set points from the 
Smart t /Einerson model, an optimization technique is used to find an 
input vector (contact tip-to-workpiece distance, open-circuit voltage, 
wire-feed speed and weld speed) and a corresponding output vector 
(physically possible current and stick-out, or arc voltage) that  result 
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in maximum production rate for prescribed values of heat and mass 
transfer. The resulting input and output vectors then serve to define 
nominal operating conditions. This method maximizes the weld speed 
with respect to current, contact tip to work piece distance, stick-out, 
and weld speed for any given desired mass and heat values. Constraints 
are the welding parameters, which vary within their upper and lower 
bounds and the equilibrium condition of the process at steady-state. 
A feasible region in the plane defined by the mass and heat inputs has 
been determined. This development allows the high quality welding 
to be performed at the maximum production rate and increases the 
productivity in GMAW processes. 

For the process-level control, the GMAW process is modeled as 
two-input two-output second-order system of differential equations. 
Current and arc voltage are the process outputs, which are controlled 
by open-circuit voltage and wire-feed speed, which are chosen as the 
process control inputs. Because of the nonlinear nature of the process, 
the system transfer function varies as a function of operating point. 
Thus, classical techniques as described above may not be adequate. 
Therefore, the design of a MIMO DMRAC for a GMAW process is 
considered. Attractive features of this type of adaptive control include 
lack of dependence on process parameter estimates, control calcula- 
tion which does not require adaptive observers or full state feedback, 
applicability to MIMO plants, and ease of implementation [764]. How- 
ever, asymptotic stability is ensured provided that the plant is almost 
strictly positive real (ASPR). That  is, there exists a feedback gain (not 
needed for implementation) such that the resulting closed-loop transfer 
function matrix is strictly positive real (SPR) [764]. 

5.5.2 Model Simplification and Linearization 

Consider again the dynamics of the process given by the following state- 
space equations: 

xi = x: droplet displacement (m) 
x2 = ~: droplet velocity (m/sec) 
x3 - m d :  droplet mass (kg) 
x4 = l~: stick-out (m) 
x5 = I: current (A) 
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X l  - -  x2 

- K x l  - B x 2  -~- Ftot 
Jc2 -- 

x3 

2 3 -  MRp~ (5.5) 
MR 

u2 -- (Ra + Rs + RL)X5 - Vo - E a ( C T -  x4) 
5c5 = 

LS 

The dynamics of the GMAW process given by (5.6) are highly nonlinear 
and quite complex. This makes the application of the modern control 
strategies difficult. Therefore, in the following a simplified model is 
presented based on valid approximations. Consider first the current I 
and stick-out ls relations from (5.6) 

M R  
it4 - Ul 7rr2 

:~5 
U2 -- (Ra -~ Rs  + R L ) x 5  - g o -  g a ( C T -  x4) 

LS 

(5.6) 

It is obvious that the stick-out distance (ls = x4) is much larger than 
the sum of the droplet radius (rd) and the drop distance (xl) or math- 
ematically 

x4 >> ~ 47rpw + Xl (5.7) 

This approximation simplifies the above equation (5.6) yielding 

[ ~4 
0 

Ix4 x5 ] +  
_R~ + R~ 

L~ X 
% ,  , , , ,  J 

A 
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C~ 2~rw X4 X2 5 

1 E~CT) -L-~ (px4x5 + Vo + 

I (X,  CT) [10] 1 [ Ul ~ ] o E 

B 

+ 

(5.8) 

[ (~Yl ] __ [ - ga  Ra (~x4 
5y2 0 1 ] [  5x5 ] (5.9) 

c~ 

The relation (5.8) shows that the dominant states, current and stick- 
out are independent of the other states. This allows us to analyze the 
system using only two equations (5.8) rather than five equations (5.6). 
Then linearizing the system about steady-state yields 

