
www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


   

 

Series Editor 
Piotr Breitkopf 

Milling Simulation 
 
 

Metal Milling Mechanics, Dynamics  
and Clamping Principles 

 
 
 
 
 
 

Weihong Zhang 
Min Wan 

 
 
 
 
 
 
 
 
 
 

  

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


 
 
 
 
 
 
 

 

 

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the  
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK  USA  

www.iste.co.uk  www.wiley.com 

 

© ISTE Ltd 2016 
The rights of Weihong Zhang and Min Wan to be identified as the authors of this work have been asserted 
by them in accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Control Number:  2016936179 
 
British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN 978-1-78630-015-7 

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1. Cutting Forces in Milling Processes . . . . . . . . . 1

1.1. Formulations of cutting forces . . . . . . . . . . . . . . . . . . . 1

1.1.1. Mechanics of orthogonal cutting . . . . . . . . . . . . . . . . 1

1.1.2. Cutting force model for a general milling cutter . . . . . . . 4

1.2. Milling process geometry . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1. Calculations of uncut chip thickness . . . . . . . . . . . . . . 8

1.2.2. Determination of entry and exit angles . . . . . . . . . . . . 12

1.3. Identification of the cutting force coefficients . . . . . . . . . . . 24

1.3.1. Calibration method for general end mills . . . . . . . . . . . 24

1.3.2. Calibration method in the frequency domain . . . . . . . . . 33

1.3.3. Calibration method involving four cutter

runout parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.4. Identification of shear stress, shear angle and

friction angle using milling tests . . . . . . . . . . . . . . . . . . . 48

1.4. Ternary cutting force model including bottom

edge cutting effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.4.1. Calculations of FB(ϕ) . . . . . . . . . . . . . . . . . . . . . 57

1.4.2. Calculations of FB(ϕ) . . . . . . . . . . . . . . . . . . . . . 57

1.4.3. Calibration ofKqc (q = T,R) . . . . . . . . . . . . . . . . . 58

1.4.4. Calibrations ofKq,B (q = T,R) . . . . . . . . . . . . . . . . 59

1.4.5. Experimental work . . . . . . . . . . . . . . . . . . . . . . . 61

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


   

vi Milling Simulation

1.5. Cutting force prediction in peripheral milling

of a curved surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.5.1. Calculations of instantaneous uncut chip thickness . . . . . 65

1.5.2. Calculations of entry and exit angles . . . . . . . . . . . . . 67

Chapter 2. Surface Accuracy in Milling Processes . . . . . . . 71

2.1. Predictions of surface form errors . . . . . . . . . . . . . . . . . 71

2.1.1. Calculation of cutting forces and process geometries . . . . 73

2.1.2. Iterative algorithms of surface form errors . . . . . . . . . . 81

2.2. Control strategy of surface form error . . . . . . . . . . . . . . . 89

2.2.1. Development of control strategy . . . . . . . . . . . . . . . . 89

2.2.2. Verification of control strategy . . . . . . . . . . . . . . . . . 93

2.3. Surface topography in milling processes . . . . . . . . . . . . . 95

2.3.1. Prediction method for flat-end milling . . . . . . . . . . . . . 97

2.3.2. Prediction method for multi-axis ball end milling . . . . . . 101

Chapter 3. Dynamics of Milling Processes . . . . . . . . . . . . . 115

3.1. Governing equation of the milling process . . . . . . . . . . . . 115

3.2. Method for obtaining the frequency response function . . . . . 120

3.2.1. Derivation of calculation formulations . . . . . . . . . . . . 121

3.2.2. Identification of model parameters . . . . . . . . . . . . . . . 134

3.3. Prediction of stability lobe . . . . . . . . . . . . . . . . . . . . . 139

3.3.1. Improved semi-discretization method . . . . . . . . . . . . . 139

3.3.2. Lowest envelope method . . . . . . . . . . . . . . . . . . . . 144

3.3.3. Time-domain simulation method . . . . . . . . . . . . . . . . 155

Chapter 4. Mathematical Modeling of the
Workpiece-Fixture System . . . . . . . . . . . . . . . . . . . . . . . 165

4.1. Criteria of locating scheme correctness . . . . . . . . . . . . . . 165

4.1.1. The DOFs constraining principle . . . . . . . . . . . . . . . 165

4.1.2. The locating scheme . . . . . . . . . . . . . . . . . . . . . . . 168

4.1.3. Judgment criteria of locating scheme correctness . . . . . . 172

4.1.4. Analysis of locating scheme incorrectness . . . . . . . . . . 173

4.2. Analysis of locating scheme correctness . . . . . . . . . . . . . 175

4.2.1. Localization source errors . . . . . . . . . . . . . . . . . . . 175

4.2.2. Fixture modeling . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.2.3. Locating scheme correctness . . . . . . . . . . . . . . . . . . 182

4.3. Analysis of workpiece stability . . . . . . . . . . . . . . . . . . . 186

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Contents vii

4.3.1. Modeling of workpiece stability . . . . . . . . . . . . . . . . 186

4.3.2. Solution techniques to the model of

workpiece stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.4. Modeling of the workpiece-fixture geometric

default and compliance . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.4.1. Source error analysis . . . . . . . . . . . . . . . . . . . . . . 201

4.4.2. Workpiece position error . . . . . . . . . . . . . . . . . . . . 207

4.4.3. Machining error analysis . . . . . . . . . . . . . . . . . . . . 212

4.5. Optimal design of the fixture clamping sequence . . . . . . . . . 218

4.5.1. Effect of clamping sequence on

high-stiffness workpiece . . . . . . . . . . . . . . . . . . . . . . . . 218

4.5.2. Effect of clamping sequence on

low-stiffness workpiece . . . . . . . . . . . . . . . . . . . . . . . . 224

4.5.3. Optimization of clamping sequence . . . . . . . . . . . . . . 225

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Preface

Milling is a material removal process used widely for machining metal

components made of steel, aluminum alloy and titanium alloy in

manufacturing industries. This book focuses on the fundamentals of the metal

milling process, based on the research results of the authors and their graduate

students. The book contains five parts:

– The introduction reviews mainly the state of the art of research relevant

to milling processes, and the main structure and contents of this book are

introduced.

– Chapter 1 introduces cutting force modeling methods. Algorithms and

procedures for calibrations of cutting force coefficients and cutter runout are

described in detail.

– Chapter 2 is focussed on explaining the surface quality of milling

processes. Calculation methods for surface errors in milling of thin-walled

workpieces and milling surface topography are described.

– Chapter 3 investigates the regenerative chatter in milling processes. An

analytical method for calculating the tool point frequency response function

is introduced first, and then numerical methods for obtaining stability lobe

diagrams are derived in detail.

– Chapter 4 discusses the basic principles in workpiece-fixture system.

Analyses of locating scheme correctness, clamping sequences, clamping

stability, etc. are mathematically formulated.
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x Milling Simulation

This book is not indented to capture all the significant contributions that

have been previously reported in the literature of machining science. For the

purpose of revealing the mechanisms of milling processes, a key aspect of

this book is the inclusion of detailed mathematical models to predict cutting

forces, surface errors, chatter stability dynamics and clamping principles. The

theoretical parts are derived from experimental observations and are further

validated by experiments.

The book can be used as a guideline for graduate students and research

engineers who wish to learn the basic theory and principles of milling

processes and machine dynamics.

Weihong ZHANG, Min WAN

March 2016
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Introduction

Milling is a widely used method to remove materials from the initial

configuration of a workpiece for machining monolithic parts in aeronautic,

aerospace and automobile manufacturing industries. Due to the characteristics

of large size and weak rigidity, cutting deformations and chatter vibrations

will be easily induced during the cutting process. As a result, machining

accuracy and surface quality of workpieces are not easily achieved and

useless products will be produced in the worst case. Traditionally, the usual

approach to remedying the machining precision was to validate the NC

program by expensive trial and error cutting. Recently, an alternative

approach is to numerically simulate the milling process a priori. It is desired

that a quasi net-shaping will be obtained practically with optimal cutting

parameters in perhaps one pass without grinding and polishing. To this end,

research on the mechanics and dynamics of milling process is of great

significance in developing strategies to guarantee accuracy. Issues such as

cutting force modeling, surface quality prediction, chatter stability analysis

and clamping scheme design are the key to this aspect.

I.1. Cutting force modeling

Cutting force modeling is the basis of all simulation schemes. In early

research [MER 44], the concept of specific cutting energy was employed in

cutting force modeling where cutting forces were assumed to be entirely

related to shearing and friction effects. Under this assumption, the lumped

force model was proposed as a classical one [KOE 61]. It approximates the

entire cutting process as an equivalent shearing mechanism. This means that
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the cutting forces are supposed to be proportional to the chip load and the

proportion scale is named the cutting force coefficient.

Since then, research efforts have been focused on how to effectively

determine the cutting force coefficients in the lumped force model. For

instance, Kline et al. [KLI 82a] and Larue and Anselmetti [LAR 03] treat the

coefficients as constants. The former calibrated them by means of measured

average cutting forces, whereas measured cutter deflections were used by the

latter. Endres et al. [END 90] used empirical relations that mapped three

independent variables of interest, i.e. instantaneous uncut chip thickness,

cutting speed and rake angle, to represent the cutting force coefficients.

Altintas and Spence [ALT 91] assumed that the coefficients are a power

function of the average chip thickness, determined based on a strict integral

technique. Instantaneous models such as the Weilbull function proposed by

Ko et al. [KO 02] were also used to characterize instantaneous influences of

process geometry parameters upon the cutting force coefficients for the

lumped cutting force model.

It was, however, recognized by Thomsen [THO 66] that the cutting forces

do not converge to zero when the chip thickness approaches zero. This

phenomenon is the so-called rubbing effect associated with the clearance face

of the flank edge and responsible for cutting process damping [END 95].

Masuko [MAS 56] and Albrecht [ALB 60, ALB 61] proposed the

dual-mechanism model to separate the chip removal and flank rubbing

mechanisms for the machining process of constant chip thickness. With

regard to the milling process of periodically changing chip thickness, Altintas

[ALT 12] modeled the chip removal and the flank rubbing effects separately

as functions of chip load and chip width, respectively. Meanwhile, Budak

et al. [BUD 96] calibrated the cutting force coefficients using orthogonal

cutting tests with oblique cutting analysis and transformation. Gonzalo et al.
[GON 10] identified the constant coefficients by means of measured

instantaneous cutting force data. Wang and Zheng [WAN 03] used the

convolution integration method to identify the cutting force coefficients.

However, it is interesting to remark that the methods proposed above were

developed for each cutter type individually, e.g. the flat end mill and the ball

end mill. To have a unified cutting force model of general end mills, Engin

and Altintas [ENG 01] developed a generalized mechanics and dynamics

model where cutting force coefficients are predicted from an orthogonal

database. Alternatively, Gradisek et al. [GRA 04] calibrated the cutting force
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coefficients for a general end mill based on the average cutting forces

measured.