-C2r2 w - 7rr2w [Sx 4 

[ ~xX"~ ] -- g a -  - (Rant-Rs-~-P'x4) (~x5 ] -t- 
L~ pz5 - L~ 

~ J 

np 

F 1 o ] 5u2] (5.10) 
J 

Bp 

[(~Yl __ -oEa Rla ~x4 [ ][ 
u_  J 

Y 

c~ 

(5.11) 

where :~4 and 25 correspond to the steady-state values of X4 and x5, re- 
spectively, C1, C2 are the melting rate constants, and p is the resistivity 
of the electrode. This linearized model (5.11) will be used below. 
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5 .5 .3  M o d e l  for  H e a t  a n d  M a s s  T r a n s f e r  

This part is heavily dependent upon the work of Smartt  and Einerson 
[757]. A steady-state model of the GMAW process is obtained for 
electrode melting and heat and mass transfer from the electrode to the 
workpiece. 

The electric power consumed by the process is approximately equal 
to the sum of that  consumed by the resistive heating of the electrode 
and that consumed by the arc as 

I E  - IV~ + IV~c (5.12) 

where V~ is the voltage drop across the electrode and Varc is the voltage 
drop across the arc. The heat input H to the base metal per unit length 
of weld is given by 

H = EIf l  _ _ I(V~ + Varc)ri (5.13) 
R R 

where E is the secondary circuit voltage drop, 7/is the heat transfer 
efficiency from the process to the base metal, and R is the weld speed. 
The weld reinforcement G, defined as the transverse cross-sectional 
area of the deposited metal, is given as 

A S  MR 
G = = (5.14) 

R R 

where A is the cross-sectional area of the electrode, S is the electrode- 
feed speed, MR is the melting rate, and R is the weld speed. 

Since the mass G and heat H transferred to the workpiece determine 
the quality of welding, it is necessary to investigate the relation between 
G -  H and the welding parameters. In other words, to determine what 
the welding parameters are for given desired G -  H values. 

5 .5 .4  F e a s i b i l i t y  R e g i o n  in  t h e  G -  H P l a n e  

Our objective is to determine all values of the desired G -  H at which 
there exist an input vector (CT,  Voc, S, R) and a corresponding output 
vector (I, ls) that  are physically possible. In other words, we need to 
determine a feasible region in the G -  H plane. One way of finding this 
feasible region is to perform the following optimization method [765], 
where underscores and overbars are used to denote limiting values of a 
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variable. 

maximize {R} R, CT, I, l~ (5.15) 

subject to" 

CT  < CT < CT 
f ( I )  <_ Vo~ <_ f ( I )  

S<S<S 
I < I < I  

l~ <_ l~ <_ CT 
R < R < R  

- - B - I ( A - X  + f ( X ,  CT)) 

(5.16) 

We should note that  the weld speed R is chosen as the objective func- 
tion so that  maximum productivity is achieved. In the above optimiza- 
tion, all the constraints except the last one are physical constraints. 
The last one corresponds to the dynamics of the system and is obtained 
from the steady-state condition. Equation (5.8) must also be satisfied 
at steady-state. That  is why we need to include it as a constraint in 
the above optimization. 

Performing the optimization method given by (5.15), we obtained 
the feasible values for G -  H satisfying the constraint set given by 
(5.16). The ranges considered for G, H, and the weld parameters are 
as follows: 

1.5e - 5 <_ G [m 2] _ 7 e -  5 

0.5e6 <_ H [J/m] <_ 2.5e6 

O< CT [m] _ < 2 5 e - 3  

0.021 <_ S [re~s] <_ 0.33 

25 _< I [A] _< 565 

11.51 - 0.0204I _ Vo~ [Y] _ 50.6 - 0.0241I 

l e -  3 < ls [m] ~ CT  

l e -  3 < R [m/s] _ 2 5 e - 3  

(5.17) 

The feasible region is shown Figure 5.30. Weld speed and current 
changes with respect to G -  H values are shown in Figures 5.31 and 
5.32, respectively. That  is, Figure 5.31 shows the optimal R that  can 
be achieved for given values of G and H and Figure 5.32 shows the 
corresponding values of current. 
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Figure 5.28: Experimental results- closed-loop voltage response, dis- 
turbance rejection. 
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Figure 5.30: Feasible region in the G -  H plane. 

Figure 5.31" Weld speed with respect to G -  H values. 
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Figure 5.32" Current changes in the G -  H plane. 
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5.5 .5  S t a b i l i t y  A n a l y s i s  a n d  C h a r a c t e r i z a t i o n  of  G -  H 
P l a n e  

It is necessary to have some information about the stability of the 
system. In the feasible region, we need to know if there is any region 
that corresponds to an unstable system. On the other hand, if the 
system is stable, then we need to know whether it is overdamped or 
underdamped for the given desired G -  H values. In order to answer 
these questions, consider first the linearized second-order system given 
by (5.10). To determine whether the system represented by (5.10) 
is stable or not, it is necessary to find the eigenvalues of the matrix 
A or the roots of the characteristic equation of the matrix A. The 
characteristic equation is obtained from 

I I- A l= 0 (5.18) 

where I is the identity matrix. Equation (5.18) yields to the following 
characteristic polynomial 

s 2 + als  + ao = 0 (5.19) 

where 

a, = [R~Trr 2 + R~Trr 2 + L~C2p225 + p247rr2]/[L~rrr 2] 

a o  = [EaC1 + R~C2p22 - p25C1 + R~C2p2 2 + 2E~C2pxsx4 - 

p224C2225]/[L~Trr 2] (5.20) 

It is not straight forward to check the stability of this characteristic 
polynomial, since the welding parameters 24 and 25 can vary in a 
prescribed range as given by (5.17). These type of polynomials are often 
called interval polynomials. A stability check for interval polynomials 
requires robust stability analysis such as Kharitonov's theorem [766]. 
Therefore, we applied Kharitonov's theorem to the above characteristic 
polynomial (5.19) and found that it is stable for the given range of 
parameters. It means that  the linearized system in the entire feasible 
region is stable. Having determined that the system is stable, we need 
next to investigate whether the system is underdamped or overdamped 
and to characterize the feasible region in terms of the system's response. 
Analysis of the roots of the characteristic polynomial shows that  the 
linearized system is underdamped in almost the entire feasible region. 
This is shown in Figure 5.33. We found that the damping ratio of the 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


5.6. CONTROL STRATEGY 257 

system is bounded by 

0.69 _ r (5.21) 

Figure 5.34 shows the distribution of the eigenvalues of the system in 
the G -  H plane. 
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Figure 5.33" Distribution of the system response in the G -  H plane-  
(+)" underdamped, (o)" overdamped. 

5.6 Control Strategy 

Having modeled the GMAW process in the previous section, defined 
its inputs and outputs, established nominal operating conditions, and 
discussed the open-loop system's dynamic characteristics (stability and 
poles), let us consider control of the process. Although this system has 
three inputs and two outputs, we will assume that the contact tip-to- 
work piece distance CT is constant for a particular welding process and 
model the system with two inputs and two outputs. In this section, 
implementation of the direct model reference adaptive control will be 
discussed. 

5.6.1 F o r m u l a t i o n  of  the  D M R A C  

We begin by summarizing the necessary theory. The linear time invari- 
ant model reference adaptive control problem is considered for a plant 
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Figure 5.34" Eigenvalue distribution in the G -  H plane. 

given by [764] 

kp(t)  - Apxp(t)  + Bvup( t  ) 

y . ( t )  = (5.22) 

where xp(t) is the (n x 1) state vector, uv(t ) is the ( m x  1) control 
vector, yp(t) is the (q x 1) plant output vector, and Ap, Bp, and C v are 
matrices with appropriate dimensions. The range of the plant parame- 
ters is assumed to be bounded as defined by 

a_ij <_ ap(i, j)  <_ -Sij, i, j - 1, 

bij <_ bp ( i, j ) <_ bij , i, j - 1, 

�9 (5.23) 

where av(i , j)  is the (i, j)th element of Ap and bp(i, j)  is the (i, j)th 
element of Bp. 