With respect to the cutting force prediction, however, most work was

based on the assumption that machine set-up errors such as cutter tilt and

cutter offset runout were ignored. In contrast, a rigid mechanistic cutting

force model including the cutter radial runout was proposed by Kline and

DeVor [KLI 83]. This model was later extended by Sutherland and DeVor

[SUT 86] and a regeneration model was developed to predict the cutting

forces in flat end milling, accounting for the cutter flexibility and the cutter

runout. In this context, we suppose that the cutter runout parameters are

known a priori. Wang and Liang [WAN 96] developed an analytical model

for the calculation of instantaneous uncut chip thickness and cutting forces.

In fact, the problem also arises of how to figure out the runout parameters

and the cutting force coefficients simultaneously based upon the measured

cutting forces. For cylindrical end milling, a numerical scheme was proposed

by Armarego and Despande [ARM 89], who estimated the runout parameters

through a best-fit procedure. Liang, Zheng and Wang et al.
[LIA 94, ZHE 97, WAN 03] analyzed the influence of the cutter runout on the

cutting forces using the convolution integration method. Cutting force

coefficients and cutter runout parameters were identified by means of the

Fourier series. An alternative approach was suggested by Cho et al.
[YUN 00, YUN 01] who calibrated the cutting force coefficients and the

cutter runout for cylindrical end mills based on the instantaneous cutting

forces rather than the average ones. Attention was also received in ball end

milling. Feng and Menq [FEN 94a, FEN 94b] calibrated the cutting force

coefficients and the runout using the mechanistic approach for the modelling

of complicated ball end milling process. Ko and Cho [KO 05] calibrated the

instantaneous cutting force coefficients and the runout parameters for ball end

milling with the synchronization procedure.

I.2. Surface quality simulation

In a milling process without chatter, the static surface form error caused

mainly by elastic deflections of the cutter and of the workpiece is often the

dominant defect when milling a thin-walled workpiece made up of titanium

or aluminum alloys at a low spindle speed [BUD 95, TSA 99]. The surface
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form error is mainly made up of the force-induced deflection, which results in

a deviation of the depth of cut. Many research attempts have been focused on

this problem. Kline [KLI 82b], Larue [LAR 03], Budak [BUD 94],

Shirase [SHI 96], Ryu [RYU 03] and Paksiri [PAK 04] used the cutter

deflection to predict the surface form errors; whereas Ratchev et al.
[RAT 04a, RAT 04b, RAT 06] used the workpiece deflections to calculate

surface form error of a flexible workpiece. For example, Kline et al.
[KLI 82b] studied the prediction of surface form errors in the peripheral

milling of a clamped-clamped-clamped-free rectanglular plate. The cutter is

modeled as a continuous cantilevered beam and the plate is discretized by the

FEM. In the meantime, cutting forces are assumed to be concentrated forces

in the calculation of the cutter and workpiece deflections. Budak and Altintas

[BUD 94] and Shirase et al. [SHI 96] studied the surface form errors uniquely

caused by the deflection of the cutter that is modeled as an assemblage of

discrete elements with equal length. Thus, cutting forces are discretized onto

the element nodes to calculate the deflection of the cutter. This approximation

is valid when the workpiece has relatively a large rigidity. Zhang et al.
[ZHA 01a] determined the surface form errors by evaluating the deflections

of both the cutter and the workpiece without considering the coupling effect

between cutter and workpiece. To consider this coupling effect in a flexible

milling process, many researchers used iteration schemes to predict the

cutting forces and the surface form errors [BUD 95, TSA 99]. Budak and

Altintas [BUD 95] and Tsai and Liao [TSA 99] developed iteration schemes

to retain the coupling effect of deflections between the cutter and workpiece,

as well as the rigidity diminution of the workpiece due to material removal.

Meanwhile, the workpiece is meshed by one layer of 8-node and 12-node

isoparametric volume elements along the thickness direction, respectively.

Nevertheless, the generated mesh of the workpiece has to coincide, element to

element, with that of the cutter. In addition, the stiffness reduction of the

workpiece due to material removal can be simulated by changing nodal

coordinates of such a one-layer element. This requirement becomes a major

limitation in the modeling step, especially in the modeling process of complex

workpieces. In the above work, it can be generally said that the surface form

errors were predicted either by means of an analytical/finite element method

[LAR 03, BUD 95, RYU 03] or by means of neural networks [PAK 04].
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Based on the obtained values of surface form errors, compensation

techniques have been widely used to reduce the resulting errors without

sacrificing the machining productivity. Depince [DEP 06], Rao [RAO 06],

Landon [LAN 03] and Law [LAW 99, LAW 03] studied the

cutting-force-induced tool deflection compensation in peripheral milling by

the mirror method. Based on the closed loop volumetric error relations, Bohez

[BOH 02] proposed a general method to compensate the systematic errors.

Cho et al. [CHO 03] proposed an integrated error compensation method by

the online error measuring method. Paksiri [PAK 04] proposed an error

compensation model in a 3-axis CNC milling machine using a

back-propagation neural network. Ratchev et al. [RAT 06] investigated a

multi-level error compensation method for milling low-rigidity parts. With all

of these methods, the surface quality can be greatly improved but cannot be

ensured in all machining conditions [DEP 06]. Although the errors can be

reduced to some degree, the surface form errors may still violate the required

tolerance after compensation. Ryu and Chu [RYU 05] proposed a surface

form error reduction method through successive down and up milling. Some

researchers [BUD 95, ERD 06, YAZ 94] were limited to the feed rate

scheduling with the sacrifice of productivity.

With respect to the surface topography, finding the machined surface

topography and the geometric shape and texture of the machined surface is

essential, because the latter directly affects the surface quality, especially the

surface roughness. For a ball end milling process, the surface topography also

affects the cutting force and chip load calculations. Simulations of machined

surface topography also constitute an active research topic in the

manufacturing community. Relevant published research works can be

summarized as follows; Kline et al. [KLI 82b] discussed the effects of cutter

runout on the shape of the tooth marks in end milling process. Jung et al.
[JUN 05a, JUN 05b] developed the so-called ridge method to predict the

characteristic lines of the cut remainder for a disk tool in the ball end milling

process, and three types of ridges are defined to this end. Imani et al.
[IMA 98], Imani and Elbestawi [IMA 01] and Sadeghi et al. [SAD 03] used

solid modeling techniques and Boolean operations to deal with the geometric

simulation of the ball end milling operations. In summary, many researchers

employed discretization and interpolation techniques to simulate the

machined surface topography. Elbestawi et al. [ELB 94] and Ismail et al.
[ISM 93] studied the trochoid path for surface generation of end milling. The
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tool path is discretized into segments to simulate the surface topography.

Based on the concepts of parallel reference section levels and elementary

linear sections, Bouzakis et al. [BOU 03] modeled the workpiece and cutting

edge to simulate the topography in the ball end milling process. Furthermore,

Ehmann and Hong [EHM 94], Xu et al. [XU 01] simulated the topography of

the end milling by meshing cutter and workpiece into small elements.

Lazoglu [LAZ 03] applied a similar method to the ball end milling process. Li

et al. [LI 02] formulated the trajectory equations of the cutting edge relative

to the workpiece and simulated the surface topography in the end milling

process. Antoniadis et al. [ANT 03] determined the machined surface

roughness for ball end milling, based on shape-function interpolation over a

number of finite linear segments of the workpiece. In fact, all of the above

methods depend on how the workpiece, cutting edge, and tool path are

discretized, and the coherence between these discretizations.

The second class of methods refers to the so-called Z-map modeling

method. To use it, the cutting edge is represented by its parametric equation

and the tool-cutting rotation motion is discretized. In this manner, the final

surface topography is determined by comparing the point on the cutting edge

with the node on the workpiece surface in the height direction. For example,

Soshi et al. [SOS 04] applied such a method to predict surface topography in

five-axis ball end milling without considering the cutter runout and wear. In

contrast, only the runout effect was considered in the work of Zhao et al.
[ZHA 03b]. More importantly, both runout and wear were taken into account

by Liu et al. [LIU 06] and Sriyotha et al. [SRI 06]. The topography was

studied experimentally by Toh [TOH 04] in high-speed milling of inclined

hardened steel surfaces.

I.3. Chatter stability analysis

Chatter is a form of self-excited vibration due to the dynamic interaction

between the cutter and the workpiece. The occurrence of chatter vibration

leads to poor surface finish and in the worst case may damage the machine

spindle or the cutter. In practice, to achieve high material removal rate and

high machining quality, the milling process must be conducted in stable state.

Thus, the problem arises of how to evaluate whether the selected cutting

parameters will lead to stable milling or not. The challenge is to develop a

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Introduction xvii

suitable dynamic model that can reflect the chatter mechanism in milling.

Many research efforts have been focused on this issue.

Altintas [ALT 12, ALT 92, ALT 95, ALT 99b, MER 04, ALT 08] is one of

the pioneers who studied the dynamic behavior of the milling process.

Research results in [ALT 12, ALT 92, ALT 95, ALT 99b, MER 04, ALT 08]

pointed out that when the cutting forces create a relative displacement

between the cutter and the workpiece at the cutting point, the chip thickness

experiences waves on the inner and outer surfaces due to present and past

vibrations. The gain and the phase shift between the inner and outer waves

may lead to exponential growing chips and hence very large forces until the

cutter jumps out of the cut. The above phenomenon is the well known

chip-regenerative chatter. From this basic physical understanding, it can be

found that there exist delayed position variables which could be used to

couple the cutting forces to the cutter motion. The mathematical models

developed to explain these phenomena correspond to delay differential

equations (DDEs). Based on this important discovery, extensive efforts have

been carried out to model the dynamic milling process and to develop

stability lobe diagrams that can distinguish chatter-free operations from

unstable operations.

In early decades, Koenigsberger and Tlusty [KOE 67] used an orthogonal

cutting model to analyze the milling stability. Later, Altintas and co-workers

[ALT 12, ALT 92, ALT 95, ALT 99b, MER 04, ALT 08] developed a stability

method which leads to the analytical determination of stability lobes directly

in the frequency domain. This method, known as zero-order approximation,

can achieve reasonably accurate predictions for processes where the cutting

forces vary relatively little, e.g. the case of large radial immersions. However,

if the process is highly intermittent, e.g. the case of small radial immersion, a

zero-order approximation will lead to unacceptable results. To improve the

prediction accuracy in this case, a higher order solution was suggested to

predict the stability by Budak and Altintas [BUD 98a, BUD 98b].

Alternatively, Tlusty and Ismail [TLU 81] pointed out that the time domain

simulation would be a good choice for accurate stability predictions in

milling. The closed-form for expressing the dynamics of milling systems in

the time domain was formulated by Sridhar et al. [SRI 68], but its analytical

solution was firstly accomplished by Minis et al. [MIN 90], who used the

famous Floquet theory [KOL 86, LAK 88]. Zhao and Balachandran

[ZHA 01b] numerically determined the stability boundary using the time
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domain simulations. Later, Mann et al. [BAY 03, MAN 04] proposed a

temporal finite element analysis for solving the delayed equations written in

the form of a state space model, whereas Insperger and Stepan [INS 04]

employed the semi-discretization scheme to solve the stability in the discrete

time domain. Other research efforts mainly extended the application of the

above principal solutions in the frequency and time domain. For example,

Merdol and Altintas [MER 08] planned the milling process by using the

stability results in the frequency domain. Patel et al. [PAT 08] implemented

the temporal finite element method to detect the island phenomena in milling.