The design objective is to find, without explicit knowledge of Ap 
and Bp, some control up(t) such that the plant output vector yp(t) fol- 
lows the output of the reference model 

2m(t) -- Amxm(t)  + Bmum(t) 
ym(t) -- Cmxm(t) (5.24) 

The model incorporates desired plant behavior and in many cases 

dim[xv(t)] >> dim[xm(t)] (5.25) 
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The adaptive control law is given as [764] 

Up(t) = K~(t)[ym(t) - yp(t)] + K~(t)xm(t) + K~,(t)um(t) (5.26) 

where Ke(t), Kx(t), and Ku(t) are adaptive gains concatenated into a 
single matrix 

K ( t ) - [ K ~ ( t )  K~(t) Ku(t)] (5.27) 

Defining a vector r(t) as 

~(t )  = ~m 
Urn 

the control Up(t) can be written in compact form as 

Up(t) = K(t)r(t) 

(5.2s) 

(5 .29 )  

Thus, up(t) is composed of the feedback term 

K~(t)e~(t) (5.30) 

where ey(t) is the output error [ym(t) - yp(t)], together with the feed- 
forward component 

Kx(t)xm(t) + Ku(t)um(t) (5.31) 

The adaptive gains are obtained as a combination of the following in- 
tegral and proportional gains [764] 

K(t) 
K,(t)  

~:~(t) 

- K , ( t ) +  K~(t) 

= lyre(t)  - y~( t ) ]~  r ( t ) T €  

= [ym(t)-  yp(t)]rT(t)Ti, 

Tp > 0 (5.32) 

T~>O 

It should be noted that for asymptotic tracking, the plant is required to 
be almost strictly positive real (ASPR), that is, there exists a positive 
definite constant gain matrix Ke, not needed for implementation, such 
that the closed-loop transfer function 

G(s) - [I + Gp(s)K~]-'Gp(s) (5.33) 
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is strictly positive real (SPR). It can be shown [764] that m x m MIMO 
system represented by a transfer function matrix G(s) is ASPR if it 

1. Is minimum phase, i.e. the numerator polynomial of I G(s) I= 

z~(~sS is stable. 

2. Has relative degree of m or zero, i.e. the difference of the degrees 
of the denominator and the numerator polynomials of[ G(s) [= 

~ is m or zero. 

3. Has a positive definite high frequency gain, i.e. if the plant has 
the minimal realization G(s) = C ( s I -  A) -~B, then CB > O. 

It can easily be seen that the ASPR conditions are in fact very re- 
strictive, and most physical plants may not satisfy these conditions. 
However, as it will be shown, the linearized welding process satisfies 
the ASPR conditions by simple modification of the output equation. 

5 .6 .2  I m p l e m e n t a t i o n  of  t h e  D M R A C  

Before implementing the adaptive control algorithm, we need first to 
determine whether the plant is ASPR or not. To this effect, consider 
again the linearized plant dynamics given by (5.10), which can be rep- 
resented in the transfer function matrix form 

1 gll g12 ] (5.34) 
g21 g22 

where 

gll  

g12 

g21 

g22 

- L s ~ r 2 s -  (Ra + Rs + p24)~r 2 
w 

= -(Ca -}- 2C2p:r4:~5) 

- ( E o  - 

= + 

(5.35) 

den - sTrr~s 2 + (L~C2p22 + (R~ + R~ + p~4)Trr2)s 

+ ( R a  + - p 4)C2p   

+EaC1 + 2E~C2px4x5 - pC125 

(5.36) 
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The determinant of G(s) is 
r r ~  

I G(s) }= den (5.37) 

It is easy to see that  the plant is minimum phase and its relative de- 
gree is two. However, the high frequency gain matrix is positive semi- 
definite resulting in non-ASPR configuration. To alleviate this problem 
and make the system ASPR, we use the negative of the arc voltage as 
the output. Then, the output equation becomes 

(5.as) 0 1 j t S x s j  

c. 