Note that these islands were first found by Zatarain et al. [ZAT 06]. Tois

[TOT 09] developed a probabilistic algorithm for a robust analysis of stability

in milling based on the basic principles of the semi-discretization scheme.

Campomanes and Altintas [CAM 03] proposed an improved time domain

simulation method for analyzing the stability at small radial immersions.

Gradisek et al. [GRA 05] investigated the stability boundaries for variable

radial immersions by both the zero-order method and the semi-discretization

method.

It is worth noting that the above works were conducted under the

assumption that there is only one delay term. The delay is often assumed to

be constant and has the value of the tooth passing period. This is true for ideal

milling operations with a constant pitch cutter. However, in practice, the time

delay is basically determined by the rotation of the cutter, but it is also affected

by the current and the delayed position of the cutting edge. That is, the time

delay may be state-dependent. Insperger et al. [INS 07, INS 08a] analyzed

such state-dependent delays for the turning process. As with milling, due to

the effect of cutter runout or unpitched space angles, the appearance of state-

dependent delays directly leads to the existence of multiple delayed terms:

– the occurrence of cutter runout will lead to the explicit phenomenon that

the current cutting point on the inner surface wave may be to remove the outer

surface wave generated by its l-th previous tooth. Here, l may be more than

one. As a result, many delays may occur;

– the adoption of a variable pitch cutter will also lead to variable delays.

If cutter runout does not occur, any cutting point is always to remove the

surface left by its first previous tooth. In this case, the delay term corresponding

to the cutting points on the same tooth is identical. However, due to the

unevenly pitched space angles, the delay corresponding to different teeth will
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be different. If cutter runout occurs, the delay will be influenced by both the

cutter runout and the space angle. In summary, there might also exist more

than one delay in this case.

Insperger et al. [INS 08b] systematically studied the frequency

characteristic for an evenly pitched milling cutter with runout in the time

domain. Their results showed that cutter runout will shift the frequency

content of the cutting force signal away from the tooth passing frequency and

towards the spindle rotation frequency. The principal period of runout-milling

process is equal to the spindle rotation period. Although this understanding

was achieved, their research was still carried out under the assumption that

the delay can be approximated as the tooth passing period. This hypothesis

will have a good prediction accuracy when the runout is relatively small. If

the cutter runout is large, some accuracy may be lost in the actual process.

Altintas and Budak et al. [ALT 99a, BUD 03a, BUD 03b] studied the stability

of the variable pitch milling cutter in the frequency domain. Their works

showed that the pitch angles have a great effect on the stability boundary.

Sims et al. [SIM 08] proposed a time-averaged semi-discretization method to

study the chatter stability for variable pitch and variable helix milling cutters.

However, the above methods [ALT 99a, BUD 03a, BUD 03b, SIM 08] were

not suitable for the case when cutter runout occurs.

I.4. Clamping system design

Fixtures are generally mechanical devices used to assist machining,

assembly, inspection, welding and other manufacturing operations. The

functions of such devices aim to locate and ensure the desired positions and

orientations of workpieces during the manufacturing process. By definition,

the machining dimensions of a workpiece are those parameters that describe

the machining features and have to be ensured during the machining

operation. For this reason, it is desired to determine the constrained DOFs

(hereafter called theoretical constrained DOFs) that will be used to design the

corresponding locating scheme, i.e. to design both the locator number and

positions. Actually, fixture locating scheme design has been receiving much

attention and the experienced locating scheme, e.g. 3-2-1 locating rule, was

taken into account [HOF 91, RON 99, RON 05, NEE 05, NEE 95].

Fixture design is an important issue before the locating scheme can be

designed. After plenty of studies and practices, many experts and skilled
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workers have accumulated much experience in fixture design, and have

established some empirical principles [HOF 91]. A drawing of fixture design

is often prepared based on the operation plan and the workpiece information.

Since the 1980s, Computer Aided Fixture Design (CAFD) techniques have

been extensively developed. As a result, the period of fixture design is

shortened and some burdensome tasks such as consulting handbooks of jig

and fixture design, drawing all assembly views and compiling technical

documentation become greatly simplified [LI 01]. In addition, the quality and

efficiency of fixture design are improved to a certain extent. However, the

fixture specification for the machining is strongly dependent upon the

designer’s experience and knowledge so that an optimum solution of fixture

design is generally difficult to obtain [RON 02]. Many existing works were

mainly restricted to the layout design of contact points. The design of

locators’ dimensions and locations are not simultaneously involved in the

model. Although Guo et al. [GUO 01] presented the basic concepts of the

robustness of the fixture positioning scheme to study the influence of locator

dimensions, rule function and restraint conditions, the relationship between

the localization error and its causes was still underdeveloped and thus needs

to be investigated.

Once a workpiece is completely located and restrained by the locators and

clamps of the machining fixture, the workpiece will be machined or processed

to generate required geometric features according to the process plan.

However, the inherent geometrical and mechanical nature of a

workpiece-fixture system, e.g. the geometric defaults of locator dimensions,

the inconsistent datum error (IDE) of a workpiece, the compliance, will all

affect the final workpiece position. Experimental results showed that such

source errors are the major fixturing errors influencing the workpiece

accuracy and can amount to 20–60 percent of the total machining error in an

extreme case [WU 97]. Therefore, performance evaluations of the

workpiece-fixture system constitute a significant task for fixture design

optimization and control of machining error. Fixture design performance may

principally include locating correctness for constraining DOFs of a workpiece

in specific directions, workpiece stability for guaranteeing the workpiece in

static equilibrium condition and machining error analysis for ensuring

tolerance requirements of a product design.

During a machining process, since a workpiece is subject to cutting forces

and torques, a fixture must be used to restrain the workpiece in the correct
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location so that the manufacturing process can be carried out according to

design specifications. A fixture basically consists of clamps and locators. The

function of locators is to provide a workpiece with the desired location.

However, due to the effect of gravity and the machining forces exerted on the

workpiece, locators alone are usually insufficient to constrain the workpiece.

Clamps are thus utilized to provide extra constraints to counteract an eventual

movement of the workpiece. Therefore, fixturing the workpiece in an

equilibrium state has a significant impact on the machining quality and

production safety. This is the implication of the stability. In fact, stability

analysis is one of the essential tasks in the fixture design that started

inevitably from “closure analysis” including form-closure and force-closure.

It is therefore noted that form-closure can be viewed as a particular

force-closure with frictionless contacts only [WU 97]. Practically, it is more

significant to investigate the force-closure.

Due to the presence of friction at the contact points between the workpiece

and fixture, the clamping sequence greatly influences the final distribution of

contact forces in the workpiece-fixture system when multiple clamps are

applied sequentially. Thus, the clamping sequence has to be appropriately

planned at the machining fixture design stage. Traditionally, the mounting

process of a fixture is to immobilize the workpiece with negligent effects of

contact forces on displacements and rotations of the workpiece. Recently, a

deluge of studies has been carried out for the contact force synthesis, and two

basic modeling approaches were proposed: a kinematic model and FEM

model. However, little research has been carried out concerning basic

theories, mathematical modeling and computing methods of the clamping

sequence.

I.5. Purpose of this book

The main contents of this book include the following:

1) a series of new methods for calibrating the cutting force coefficients

and cutter runout parameters are described in detail [WAN 06a, YAN 13,

WAN 07a, WAN 07b, WAN 09a, DAN 10, WAN 09b, WAN 14, YAN 11].

Typical characteristics of these kinds of methods lie in that they can be applied

within a great range of cutting conditions although calibrations are carried out

with a few cutting tests under a specific regime;
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2) methods for the prediction and control of surface quality are described

[WAN 05, WAN 06b, WAN 08, GAO 06, ZHA 08]. For example, numerical

algorithms for predicting surface form errors in peripheral milling of thin-

walled workpieces using irregular finite element method are proposed, and bi-

parameter algorithms are proposed to control surface form errors. Approaches

for calculating the surface topography of both three-axis and multi-axis

ball end milling processes are also developed without the requirement of

discretizing the cutting edge and meshing the workpiece;

3) to have a unified model, new methods [WAN 10b, WAN 11, WAN 15]

are presented to determine the stability lobe for the milling process with

multiple delays in the time domain by improving the semi-discretization

method [INS 04, INS 02]. The advantage of the proposed method lies in the

fact that the algorithms performed in instantaneous consideration of every

possible delay can be applied to a great range of actual milling processes.

It can be used to study the stability of the milling process both with and

without runout. It is also suitable for the milling cutter with either constant

or nonconstant pitch angle. Emphasis is also placed on how to effectively

incorporate the instantaneous cutting force model into the prediction procedure

of stability lobes, by numerically predicting the vibration time history of the

cutter motion;

4) a series of analyses are conducted to solve the clamping principles of the

workpiece-fixture system [QIN 07b, QIN 06a, QIN 08, QIN 06b, QIN 07a].

The main efforts are focused on key issues, such as the design of the locator

number and positions satisfying the machining dimensions of the workpiece,

workpiece position error in fixture locating schemes, the relationship between

the workpiece position error and its source errors, machining error in terms

of both geometric default and compliance of the workpiece-fixture system,

workpiece stability, and design optimization of the clamping sequence.
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Cutting Forces in Milling Processes

1.1. Formulations of cutting forces

Milling is a cutting operation which is generally used to remove materials

from the blank for the purpose of achieving parts with the desired shape and

surface quality. Cutting mechanics of the milling process includes the

shearing effect between the cutting edge and the workpiece, the friction effect

between the rake face and chip, as well as the ploughing effect between the

clearance surface and the machined surface. The combined influence of the

three effects lead to the generation of cutting forces, which can result in

cutting deflections and can further damage the surface quality of the machined

parts. Study of the mechanics of the milling process is of great significance to

control surface errors and to plan stable cutting strategy. Milling is a typical

multipoint tool operation, whose cutting mechanism involves elastic-plastic

mechanics and thermal dynamics. Specific analyses for a detailed

understanding of the behavior of temperature and strain rate fields are not

covered in this text. In this chapter, we will discuss the generation mechanism

of cutting forces, and then detail a series of methods for calibrating the

cutting force coefficients which enable us to accurately predict cutting forces.

1.1.1. Mechanics of orthogonal cutting

Orthogonal cutting is usually used to explain the mechanism of material

removal, and the three-dimensional oblique cutting process can be evaluated

by geometrical and kinematic transformation models, as reported by Altintas

[ALT 12]. Without the loss of generality, the orthogonal cutting process is

Milling Simulation: Metal Milling Mechanics, Dynamics and Clamping Principles, 
First Edition. Weihong Zhang and Min Wan.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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2 Milling Simulation

adopted to formulate the cutting forces. Figure 1.1 shows the relationship of

cutting forces in the cross-sectional view of an orthogonal cutting process.

The cutting edge is assumed to be a sharp one so that the shearing effect

occurs at a plane without thickness. Two cutting force components exist

between the chip and tool (i.e. the normal Fn and the friction Ff components).

They are in balance with the normal and shearing force components related to

the shear plane, i.e. Fnshear and Fshear, as shown in Figure 1.1(a).

Figure 1.1. Cutting forces in the orthogonal cutting process

Shearing force Fshear can be expressed as

Fshear = τsbh/ sinψn [1.1]

where h is the instantaneous uncut chip thickness and b is the chip width. τs
is the yield shearing stress of the workpiece material. ψn is the shearing angle

defined as the angle between the shear plane and the cutting speed.

From Figure 1.1, it can be observed that

Fshear = F cos(ψn + βn − αn) [1.2]

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Cutting Forces in Milling Processes 3

where F is the resultant cutting force and βn is the friction angle, measured as

the angle between F and Fn, αn is the normal rake angle of the cutter.

Combination of equation [1.1] and equation [1.2] gives rise to

F =
τsbh

sinψn cos(ψn + βn − αn)
[1.3]

At the same time, F can be also split into tangential force FT parallel to

the cutting speed direction, and component FR normal to the cutting speed

direction.

FT = F cos(βn − αn)

FR = F sin(βn − αn)
[1.4]

The substitution of equation [1.3] into equation [1.4] produces

FT = KTbh

FR = KRbh
[1.5]

with

KT =
τs cos(βn − αn)

sinψn cos(ψn + βn − αn)

KR =
τs sin(βn − αn)

sinψn cos(ψn + βn − αn)

[1.6]

Equation [1.5] means that the cutting forces can be evaluated by

multiplying bh, the cross area of the chip, by the cutting force coefficientsKT

or KR expressed by equation [1.6], derived from the shearing mechanism. In

the actual cutting experience, the total cutting forces are contributed by the

shearing effect related to the primary and secondary deformation zones, and

the “ploughing” or “rubbing” effect at the flank of the cutting edge, which is

associated with the tertiary deformation zone. Due to this fact, there are two

widely used cutting force models depending upon whether the rubbing effect

is included or not. The first one is the so-called lumped mechanism model
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that shares the same mathematical equation as equation [1.5]. As its name

suggests, the shearing on the rake face and the rubbing at the cutting edge are

merged as a single coefficient. The second model is the dual mechanism

model, which calculates the cutting forces as a superposition of shearing and

edge forces with

FT = KTcbh+KTeb

FR = KRcbh+KReb
[1.7]

where KTc or KRc represents the cutting coefficient due to shearing effect,

whileKTe orKRe stands for the edge coefficient that does not contribute to the

shearing. The first term of the right-hand side of equation [1.7] is obtained by

applying the same mechanism of orthogonal cutting mechanics as explained in

equation [1.5].

It is noted that equation [1.6] is derived from the orthogonal cutting

operation. In the oblique cutting process, cutting force coefficients are

calculated by the orthogonal-to-oblique method. Readers are referred to the

well-known formulas developed in [ALT 12] for the details of the

orthogonal-to-oblique method.

If the materials property parameter τs, cutter geometrical parameter αn,

process geometrical parameters ψn and βn, and the cutting condition

parameters b and h are known in advance, the values of cutting force

coefficients KT and KR (or KTc and KRc) can be calculated by using the

analytical equation [1.6]. Alternatively, KT and KR (or KTc and KRc, and

KTe and KRe ) can also be mechanistically identified based on the measured

cutting forces. The following contents will detail the modeling of cutting

forces in the milling process and the related methods for obtaining the values

of cutting force coefficients.

1.1.2. Cutting force model for a general milling cutter

A general end milling cutter with helical flutes is shown in Figure 1.2.

XYZ is the coordinate system, with the positive direction of axes Y and X

being aligned with the normal direction of the machined surface and the feed

direction, respectively. D, R, Rr, Rz, α1, α2 and H are seven geometric
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parameters [ENG 01, GRA 04] used to describe the cutter envelope. Note that

in Figure 1.2, Mz, Nz, Mr and Nr are geometrical parameters that can be

calculated by these seven parameters. As explained in [ENG 01], distinct

cutter geometries can be deduced from the general end mill model when

particular values are attributed to these parameters. For example, parameters

{D , R , Rr , Rz, α1 , α2 , H} will be chosen as {D, 0, D/2, 0, 0, 0, H} and

{D, D/2, 0, D/2, 0, 0, H} for the flat end and ball end mills, respectively.
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B-B
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κ(Z)

Y
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Z
B

A

X

B

A
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z

(φ)

(φ)

(φ)

(φ)

θi,j(φ)

θi,j(φ)

FR, i, j(φ)

θ0

Figure 1.2. Geometric model of a general end mill
and the cutting process

For the convenience of cutting force calculation, the cutting edges are

divided into a finite number of co-axial disk elements with equivalent axial

length. For convenience, the axial length of the jth axial disk element of the

ith flute is symbolized as zi,j . It should be noted that zi,j=zi,k (k=1, 2, ...). The

total cutting forces are summed axially along the sliced disk elements from

the bottom of the flute to the final axial depth of cut. The cutting forces
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contributed by the jth axial disk element of the ith flute (e.g. the element P

shown in Figure 1.2) at an arbitrary cutter rotation angle ϕ can be expressed

by the lumped or dual mechanism models.

Lumped mechanism model

FT,i,j(ϕ)=KThi,j(ϕ)bi,j

FR,i,j(ϕ)=KRhi,j(ϕ)bi,j

FA,i,j(ϕ)=KAhi,j(ϕ)bi,j

[1.8]

with

hi,j(ϕ) = h
c
i,j(ϕ) sinκ(z)

bi,j = zi,j/ sinκ(z)
[1.9]

whereKT,KR,KA are three cutting force coefficients in tangential, radial and

axial directions. hi,j(ϕ) and κ(z) are the instantaneous uncut chip thickness at

the current cutter rotation angle ϕ and the tool cutting edge angle related to the

jth axial disk element of the ith flute, respectively. z is the axial coordinate of

the jth axial disk element of the ith flute. Based on the geometric definition of

the general end mill, κ(z) can be expressed as follows [GRA 04].

Case 1: if z ≤Mz,

κ(z) = α1

φ(z) = ln[z/ tanα1] tanβ/ cosα1

[1.10]

where φ(z) is the radial lag angle at z due to the cutter helix angle β.

Case 2: ifMz < z ≤ Nz ,

κ(z) = arcsin

√
1− [(Rz − z)/R]2

φ(z) = (z −Mz) tanβ/R+ ln(Mr) tanβ/ cosα1

[1.11]

Case 3: if Nz < z,

κ(z) = π/2− α2
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if α2 �= 0

φ(z) = φ0 + ln[(Nr + z −Nz) tanα2] tanβ/ sinα2 − ln(Nr) tanβ/ sinα2

if α2 = 0

φ(z) = φ0 + (z −Nz) tanβ/Nr

φ0 = (Nz −Mz) tanβ/R+ ln(Mr) tanβ/ cosα1 [1.12]

Dual mechanism model

FT,i,j(ϕ)=KTchi,j(ϕ)bi,j +KTebi,j

FR,i,j(ϕ)=KRchi,j(ϕ)bi,j +KRebi,j

FA,i,j(ϕ)=KAchi,j(ϕ)bi,j +KAebi,j

[1.13]

where Kqc and Kqe (q=T, R or A) are the force coefficients corresponding to

the chip shearing and the edge rubbing, respectively.

Once three force components are obtained from equation [1.8] or

equation [1.13], they can be mapped along the X, Y and Z directions as⎡
⎣FX,i,j(ϕ)
FY,i,j(ϕ)
FZ,i,j(ϕ)

⎤
⎦ = g(θi,j(ϕ))T(θi,j(ϕ))

⎡
⎣FT,i,j(ϕ)
FR,i,j(ϕ)
FA,i,j(ϕ)

⎤
⎦ [1.14]

with

T(θi,j(ϕ)) =

⎡
⎣− cos θi,j(ϕ) − sinκ(z) sin θi,j(ϕ) − cosκ(z) sin θi,j(ϕ)

sin θi,j(ϕ) − sinκ(z) cos θi,j(ϕ) − cosκ(z) cos θi,j(ϕ)
0 cosκ(z) − sinκ(z)

⎤
⎦

where θi,j(ϕ) is the cutter position angle related to the jth axial disk element

of the ith flute at cutter rotation angle ϕ, and is defined as the clockwise angle

determined from axis Y to the disk element. g(θi,j(ϕ)) is the window function

used to identify whether the disk element is in cut or not.

g(θi,j(ϕ)) =

{
1, θen,i,j(ϕ) ≤ θi,j(ϕ) ≤ θex,i,j(ϕ)

0, otherwise
[1.15]
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where θen,i,j(ϕ) and θex,i,j(ϕ) are entry and exit angles related to the jth axial

disk element of the ith flute, which are geometrically defined in Figure 1.3

X X

Y Y

Ω
Ω

a
e a

e

θ
en,i,j

θ
en,i,jθ

ex,i,j θ
ex,i,j

（a） （b）

O O

Figure 1.3. Definition of entry and exit angles:
a) down milling; b) up milling

Subsequently, the total cutting force components Fs(ϕ) (s=X, Y or Z) at

any cutter rotation angle ϕ can be evaluated by summing the forces acting on

all flutes and disk elements:

Fs(ϕ) =
∑
i,j

Fs,i,j(ϕ) , s = X, Y or Z [1.16]

1.2. Milling process geometry

1.2.1. Calculations of uncut chip thickness

As illustrated in Figure 1.4, at an instantaneous cutting position of the jth
axial disk element of the ith flute, the equivalent chip thickness hci,j(ϕ) refers

to the distance in the radial direction of the cutter between the tooth path to

be generated by the cutter element, and the surface left by the jth axial disk

element of the (i-m)th flute. The occurrence of cutter runout will lead tom �= 1
. Due to the deflections of the cutter and workpiece, the cutter axis shifts from

its nominal position. As a result, two adjacent tooth paths will deviate from the

desired paths. So, hc
i,j(ϕ) will be different from the nominal value. Based on
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the circular tooth path assumption [MAR 45] shown in Figure 1.4(a), hc
i,j(ϕ)

is calculated as follows

hc
i,j(ϕ) = ri,j − li,j [1.17]

where li,j is an intermediate variable, as shown in Figure 1.4. ri,j is the actual

radius of the circular tooth path generated by the jth axial disk element of the

ith flute at cutter rotation angle ϕ. In this section, ri,j will be calculated by

using equation [1.18] based on the radial cutter runout model, which is widely

used by many researchers [WAN 03, ARM 89, LIA 94, FEN 94a, FEN 94b,

WAN 07a, AKS 98, AZE 04, CHE 97, SEE 99, SHI 97, WAN 07b, WAN 94].

ri,j = rn,i,j + ρ cos[λ− φ(z)− 2(i− 1)π/N ] [1.18]

where rn,i,j is the nominal cutting radius of the jth axial disk element of the

ith flute. N is the total number of cutting teeth of the cutter. ρ and λ are the

geometrical parameters in the radial cutter runout model, in which the cutter

axis is assumed to be parallel to the centerline of the machine spindle, as

defined in Figure 1.5. Geometrically, ρ is the cutter axis offset, defined as the

distance between the rotation center of the spindle and the geometric center of

the cutter, while λ is location angle measured as the angle between the

direction of the offset and the tip of the nearest tooth (tooth 1).