Since the linearized plant with the above modified output matrix is 
ASPR, the DMRAC can now be applied for the control of THE GMAW 
process. The closed-loop GMAW process with the DMRAC scheme is 
given in Figure 5.35. We first define the reference model inputs as the 
desired current Id and the desired arc voltage V~d. We chose A first- 
order reference model for both current and arc voltage and set its time 
constant to T = 0.01 sec. Thus, the reference model takes the form 

Gm(s)--ym(s)=lum(8 ) VS  + 1 [ 1  0 ] 0  1 (5.39) 

Since digital control is implemented, the continuous DMRAC was dis- 
cretized as given in the following: 

Reference Model Dynamics 
The discretized form of the continuous reference model given in (5.39), 
using the sampling time of T~ = 5000Hz = 0.0002 sec. is 

Xml (~Ts + Ts) 
Yml (kTs n t- Ts) 

xm2(kT~ + T~) 

Ym2(kTs -+- T~) 

= 0.9802Xm 1 (kTs) + 0.00019801Um 1 ( ]gTs ) 

= lOOxml(kT~) 

= 0.9802Xm2(kT~) + O.O0019801Um2(kTs) 

= lOOxm2(kT~) 

(5.40) 

(5.41) 

where U m l  and Urn2 are the desired inputs to the reference model and 
Yml and Ym2 are the outputs of the reference model. In the actual im- 
plementation, we chose the desired Va~ - Urn1 and the desired I - u rn2 .  
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Integral Adaptation Dynamics 
Discretization of the adaptation laws was made using Backwards Rec- 
tangular Approximation. 

where ey 
form of 

Kp(kTs) - ey(kTs)rT(kTs)Tp (5.42) 
Ki(kTs -J- Ts) - Ki(kTs) + Tsey(kTs)rT(kTs)Ti (5.43) 

Kr(kT~) = Kp(kT~) + K~(kT~) (5.44) 

-- [eyl ey2] T is the error vector and the vector r T is in the 

rT-~[eyl  eyl Xml Xm2 Uml Um2] (5.45) 

and Kr is 

Kr - [ Ke11 Ke12 Kx11 Kz12 K~,la Ku12 
Ke21 Ke22 Kz21 Kx22 Ku21 Ku22] (5.46) 

Finally, the adaptive control takes the form of 

S : Up1 -- Kelley1 'b Ke12ey2 q" KxllXm1 q- Kxl2Xm2 

q-Kull Um1 -b Ku12Um2 (5.47) 

VOC ---- Up2 -- Ke21ey1 + Ke22ey2 + Kx21Xm1 q- Kx22Xm2 

"+- Ku2 lure I "[- Ku22 Urn2 (5.48) 

5.6.3 E x p e r i m e n t a l  R e s u l t s  

The overall block diagram of the adaptive controller is shown in Figure 
5.35. Welding parameters are as defined in Table 5.3. In addition, 
during the experiments, weld speed and wire-feed speed were set to 
30 ipm and 350 ipm, respectively. In each experiment, the controller 
was turned on at 3 sec. During the experiments, the initial value of 
the open-circuit voltage Voc was set to 28V. Total weld time was 7 sec 
for each experiment. Detailed discussions about the experiments can 
be found in [765]. In the following figures, current and arc voltage re- 
sponses and control signals (open-circuit voltage and wire-feed speed) 

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


5.6. C O N T R O L  S T R A T E G Y  263 
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'GMAW Process 

Figure 5.35: Closed-loop GMAW with DMRAC. 

are shown for different current and arc voltage set points. Actual cur- 
rent in each experiment was computed by taking the mean of the actual 
current signal between 4 and 7 seconds. The weights for the adaptive 
gains were initially set to Ti = Tp = d i a g ( l e -  511 1 1 1 1 1]) and finally 
tuned to Ti = diag(le-51551100.11]) and Tp - d iag ( l e -5[ l l l lO0 .11] ) .  

Figures 5.36 and 5.37 show the actual current and arc voltage re- 
sponses for the set points of 260A on current and 29V on arc voltage. 
Again, as seen from the figures both outputs reach closely to their de- 
sired values. However, the variations in the arc voltage are bigger in 
magnitude. 