A

 mf A

centrecutterDesired

 

O O

(a) (b)

O

O

O
O

θi,j(φ)

θi,j(φ)

(φ)

Deformed cutter centre

Figure 1.4. Geometric illustration of equivalent chip thickness:
a) geometric definition; b) close-up view of sub-figure (a)
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Figure 1.5. Definition of radial cutter runout. For a color version of this
figure, see www.iste.co.uk/zhang/milling.zip

Using the law of cosines, a geometric relation exists between the cutter

centre of the current tooth path and that of the past tooth path in Figure 1.4(b).

r2i−m,j = Λ2 + li,j
2 − 2Λ li,j cosΥ [1.19]

in which

Λ =
√
Δδ2x +Δδ2y [1.20]

with

Δδx = mf + δx,i,j − δx,i−m,j ; Δδy = δy,i,j − δy,i−m,j [1.21]

Notice that (δx,i,j , δy,i,j ) and( δx,i−m,j , δy,i−m,j) correspond to offset

values of cutter centres of the current tooth and the m-past tooth from their
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desired positions, respectively. f is the feed per tooth. Obviously, the following

relation holds.

Υ = π − θi,j(ϕ) + arccos(
Δδy
Λ

) [1.22]

By solving equation [1.19], li,j is obtained as

li,j = ΛcosΥ +
√
r2i−m,j − Λ2sin2Υ [1.23]

By substituting equation [1.23] into equation [1.17], hc
i,j is derived as

hc
i,j(ϕ) = −ΛcosΥ + ri,j −

√
r2i−m,j − Λ2sin2Υ [1.24]

Due to the fact that ri−m,j >> Δδx and ri−m,j >> Δδy, it follows that

ri−m,j >> Λ sinΥ from equation [1.20]. Thus, equation [1.24] can be

approximated by

hc
i,j(ϕ) = −ΛcosΥ + ri,j − ri−m,j

≈ mf sin θi,j(ϕ) + ri,j − ri−m,j

[1.25]

Note that if a negative value of hc
i,j(ϕ) is obtained by equation [1.24] or

equation [1.25], hc
i,j(ϕ) is set to be zero.

Physically, a static milling process free of vibration implies that cutting

forces must have stabilized themselves after a few tooth periods. In other

words, the cutting forces obtained from two adjacent tooth periods must be

equal, as assumed by Budak [BUD 92]. The implication of this stability

condition requires that the volume of materials cut off by the current tooth

should be identical to that cut off by the previous tooth with the negligence of

runout, i.e. m =1 and ri,j = ri−1,j in equation [1.25]. Now, suppose that

Fi(θi,j(ϕ)) represents the resultant cutting force vector associated with the

cutter position angle θi,j(ϕ) , then

Fi(θi,j(ϕ)) = Fi−1(θi−1,j(ϕ)) [1.26]
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Likewise, cutter deflections of the concerned cutter segment also remain

unchanged between two adjacent teeth, so that following equations hold

δt,i,j = δt,i−1,j [1.27]

where δt,i,j = (δt,X,i,j , δt,Y,i,j , δt,Z,i,j) is the cutter deflection vector

corresponding to the jth axial disk element of the ith flute. It is evaluated

based on the cantilevered beam model [SUT 86, BUD 95, SHI 96].

Concerning the cutter center offset values (δx,i,j ,δy,i,j ,δx,i−1,j ,δy,i−1,j),

because of δx,i,j = δt,X,i,j and δy,i,j = δt,Y,i,j , the following important

relations can be derived:

– from equation [1.27],

δx,i,j = δx,i−1,j , δy,i,j = δy,i−1,j [1.28]

– from equation [1.21],

Δδx = f, Δδy = 0 [1.29]

– from equation [1.22],

β = 3π�2 − θi,j(ϕ) [1.30]

By reviewing the above relations, equation [1.25] can be further simplified

as

hc
i,j(ϕ) = f sin θi,j(ϕ) [1.31]

Obviously, equation [1.31] indicates that hc
i,j converges to its nominal value

of f sin θi,j(ϕ) in a static milling process. It gives the theoretical explanation

why the nominal value of the equivalent chip thickness, f sin θi,j(ϕ), is widely

used by many researchers to establish the cutting force model.

1.2.2. Determination of entry and exit angles

Equation [1.15] shows that cutting force prediction is dependent on the

entry, θen, and the exit, θex, angles. In the case of a milling workpiece with
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simple geometry, both angles can be calculated analytically. For instance, in

flat end milling of a plane, the entry and exit angles can be mathematically

expressed as

θen =
π

2
+ arcsin

(D − 2ae)

D
, θex = π, for down milling

θen = π, θex =
π

2
− arcsin

(D − 2ae)

D
, for up milling

[1.32]

where ae stands for the radial depth of cut.

For a milling workpiece with complex geometry, a complicated cutter

geometry and process geometry make it very difficult to analytically

determine the entry and exit angles. Alternatively, researchers propose that

through extracting the cutter-workpiece engagement (CWE) region, i.e. the

engagement domain of each axial disk along the tool axis, the entry and exit

angles can be correspondingly calculated. A literature review shows that

existing CWE extracting methods have the following characteristics:

– for a discrete method [CHO 97, LAZ 03, FUS 03, ROT 07, LI 10,

ZHA 11, ARA 11, KIM 06, LI 08, KAR 10], the achievement of high accuracy

computing of CWE requires a high resolution of workpiece decomposition,

large store memory and long computing time;

– for a solid modeling-based method [FER 08b, LAZ 11, SPE 94,

IMA 98, ELM 98, SPE 00, YIP 06], Boolean operations for implementing

surface/surface intersection algorithms are greatly time-consuming because

CWE maps are extracted from the in-process workpiece. Meanwhile, as the

data structure size quickly increases during simulation, numerical inaccuracies

of the workpiece’s model will be stacked and thus topological errors may

occur.

This section proposes a solid trimming method by which CWE maps are

extracted from the removal volume of multi-axis milling rather than from the

in-process workpiece (IPW). In this method, both the workpiece and tool

surfaces are described by a B-rep solid modeler.

CWE is geometrically defined as the instantaneous engagement region

when flutes enter into and leave a workpiece. In other words, it is the contact

area between the tool envelope surface and the workpiece, and can be treated
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14 Milling Simulation

as a function of cutter’s axial height. The calculation of CWE thus depends

upon both the geometry complexities of the cutter and workpiece as well as

the relative location between the cutter and workpiece. It is independent of

tool flute numbers and cutting parameters. The proposed method is

schematically depicted in Figure 1.6. It can be seen that the calculation of

CWE maps is based on the removal volume, rather than the entire in-process

workpiece, as reported in [ARA 08]. This allows the subsequent operations to

be performed on a simple data structure. Detailed explanations of the key

steps are described below.

Slicing the CWE surfaces and calculating        and      

(1) Generation of the ATSV (2) Generation of the RV and UIPW 

(3) Generation of the FCSs (4) Trimming RV with FCSs

(6) 

RV

UIPW

(5) Extraction of CWE surfaces

IPW

IPW

ATSV

ATSV

=∩
*

Analytic tool
 swept surfaces

First cutter 
location

Last cutter 
location

Feed 
direction

Tool 
surfaces  

Tool swept 
profiles

FCSs

Feed 
direction
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FCSs
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Slicing the CWE surfaces into curves 
with the parallel planes along tool axis

=-
*

ATSV

Entry and exit angles

en ex
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Figure 1.6. The whole procedure of CWE extraction. For a color
version of this figure, see www.iste.co.uk/zhang/milling.zip
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1.2.2.1. Generation of analytic tool swept volume, removal volume and
updated in-process workpiece

This section corresponds to steps (1) and (2) in Figure 1.6. The main content

of both steps are as follows:

i) Generation of the analytic tool swept volume (ATSV) by the method

reported in [WEI 04]. This step is often performed by sewing the analytic tool

swept surface, {Faces}Swept, the ingress part of the tool surface, {Faces}Ingress,

at the first cutter location and the egress part of the tool surface, {Faces}Egress,

at the(NCL-1)th cutter location,

ESwept={Faces}Swept+{Faces}Ingress+{Faces}Egress [1.33]

where ESwept denotes the solid model of analytic tool swept volume. NCL

denotes the number of cutter locations.

In this work, the analytic tool swept surface is obtained by employing the

analytic method proposed in [GON 09].

ii) With the ATSV obtained above, the removal volume (RV) and updated

in-process workpiece (UIPW) are obtained by performing Boolean operations

between the ATSV and the in-process workpiece (IPW):

RV = ATSV
⋂∗

IPW [1.34]

UIPW = IPW−∗ATSV [1.35]

where
⋂∗ and −∗ denote the Boolean intersection and subtraction operator,

respectively. Notice that UIPW becomes IPW for the next tool path segments.

Traditionally, equation [1.34] is carried out based on the tool swept volume

obtained with Boolean union operation among the cutter solid models at all

cutter locations along the tool path [FER 08a]. Because there are many small

edges and faces in the tool swept volume, the calculation of RV needs many

surface/surface intersection calculations between the IPW and the tool swept

volume, whereas the method proposed here determines RV by using the ATSV,

which involves at most nine surfaces. As a result, abundant surface/surface

intersection calculations are avoided in the calculation procedure of RV and

UIPW. Correspondingly, the simple data structure of the ATSV results in a
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16 Milling Simulation

simple data structure of the RV and UIPW. This favors the efficient CWE

extraction described in the following sections.

1.2.2.2. Generation of the feasible contact surfaces

In the actual milling process, only partial tool surfaces may make contact

with the workpiece, as illustrated in Figure 1.7(a). These surfaces are named

feasible contact surfaces (FCSs) according to [ARA 08]. Mathematically, the

angle between the tool surface normal N(u, v, t) and the instantaneous

velocity V(u, v, t) at any point on FCSs of a tool should be a sharp or a right

angle at most. That is,

N(u, v, t) ·V(u, v, t) ≥ 0 [1.36]

where u and v are two variables in the parameter equations of the tool surfaces.

t is the instantaneous cutting time variable corresponding to the given cutter

location. If a set of points meet the condition N(u, v, t) ·V(u, v, t) = 0, these

points will constitute closed curves, named tool swept profiles, which define

the critical boundaries of FCSs, as shown in Figure 1.7(b). Then, the FCSs are

obtained by following the two steps below. First, split the tool surfaces into

two parts by the tool swept profiles. Second, select the part satisfying equation

[1.36] as the required feasible contact surfaces {Faces}FCS,k, where k means

the kth cutter location along the tool path.