The actual current and arc voltage responses for the set points of 
240A on current and 24V on arc voltage are shown in Figures 5.38 and 
5.39. As the new set point moves further away from the initial steady- 
state value, the variations in the outputs increase. However, as seen 
from the figures both outputs reach closely to their desired values. 

Figures 5.40 and 5.41 show the current and arc voltage responses 
when the desired values for current and arc voltage are set to 260A 
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Table 5.3" Welding Parameters Used During the Experiments 

maten-~ 
e ment t ~c ness 

er 
ion 

at stoc ml stee 

Constant voltage 

open-circuit voltage 
~ e  28V to 38V 

w~re-mea speea 
250 to 450 ipm 

o : r t : ~  tl~a~o e o r  piece 1st. . 

and 29V, respectively for 3 < t _< 5 and 240A and 24V, respectively for 
5 < t < 7. As seen from the figures, the actual current and arc voltage 
reach closely to their desired values. 
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Figure 5.36: Current response,  desired current - 260A,  actual  current 
= 260 .3824A.  
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Figure 5.37: Arc vol tage  response,  desired arc voltage - 29V,  actual  
arc voltage - 28 .6023V.  

www.engineeringbookslibrary.com

http://engineeringbookslibrary.com


266 CHAPTER 5. CONTROL OF GMAW: A CASE STUDY 

3OO 

250 

2OO 

~ 1 5 0  

a~oo 

50 

-500 1 2 3 4 5 6 7 
Time (microsec) x 10 e 

Figure 5.38: Current response,  desired current - 240A,  actual  current 
= 240.9829A.  

6O 
A P. 

4O 

200 1 2 3 4 5 6 7 
Time (microsec) x 10 e 

Figure 5.39" Arc voltage response,  desired arc voltage - 24V,  actual  
arc voltage - 24 .8629V.  
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Figure 5.40: Current response, desired current - 260A, actual cur- 
rent - 261.9960A for 3 < t <_ 5, desired current=240A,  actual cur- 
rent=241 .5589A for 5 < t < 7. 
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Figure 5.41: Arc voltage response, desired arc voltage - 29V, actual 
arc voltage - 28 .0629V for 3 < t _ 5, desired arc vo l tage=24V,  actual 
arc vo l tage=24 .9090V for 5 < t < 7. 
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5.7 Summary 

In this case study, we have presented results on the control of the 
GMAW process, as part of a larger project aimed at developing meth- 
ods for controlling GMAW processes, with an emphasis on the con- 
trol of the mass and heat delivered by the process to the weld pool. 
Our focus was on regulation of current and arc voltage to prescribed 
set points. Experimental results showing the ability to achieve such 
regulation using classical controller design techniques were presented. 
First, a nonlinear model that depends on five empirical constants was 
described. Experimental data of steady-state current and arc voltage 
obtained over a range of operational conditions was presented. Analysis 
of the experimental data pointed out interesting insights regarding the 
selection of loop pairing variables for the purpose of feedback control, 
namely, that arc voltage is primarily affected by open-circuit voltage, 
while measured current is influenced by both open-circuit voltage and 
wire-feed speed. Next, the best value of each experimental parameter 
was determined relative to the error between the actual GMAW current 
and that predicted by the model, averaged over all the data. The best 
value of each parameter is also determined for each operating point. 
Contour plots of the model error show that the empirical "constants" 
are a function of the operating conditions of the system. Next, open- 
loop step response data was used to derive an empirical transfer matrix 
for the process. Results using classical control techniques to regulate 
the output of the GMAW were presented. A SISO controller for cur- 
rent was demonstrated. Then a multi-loop controller to simultaneously 
control current and measured arc voltage to desired set points was de- 
rived and demonstrated. The multi-loop controller is designed using 
the relative gain array, which suggests loop pairings that match wire- 
feed speed with current and open-circuit voltage with measured arc 
voltage. Experimental results, including a disturbance rejection test 
involving a step change in contact tube-to-workpiece distance, verify 
the effectiveness of the controller designs. 