1.2.2.3. Trimming removal volume with feasible contact surfaces

CWE surfaces are usually extracted by subtracting the tool movements

from the solid model of the workpiece or the removal volume [LAZ 11]. As

illustrated in Figure 1.8, some materials which should be removed from the

workpiece are not actually cut, due to the inaccurate calculations of tool

movements in 5-axis milling. This results in bodies with many small edges

and surfaces being produced at each cutter location. As the cutter advances,

these edges and faces will be accumulated along the tool path so that the

model data structure and computing time will increase during the whole

simulation procedure. Meanwhile, topological errors easily occur because of

the stacked numerical inaccuracies induced by these small edges and faces.

Here the proposed method is to extract the CWE surfaces directly based on

the removal volume and feasible contact surfaces obtained above. As shown in
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Figure 1.9, the trimming operation related to the kth cutter location is described

below:

1) compute the intersection curves between the FCSs and boundary

surfaces of RV;

2) split FCSs and the boundary surfaces of RV by the intersection curves

obtained above;

3) reconstruct the remaining removal volume with the split boundary

surfaces obtained above.

(a) (b)

tool 
surfaces  

tool swept 
profiles

feasible 
contact 
surfaces

feed 
direction

removal 
volume

Figure 1.7. Illustration of feasible contact surfaces: a) tool surfaces
contacting with the RV; b) feasible contact surfaces at specific cutter

location. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

CL1 CL7 CL13

tool 
movements

removal 
volume

bodies with many 
small edges and

 
faces bodies with many 

small edges and  faces 

Figure 1.8. Production of bodies with many small edges and surfaces
when the tool movements are subtracted from the removal volume. For

a color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Intersection 
curves

FCSs

RV

RV

FCSs

remaining
RV

(a) (b) (c)

Figure 1.9. The illustration of the trimming operation: a) computing the
intersection curves; b) splitting the boundary surfaces; c) reconstructing

the remaining RV. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

In this way, a large number of bodies with small edges and faces can be

avoided as the cutter moves along the tool path. Because only the FCSs of the

tool surfaces may make contact with the workpiece in the actual milling

process, the CWE surfaces are actually the subsets of the FCSs. Keeping this

idea in mind, the CWE surfaces can be obtained through trimming the

removal volume by the FCSs at each cutter location. With this operation, the

CWE surfaces are directly imprinted on the remaining removal volume once

the materials between the previous and the current FCSs are discarded.

Following this procedure, CWE surfaces at the kth cutter location,

{Faces}CWE,k, can thus be expressed as

{Faces}CWE,k = {Faces}RV,k∩∗{Faces}FCS,k [1.37]

where {Faces}RV,k denotes all boundary surfaces of the remaining removal

volume RVk+1 at the kth cutter location, and RVk+1 denotes the solid model

of the remaining removal volume after the trimming operation at the kth

cutter location. Figure 1.10 illustrates the CWE surfaces extraction procedure

associated with two adjacent cutter locations.

In fact, in B-rep solid modeler, the CWE surfaces constitute partial

boundary surfaces of the remaining removal volume. Once the cutter moves

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Cutting Forces in Milling Processes 19

to a new cutter location, CWE surfaces on the removal volume related to the

previous cutter location are removed, and newly generated CWE surfaces will

be updated as the boundary surfaces of the remaining removal volume, as

shown in Figure 1.10(b) and (d). This can avoid generating abundant small

edges and faces. In addition, the number of boundary surfaces of the removal

volume does not always increase. Benefiting from this steady data structure,

the proposed method is efficient without stacked numerical inaccuracies and

topological errors.

feasible contact 
surfaces

material to be 
removed

removal 
volume

removal 
volume

feasible contact 
surfaces

CWE surfaces CWE surfaces at 
previous cutter location

removal 
volume

CWE surfaces

(a) (b) (c) (d)

Figure 1.10. Illustration of trimming procedure: a) and c);
instantaneous trimming status at the 1st and 2nd cutter locations; b)
and d); remaining removal volume after trimming at the 1st and 2nd

cutter locations. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

1.2.2.4. Extraction of the CWE surfaces from the removal volume

As described above, because CWE surfaces imprinted on some boundary

surfaces of the remaining RV are generated by the FCSs, they have the same

attributes as the tool surfaces, such as surface type, center point and axis

direction. This means that these attributes can be used to identify and extract

the CWE surfaces from the remaining RV. The detailed algorithm is described

as follows.
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Step 1: search all boundary surfaces of the remaining removal volume

RVk+1 at the kth cutter location and save them as {Faces}RV,k.

Step 2: identify the surface attributes of all {Faces}RV,k.

Step 3: if the attributes of each {Faces}RV,k are consistent with those of

the tool surface, append the surface into the sequence of the CWE surfaces

{Faces}CWE,k at the kth cutter location.

conical 
surface

cylindrical 
surface

spherical 
surface

spherical 
surface

cylindrical 
surface

cylindrical 
surface

toroidal 
surface

toroidal 
surface

toroidal 
surface

ball end mill(a) general end mill geometry flat end mill

bull nose end mill taper ball end mill

H

zR

rR

R

general end mill

D/2

(c) (e) 

(b) (d) (f) 

Figure 1.11. General tool geometry and surfaces
of different end mills

For the different end mills shown in Figure 1.11, the types of tool surfaces

can be classified as cylindrical, conical, toroidal and spherical surfaces, which

include the attributes of axis, spherical center or radius, as listed in Table 1.1.

With this information, one can perform Step 3 to identify the CWE surfaces.

To have a clear understanding of the above method, the pseudo-codes

corresponding to these milling cutters are described below.
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Input:
RVk+1 : the remaining removal volume after trimming operation at the kth
cutter location, where k = 1, 2, ..., NCL − 1 .
[Pc,k, nk]: the cutter location data at the kth cutter location; Pc,k denotes the
cutter tip coordinate; nk denotes the tool orientation vector.
ε : tolerance for comparing the constructive features of the surface and the
cutter location.
{D,R,Rr, Rz, α1, α2, H}: tool geometry parameters as shown in Figure
1.11(a).
Output:
{Faces}CWE,k : the CWE surfaces at the kth cutter location.
Step 1:
Search all boundary surfaces of the remaining removal volume RVk+1 at the
kth cutter location and save them as {Faces}RV,k temporarily.
Step 2:
FOR (each surface in {Faces}RV,k )

{Identify the type of the surface, the axis of the revolution surface of the cutter
body ns, and the sphere center of the revolution surface of the cutter body
Cs.}

Step 3:
FOR (each surface in {Faces}RV,k)

{

IF (face type == cylindrical surface or face type == conical surface or face

type == toroidal surface)

{

IF

‖ns − nk‖∞ < ε or ‖ns + nk‖∞ < ε [1.38]

{ Append the surface into the sequence of the cutter-workpiece engagement

surfaces {Faces}CWE,k }

ELSE IF (face type == spherical surface)

{

Calculate the ball center CB,k of the ball end mill or taper ball end mill with

the cutter location data and tool geometry parameters, where

CB,k = Pc,k −Rnk [1.39]

IF

(‖Cs − CB,k‖∞ < ε) [1.40]
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{ Append the surface into the sequence of the cutter-workpiece engagement

surfaces {Faces}CWE,k } }

}.

OUTPUT the CWE surfaces {Faces}CWE,k at the kth cutter location.

Mill type Surface type Surface attributes
general end mill toroidal surface axis (nk)

conical surface axis (nk)

ball end mill cylindrical surface axis (nk)
spherical surface spherical center ( CB,k )

bull nose end mill cylindrical surface axis (nk)
toroidal surface axis (nk)

flat end mill cylindrical surface axis (nk)

taper ball end mill toroidal surface axis (nk)
spherical surface spherical center ( CB,k )

Table 1.1. Surface attributes for different end mills

1.2.2.5. Procedure for calculating entry and exit angles

The whole procedure for calculating the entry and exit angles for a specified

workpiece model and cutter location (CL) file is summarized as follows:

1) read the information about cutter location, cutter geometry parameters

and machine coordinate system from the CL file;

2) establish the solid model of the workpiece in the CAD/CAM system;

3) construct the analytical tool swept volume using equation [1.33];

4) calculate the removal volume and updated in-process workpiece with

equation [1.34] and equation [1.35];

5) set k = 1 and RV1 = RV. RVk represents the solid model of the

remaining removal volume after the trimming operation at the (k-1)th cutter

location and to be cut at the kth cutter location;

6) generate the feasible contact surfaces {Faces}FCS,k
using equation [1.36]

at the kth cutter location;

7) trim the solid model RVk by {Faces}FCS,k. Save the remaining part of

RVk along the feed direction as RVk+1;

8) search all boundary surfaces of RVk+1 and save them as {Faces}RV,k;
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9) if the surface attributes of each {Faces}RV,k are consistent with the

surface attributes of the tool surface, append the surface into the sequence of

the CWE surfaces {Faces}CWE,k at the kth cutter location and repeat this step

until all surfaces are considered;

10) calculate the intersection arcs in {Faces}CWE,k related to a set of

discretized horizontal planes, which are perpendicular to the tool orientation

and equivalently placed with equivalent length Δz along the tool orientation

from the tool tip. Here, Δz is set to be zi,j , i.e. the axial length of each edge

disk of the cutter, as described in section 1.1.2;

Here, the intersection arcs include entry end point Pk,en, exit end point

Pk,ex and center point Ck of arcs at the kth cutter location;

11) calculate the entry and exit angles at the kth cutter location using the

following equations and the intersection arc data obtained from step (10):

θen = arcsin(fk · rk,en), θex = arcsin(fk · rk,ex) [1.41]

where fk is the feed direction vector at the kth cutter location, calculated using

the CL data in step (1). rk,en = Pk,en − Ck and rk,ex = Pk,ex − Ck. Pk,en,

Pk,ex and Ck are the coordinates of the entry end point, exit end point and

center point obtained from step (10), respectively;

12) if k < NCL − 1 , set k = k + 1 and go to step (6). Otherwise, stop the

procedure.

1.2.2.6. Numerical simulations

A ball end milling of an impeller is adopted to numerically check the

validity of the method. An extraction algorithm is coded using C# and the

application programming interface NX Open of SIEMENS NX 7.5.

Instantaneous entry and exit angles are shown in Figure 1.12. During the

engaging stage of the first-cut, the cutter-workpiece engagement area expands

from the tip to the middle of the cutter until the continuous cutting stage

starts. Corresponding to most parts of the cutter, engagement angles

associated with following-cut are smaller than those related to first-cut, as

shown in Figure 1.12. However, with respect to the ball end part, it follows

the reverse conclusion due to the fact that the small radius at the ball end

makes the cutting like a slot milling. Meanwhile, the efficiency of the

proposed method is compared with the existing method described in

[LAZ 11]. When 929 CL points in the above ball end milling are simulated,

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


24 Milling Simulation

the cost of the proposed method is about 424.2 seconds, while the cost of the

method in [LAZ 11] is about 1716 seconds. This means the proposed method

is more time-efficient.
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Figure 1.12. Ball end milling of an impeller at two
different cutter locations

1.3. Identification of the cutting force coefficients

In order to efficiently predict the cutting forces, it is of great importance to

calibrate the values of cutting force coefficients and the cutter runout

parameters a priori. In this book, four types of methods developed by the

authors will be described in detail.

1.3.1. Calibration method for general end mills

This is a unified method suited to general end mills, such as flat end mill,

bull nose end mill, ball end mill, etc. The cutter is firstly discretized into a

finite number of disk elements. The total cutting forces are then obtained by

summing the elemental forces acting on all sliced disk elements.

1.3.1.1. Identification of the cutting force coefficients
This scheme is generally developed based on the measured cutting forces.

For a general end mill shown in Figure 1.2, at the cutting instant of angular
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position θi,j(ϕ) for the jth axial disk element of the ith flute, the cyclic

symmetry of the cutter flutes ensures that the jth axial disk element of the

(i+k)th flute will have the same angular position, i.e.

θi+k,j(ϕ + 2kπ/N)) = θi,j(ϕ) after a cutter rotation of 2kπ/N . As a result,

the sum of the cutting forces acting on the jth axial disk element of the ith
(i=1, 2, ..., N) flute at the angular position θi,j(ϕ) can be expressed as

⎡
⎣FX,j(ϕ)
FY,j(ϕ)
FZ,j(ϕ)

⎤
⎦ = T(θi,j(ϕ))

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

KT

N∑
i=1

(hi,j(ϕ)bi,j)

KR

N∑
i=1

(hi,j(ϕ)bi,j)

KA

N∑
i=1

(hi,j(ϕ)bi,j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[1.42]

By reviewing equation [1.9] and equation [1.25] together with bi,j = bk,j
(i, k = 1, 2, ...,N), we can obtain

N∑
i=1

(hi,j(ϕ)bi,j) = zi,j{Nf sin θi,j(ϕ) +
N∑
i=1

[ri,j − ri−m,j ]} [1.43]

with ri−m,j = rN,j if i−m = 0.

Because of
N∑
i=1

[ri,j − ri−m,j ] = 0, the runout effect related to the last

summation term of equation [1.43] can be naturally annulled so that

N∑
i=1

(hi,j(ϕ)bi,j) = Nzi,jf sin θi,j(ϕ) [1.44]

Furthermore, by substituting equation [1.44] into equation [1.42] and then

dividing equation [1.42] by N, we can obtain force components defined as

⎡
⎣FX,j(ϕ)

FY,j(ϕ)

F Z,j(ϕ)

⎤
⎦ =

1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
i=1
FX,j(ϕ)

N∑
i=1
FY,j(ϕ)

N∑
i=1
FZ,j(ϕ)

⎤
⎥⎥⎥⎥⎥⎥⎦ = zi,jf sin θi,j(ϕ)T(θi,j(ϕ))

⎡
⎣KT

KR

KA

⎤
⎦ [1.45]
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From the above relation, it follows that F s,j(ϕ) (s = X, Y or Z) is

independent of the cutter runout. In other words, equation [1.45] is just the

nominal components of the cutting forces associated with the jth disk element

of all flutes no matter what the cutter runout is.

Correspondingly, the total nominal cutting forces corresponding to θi,j(ϕ)
can be obtained by adding equation [1.45] along z

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦= 1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

[FX(ϕ+ 2(i− 1)π/N)]

N∑
i=1

[FY(ϕ+ 2(i− 1)π/N)]

N∑
i=1

[FZ(ϕ+ 2(i− 1)π/N)]

⎤
⎥⎥⎥⎥⎥⎥⎦=f T1(θi,j(ϕ))

⎡
⎣KT

KR

KA

⎤
⎦ [1.46]

where

T1(θi,j(ϕ)) =

⎡
⎢⎢⎢⎣
−∑

i,j

(zi,jB2) −∑
i,j

(C1B1) −∑
i,j

(C2B1)∑
i,j

(zi,jB1) −∑
i,j

(C1B2) −∑
i,j

(C2B2)

0
∑
i,j

[C2 sin θi,j(ϕ)] −
∑
i,j

[C1 sin θi,j(ϕ)]

⎤
⎥⎥⎥⎦ [1.47]

with

B1 = sin2θi,j(ϕ), B2 = sin θi,j(ϕ) cos θi,j(ϕ)

C1 = zi,j sinκ(z), C2 = zi,j cosκ(z)
[1.48]

Here, the nominal cutting forces F s(ϕ) (s = X, Y or Z) are expressed as a

linear function of the cutting force coefficients. Assume that FM
s (ϕ)

(s = X, Y or Z) denotes measured values of cutting forces at cutter rotation

angle ϕ. Following equation [1.46], F s(ϕ) can be approximated by averaging

the measured values over one cutter revolution.

F s(ϕ) =
1

N

N∑
i=1

[FM
s (ϕ+ 2(i− 1)π/N)], s = X, Y or Z [1.49]
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Finally, with the known values of F s(ϕ) (s = X, Y or Z),

Kq (q = T, R or A) can be deduced immediately from equation [1.46] by the

inverse of T1(θi,j(ϕ)). Compared with existing methods, the main features of

the proposed approach are twofold. On the one hand, a concise formulation

independent of the cutter radial runout is established for the determination of

cutting force coefficients. On the other hand, instantaneous values of the

nominal cutting force components provide the possibility to investigate the

instantaneous variation of the cutting force coefficients.

1.3.1.2. Identification of the cutter runout parameters

Under the assumption of m = 1 , the substitution of equation [1.18] into

equation [1.25] will give rise to the following equation

hci,j(ϕ) = f sin θi,j(ϕ) + [−2ρ sin(π�N ) sin(λ− φ(z)− (2i−3)π�N )] [1.50]

The condition m = 1 implies that the current tooth removes the materials

being left just by the previous one. Furthermore, by considering

equations [1.50], [1.9], [1.8] and [1.14] together, equation [1.16] can be

further developed as

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦ = fT1(θi,j(ϕ))

⎡
⎣KT

KR

KA

⎤
⎦+T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

]

=

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦+T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

] [1.51]

with

T2(θi,j(ϕ)) = sin(π�N )

⎡
⎣A11(θi,j(ϕ)) A12(θi,j(ϕ))
A21(θi,j(ϕ)) A22(θi,j(ϕ))
A31(θi,j(ϕ)) A32(θi,j(ϕ))

⎤
⎦

A11(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [KT cos θi,j(ϕ) +KR sinκ(z) sin θi,j(ϕ)

+KA cosκ(z) sin θi,j(ϕ)]
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A12(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [KT cos θi,j(ϕ) +KR sinκ(z) sin θi,j(ϕ)

+KA cosκ(z) sin θi,j(ϕ)]

A21(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [−KT sin θi,j(ϕ) +KR sinκ(z) cos θi,j(ϕ)

+KA cosκ(z) cos θi,j(ϕ)]

A22(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [−KT sin θi,j(ϕ) +KR sinκ(z) cos θi,j(ϕ)

+KA cosκ(z) cos θi,j(ϕ)]

A31(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [−KR cosκ(z) +KA sinκ(z)]

A32(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [−KR cosκ(z) +KA sinκ(z)]

γi,j = −φ(z)− (2i−3)π�N

The first term of the right-hand side in equation [1.51] refers to a nominal

component independent of cutter runout whereas the second term refers to the

perturbation component due to cutter runout.

By combining equation [1.51] with equation [1.46], we can obtain

T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

]
=

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦−

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦ [1.52]

Obviously, with the measured cutting forces assigned to FX(ϕ), FY(ϕ)
and FZ(ϕ) and the known values of KT, KR and KA calibrated based on

equation [1.46], cutter runout parameters ρ and λ can be evaluated
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immediately by virtue of equation [1.52]. However, as the measured data

often involve noise signals that may perturb FX(ϕ) , FY(ϕ) and FZ(ϕ) , the

accuracy of ρ and λ may be strongly deteriorated if equation [1.52] is directly

used. Moreover, since the cutter runout leads to a redistribution of the cutting

forces over different tooth periods, it is necessary to choose the measured

cutting forces in different tooth periods when solving ρ and λ. In this way, the

influence of the noise signals may be weaken to the lower degree. To do this,

the force component that has the largest peak value, e.g. FY(ϕ), is generally

adopted.

Using equation [1.52] and FY at the cutter rotation angles ϕi = ϕ+ 2(i−
1)/N (i=1, 2, ..., N), we can obtain

T3

[
g1
g2

]
= F0 [1.53]

with

T3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A21(θi,j(ϕ1)) A22(θi,j(ϕ1))
...

...

A21(θi,j(ϕi)) A22(θi,j(ϕi))
...

...

A21(θi,j(ϕN )) A22(θi,j(ϕN ))

⎤
⎥⎥⎥⎥⎥⎥⎦

g1 = ρ cosλ

g2 = ρ sinλ

F0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

FY (ϕ1)− F Y (ϕ)
...

FY (ϕi)− F Y (ϕ)
...

FY (ϕN )− F Y (ϕ)

⎤
⎥⎥⎥⎥⎥⎥⎦

By means of the least square theory, g1 and g2 can be determined by[
g1
g2

]
=
[
TT

3T3

]−1 [
TT

3F0

]
[1.54]
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Therefore, it turns out that whenm = 1 , we have

λ = arctan(g2/g1)

ρ = g1/ cosλ or ρ = g1/ sinλ
[1.55]

Note that the correct λ should give rise to a positive value of ρ. However,

from the above procedure, we can see that a set of ρ and λ can be available

for each value of cutter rotation angle. For this reason, the real set of runout

parameter is selected to be such a one that minimizes the squared difference

between the simulated and measured cutting forces at all sampling instants.

In the particular case of N = 2, TT
3T3 will become singular in equation

[1.54]. ρ and λ can be optimally selected to be those that satisfy equation

[1.53] and minimize the squared difference between the simulated and

measured cutting forces at all sampled instants. For a single flute cutter with

N = 1, the cutting forces are not influenced by cutter runout.

1.3.1.3. Selection of cutting parameters

As stated above, the identification procedure of ρ and λ is based on the

assumption of single tooth engagement (STE). That is, only one flute is in

cut at any cutter rotation angle. This condition can be easily satisfied with

a reasonable selection of radial depth of cut, ae, and axial depth of cut, ap.