From these results, we can conclude that the control of the GMAW 
process through the use of a multi-loop PI control algorithm is possi- 
ble. The multi-loop PI control algorithm also appears to be robust to 
disturbances in contact tip-to-workpiece distance. However, as noted, 
from contour plots of the model error, it is seen that the empirical 
"constants" of the fifth-order model are not constants but instead are 
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a function of the operating conditions of the system. Thus, the empir- 
ical transfer function used for the multi-loop MIMO controller design 
will be dependent on the nominal operating conditions. 

The final step of this case study was the design and implementation 
of a DMRAC for a GMAW process. Two models were used to control 
the system. First, a highly nonlinear fifth-order mathematical model 
for the GMAW process was used to describe the system dynamics. This 
model is the basis for the process-level control of current and arc voltage 
to desired set points. Through analysis of the model it was concluded 
that the current I and stick-out l~ are the dominant states, which de- 
termine the detachment properties. Therefore, the original fifth-order 
nonlinear process was reduced to a second order linearized plant. Sec- 
ond, a model of the heat and mass transfer from the process to the 
weld pool was presented. This model is used as the basis for prescrib- 
ing the desired set points to be used by the process-level controller. 
Specifically, an optimization technique is used to find an input vec- 
tor (contact tip-to-workpiece distance, open-circuit voltage, wire-feed 
speed and weld speed) and a corresponding output vector (physically 
possible current and stick-out) that result in maximum production rate 
for prescribed values of heat and mass transfer. Since the quality of 
welding is determined by the amount of mass G and heat H delivered 
to the workpiece, the relation between the mass and heat transferred 
to the work piece and the welding parameters was investigated. As a 
result, we defined the feasible region, where there exists a set of welding 
parameters (CT, Vow, S, R, I, l~) that are physically possible for the 
given desired mass and heat values. 

Then, the robust stability analysis was performed using the 
Kharitonov's theorem and it was found that the linearized system is 
stable for all the G -  H values considered, i.e., the system is stable in 
the feasible region. Then, the response of the system in the feasible 
region was investigated. It was found that the system is underdamped 
in most of the feasible region. For process-level control, the GMAW 
process was modeled as a two-input two-output second order system of 
differential equations. Current and arc voltage are the process outputs, 
which are controlled by open-circuit voltage and wire-feed speed, which 
are chosen as the process control inputs. Because of the nonlinear na- 
ture of the process, the system transfer function varies as a function of 
operating point. Thus, classical techniques as described above may not 
be adequate. For this reason, a DMRAC was designed and then imple- 
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mented on the actual GMAW process. Experimental results show that 
the DMRAC is capable of controlling both the current and arc voltage. 
Hence, this new direct adaptive control algorithm allows the control 
of both current and arc voltage and consequently makes it possible to 
achieve high quality weldings in GMAW processes. 

5.8 Classification of References by Section 

Here, we provide a table containing the various references according to 
each section of this chapter. This will provide a ready reference to the 
interested reader to search for relevant references in each section. 

Table 5.4: Section by Section List of References 

Section 
5.1 Introduction 
5.2 Empirical Modeling of a GMAW Process 
5.3 SISO Current Control Using a PI Controller 
5.4 Multi-Loop Control of the GMAW Process 
5.5 Adaptiv e Control of GMAW Process 
5.6 Control Strategy 
5.7 Summary 

747]-[754] 
748],[752] 

754- 756 
:757- 766 
'764,765] 
'751 ,[757] 
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Chapter 6 

Conclus ions  

Finally, some thoughts about the importance of control technology in 
automation of the welding process are presented. 

6.1 Control Technology and Automation in 
Welding 

In general, the welding process is such a complicated physical process 
(more so the Gas Metal Arc Welding (GMAW) process) that there is 
a real need for control strategies to be applied to welding in order to 
maintain desired weld quality. With this in mind, a National Materi- 
als Advisory Board Committee (NMABC) on Welding Controls, under 
contract with the Department of Defense (DoD) and the National Aero- 
nautics and Astronautics Administration (NASA), was asked to "iden- 
tify the variables in welding processes to ascertain where the existing 
control technology must be better understood and improved to ensure 
the necessary uniformity and reproducibility of structural welds" [767]. 
This is an excellent report that, although nearly 15 years old, is still 
valid and worth reading in order to understand the concerns of the 
welding community regarding the injection of control strategies into 
the welding processes. Some of the conclusions and recommendations 
of the Committee are worth noting: 

1. There is a substantial opportunity for transforming welding tech- 
nology in industry from an experience-based technology to a 
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scientific-based technology. 
still far from completion. 

Modeling of the welding process is 

2. Research in welding should not be limited to traditional met- 
allurgical and mechanical properties but should include welding 
controls with emphasis on interdisciplinary team work. 

3. Development of on-line (real-time) sensor technology, utilizing 
the spectacular developments in solid-state technology, should be 
an integral part of modeling and control of the welding processes. 

4. Welding process control research, both mission-oriented and 
exploration-oriented (basic) research, should be strongly encour- 
aged by all agencies, government and private. 

Also, there is a wealth of knowledge within the control community 
in the areas of modeling, analysis, and control. In particular, in the 
control area there are excellent results in nonlinear control, optimal 
control, adaptive control, and Hcr optimal control, for both lumped- 
parameter (ordinary differential equations) and distributed parameter 
(partial differential equations) systems, that need to be explored for 
possible application to welding processes. For this exploration, there 
should be a strong interdisciplinary team effort towards modeling, sens- 
ing, and control of welding processes. 

6.2 Main  Issues  and Out look  

During the last 15 years or so, major advances have been made in 
welding science in 

1. understanding the physical process, 

2. weld structure and properties, 

3. sensor technology, and 

4. control and automation. 

However, there are still problems to be addressed. Modeling, which de- 
mands the complete understanding of the process, is not yet complete. 
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There seems to be very good progress in sensor technology in both con- 
tact and non-contact types. There seems to be a real need for using 
the abundant wealth of knowledge available in the automatic control 
field for the welding process. In particular, advances made in con- 
trol, in areas such as adaptive control, which normally does not require 
accurate modeling, in nonlinear control, which attacks the nonlinear 
model directly, and finally in intelligent control, using artificial neural 
networks (ANN), fuzzy logic, genetic algorithms, expert systems, etc., 
promise strong contributions. Also, see [768] for a good discussion on 
the current issues and problems in, and outlook for, welding science. 

6.2.1 W e l d i n g  in S p a c e  R e s e a r c h  

The National Aeronautics and Space Administration (NASA), in their 
plans for space exploration for the next 30 years, identified "welding 
in space technology" as a key area of research, with goals to define 
welding in space requirements and capabilities and plan a technology 
program that will establish welding as a viable program for assembly, 
construction, and repair of structures in space [769]. 

6.2.2 S m a r t  R o b o t i c  W e l d e r s  a n d  M a n u f a c t u r i n g  

The ultimate goal of arc welding seems to be to build smart robotic arc 
welding machines incorporating intelligence. Also, see [770] for a dis- 
cussion on SmartWeld, a system for intelligent design and fabrication 
of welding components developed by Sandia National Laboratories, Al- 
buquerque, NM. 

The use of robots in welding industry is increasing. As argued 
in [771], in 1995 approximately 1600 arc welding robots were sold in 
the USA. Robotic welding machines offer many advantages such as re- 
peatability, higher productivity, and better quality. Some of the recent 
works on robotic welding systems can be found in [772, 773, 774, 775, 
776, 777, 778]. 

An interesting look at the welding system within the structure of 
a flexible manufacturing system can be found in [779]. Some of the 
innovative welding technologies are discussed in [780, 781,782]. 
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6.3 Classification of References by Section 

Here, we provide a table containing the various references according to 
each section of this chapter. This will provide a ready reference to the 
interested reader to search for relevant references in each section. 

Table 6.1: Section by Section List of References 

Section Reference Numbers 

6.1 Control Technology and Automation [767]-[771] 
in Welding 
6.2 Main Issues and Outlook [772]-[782] 
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[770] Anonymous Computer-based smart processes designed to in- 
crease U.S. manufacturer's quality. Welding Journal, Volume 75, 
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