Critical values of ae and ap can be defined by the following cutting conditions:

whenever the current tooth disengages from the workpiece, the next tooth has

to be engaged with the workpiece immediately. This means that with critical ae

and ap, any increase of ae or ap will lead to multiple teeth engagement (MTE),

i.e. an engagement of at least two teeth simultaneously at some cutter rotation

angles. For a general end mill, the condition of STE can be mathematically

written as

φ(ap)− φ(ape) +
π

2
+ arcsin(

ae −Rcut

Rcut
) <

2π

N
[1.56]

where ape andRcut are the pseudo axial depth of cut that is not engaged and the

maximum radius of the cutting edge point that is engaged with the workpiece,

respectively, as defined in Figure 1.2.
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This is the critical condition characterizing the dependence between

critical values of ae and ap. Critical conditions are now illustrated for a

three-fluted flat end mill, three-fluted bull nose end mill and four-fluted ball

end mill in Figures 1.13(a), (b) and (c). Equation [1.56] can be applied to

design the experimental set-up for calibration of instantaneous cutting force

coefficients. If the measured signals of the cutting forces are not bright

enough to clearly identify the case of STE, we can appropriately reduce

values of ae or ap.
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Figure 1.13. Critical curves describing the engagement of a single
flute; a) Three-fluted flat end mill with a helix angle of 30◦;
b) Three-fluted bull nose end mill with a helix angle of 30◦;

c) Four-fluted ball end mill with a helix angle of 35◦

However, one must keep in mind that equation [1.56] is derived with the

negligence of the cutter runout. Practically, if one tooth is engaged in cut with

an immersed axial length more than its nominal value due to runout, there must

be at least another tooth that will be in cut with an immersed axial length less

than its nominal value after some cutter rotation angles. As a result, STE will

appear. Therefore, as long as ae and ap satisfy equation [1.56], the cutting test

is in the state of STE regardless of the cutter runout.
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1.3.1.4. Test applications

To apply the above procedure, a series of cutting tests are performed in

milling aluminum alloy 2618 with a vertical CNC milling machine.

Three-component dynamometer Kistler 9255B is used to measure the cutting

forces. A three-fluted carbide flat end mill with a diameter of 16mm and a

helix angle of 30◦ is studied, respectively. A test with ap = 1 mm, ae = 8 mm

and f = 0.05 mm/tooth is used to calibrate the cutting force coefficients as

well as the runout parameters. The identified cutting force coefficients are

plotted versus the instantaneous average chip thickness (IACT) h(φ), as

shown in Figure 1.14.
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Figure 1.14. Calibrated cutting force coefficients

In Figure 1.14, we can see that an exponent-like relation exists between

cutting force coefficients Kq (q = T, R or A) and h(ϕ). For this reason, the

relationship between Kq and h(ϕ) is interpolated by the following nonlinear

fitting function

Kq =Wq1 +Wq2e
[Wq3h(ϕ)], (q = T,R or A) [1.57]

where Wq1, Wq2 and Wq3 are constants determined by the fitting procedure.

The fitted cutting force coefficients are also illustrated in Figure 1.14 for
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comparison with calibrated discrete values. With fitted values of Kq, runout

parameters ρ and λ are then identified. Results are: ρ = 5 μm and λ = 60◦.

Another test with ap = 1.3 mm, ae = 8 mm and f = 0.1 mm/tooth is used

to verify the accuracy of calibrated cutting force model. From Figure 1.15, it

can be seen that a good agreement exists between the predicted and measured

cutting forces.
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Figure 1.15. Comparison of measured and predicted cutting forces

1.3.2. Calibration method in the frequency domain

The cutting forces given in equation [1.8] are in the angle domain. Under

the constant assumption of KT and KR, and m = 1 in equation [1.25], the

cutting forces can be expanded as follows in frequency domain through

convolution analysis [LIA 94]

[
FX(ϕ)
FY(ϕ)

]
=

+∞∑
k=−∞

{[
AX[Nk]
AY[Nk]

]
eJNkϕ +

[
AXO[Nk + 1]
AYO[Nk + 1]

]
eJ(Nk+1)ϕ

+

[
AXO[Nk − 1]
AYO[Nk − 1]

]
eJ(Nk−1)ϕ

} [1.58]

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


34 Milling Simulation

with

[
AX[Nk]
AY[Nk]

]
=
N

2π

[−KT −KR

−KR KT

]
Pe(Nk)CWD(Nk)

[
AXO[Nk + 1]
AYO[Nk + 1]

]
=
N

2π
Jρ sin

π

N
e−J(λ+ π

N )

[−KT −KR

−KR KT

]
Po(Nk + 1)CWD(Nk)

[
AXO[Nk − 1]
AYO[Nk − 1]

]
= −N

2π
Jρ sin

π

N
eJ(λ+

π
N )

[−KT −KR

−KR KT

]
Po(Nk − 1)CWD(Nk)

CWD(Nk) =
D sin

Nkap tan β
D

Nk tanβ
e−JNk

ap tan β

D

Pe(Nk) =

[
P1[Nk]
P2[Nk]

]
= f

∫ θex

θen

[
sin θ cos θ

sin2θ

]
e−JNkθdθ

Po(Nk) =

[
P3[Nk]
P4[Nk]

]
=

∫ θex

θen

[
cos θ

sin θ

]
e−JNkθdθ

where As[Nk], AsO[Nk + 1] and AsO[Nk − 1] (s = X, Y) are the parameters

related to the harmonics of the cutting forces predicted by equation [1.16]. J is

unity of imaginary number.

In this section, the convolution theory-based method is described for the

identification of the cutting force coefficients and radial cutter runout

parameters, i.e. ρ and λ defined in Figure 1.5, for flat end mill. Details are

explained and listed as follows.

FX(ϕ) and FY(ϕ) can be expressed as

[
FX(ϕ)
FY(ϕ)

]
=

[
H1(ϕ) H2(ϕ)
−H2(ϕ) H1(ϕ)

] [
KT

KR

]
[1.59]

with

H1(ϕ) = −
∑
i,j

zi,jhi,j(ϕ) cos θi,j(ϕ)

H2(ϕ) = −
∑
i,j

zi,jhi,j(ϕ) sin θi,j(ϕ)
[1.60]
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The Fourier series expansion of equation [1.59] can be written as

[
FX(ϕ)
FY(ϕ)

]
=

{
+∞∑

ω=−∞

[
Q1[ω] Q2[ω]
-Q2[ω] Q1[ω]

]
eJωϕ

}[
KT

KR

]
[1.61]

where Q1[ω] and Q2[ω] are the Fourier Transformations ofH1(ϕ) andH2(ϕ),
respectively. Based on equation [1.58], the measured cutting forces FM

s (ϕ)
(s=X, Y) can be expanded as follows using Discrete Fourier Transformation.

[
FM

X (ϕ)
FM

Y (ϕ)

]
=

+∞∑
k=−∞

{[
AM

X [Nk]
AM

Y [Nk]

]
eJNkϕ +

[
AM

XO[Nk + 1]
AM

YO[Nk + 1]

]
eJ(Nk+1)ϕ

+

[
AM

XO[Nk − 1]
AM

YO[Nk − 1]

]
eJ(Nk−1)ϕ

} [1.62]

By combining equation [1.61] with equation [1.62] at ω = Nk, the

following relation can be obtained

B[KT,KR]
T = b [1.63]

with

b =
[
Re(AM

X [Nk]), Im(AM
X [Nk]),Re(AM

Y [Nk]), Im(AM
Y [Nk])

]T

B =

⎡
⎢⎢⎣

Re (Q1[Nk]) Re (Q2[Nk])
Im (Q1[Nk]) Im (Q2[Nk])
-Re (Q2[Nk]) Re (Q1[Nk])
-Im (Q2[Nk]) Im (Q1[Nk])

⎤
⎥⎥⎦ [1.64]

where Re(*) and Im(*) indicate the real and imaginary parts of a complex

number.

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


36 Milling Simulation

With the aid of equations [1.58] and [1.62], KT, KR, ρ and λ can be

obtained using the method proposed by Liang and Wang [LIA 94].

[
KT

KR

]
=

[−P1(0) −P2(0)
P2(0) −P1(0)

]−1 [AM
X [0]

AM
Y [0]

] [
N

2π
CWD(0)

]−1

ρ =

∣∣AM
YO[1]

∣∣
sin(π/N)(N/2π)ap |KTP4(1)−KRP3(1)|

λ =
π

2
− π

N
− ∠AM

YO[1] + ∠[KTP4(1)−KRP3(1)]

[1.65]

Details of this method and the definitions of P1(0), P2(0),CWD(0), P3(1)
and P4(1), are given in [LIA 94].

The accuracy of equation [1.65] relies on the following two preconditions:

– the medial parameters involved in equation [1.62], e.g. AM
X [Nk],

AM
Y [Nk], AM

YO[Nk + 1], etc., depend on the entry and exit angles, i.e. θen and

θex, which are calculated using equation [1.32] derived with nominal cutting

parameters;

– it is derived by assuming thatm = 1.

However, the occurrence of cutter runout will greatly affect the actual

cutting radius as well as θen and θex. This means that the above two

preconditions are not strictly satisfied when runout occurs. As a result, some

accuracy will be lost if equation [1.65] is directly used. Note that, the larger

the value of ρ, the greater the inaccuracy. To improve the calibration accuracy

of equation [1.65], a new method is presented below.

With the aid of equation [1.63], an optimal selection procedure can be used

to determineKq (q = T, R), ρ and λ according to the following steps:

Step 1: Set ρ = ρ0 and λ = λ0. ρ0 and λ0 are initially set by using equation

[1.65].

Step 2: Calculate hi,j(ϕ) by

hi,j(ϕ) = min
m=1 to N

{hi,j(ϕ) = mf sin θi,j(ϕ) + ri,j − ri−m,j} [1.66]
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where ri,j and ri−m,j are obtained by equation [1.18].

Step 3: Calculate Q1[ω] and Q2[ω] based on equations [1.60] and [1.66].

Step 4: Calculate B using equation [1.64]. Then, by using the linear least

square method,KT andKR can be immediately obtained by

[
KT

KR

]
=
(
BTB

)−1
BTb [1.67]

Step 5: Substitute KT and KR obtained from equation [1.67] into

equation [1.59]. Then, calculate the minimum square deviation δ(ρ, λ)
between FM

s (ϕ) and Fs(ϕ) (s = X, Y) by

δ(ρ, λ) =
2π∑
ϕ=0

(∣∣FM
X (ϕ)− FX(ϕ)

∣∣2 + ∣∣FM
Y (ϕ)− FY(ϕ)

∣∣2) [1.68]

Step 6: If δ(ρ, λ) achieves the level of minimum among all cases of different

ρ and λ, setKT andKR, ρ and λ as the final results of cutting force coefficients

and runout parameters. Otherwise, repeat the above Steps 2 to 6 by setting ρ
and λ to other values ρ∗ and λ∗.

The key issue of the above steps is to optimally select ρ∗ and λ∗.

Generally, for every possible pairs of ρ∗ and λ∗ with ρmin ≤ ρ∗ ≤ ρmax and

λmin ≤ λ∗ ≤ λmax, Step 2 to Step 6 will be performed. Here, ρmax and ρmin

denote the maximum and minimum possible values of ρ∗; λmax and λmin

denote the maximum and minimum possible values of λ∗. The case which has

the minimum δ(ρ, λ) corresponds to the final result.

Obviously, this parametric study must sweep all cases in the feasible

domain. To increase the computing efficiency, an automatical searching

procedure will be described here.

The key is to approximately develop the explicit expressions that relate

ρ and λ to FM
s (ϕ) and Fs(ϕ). For this reason, it is interesting to study the

following test case. The distributions of |AY[1]| and ∠AY[1] vs. ρ and λ are

considered. AY[1] is obtained from FY(ϕ) using the Fourier transformation.
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FY(ϕ) should be calculated from Step 5 for every selected set of ρ and λ. ρ and

λ are chosen to vary from 10−6μm to 35 μm and from 40◦ to 60◦, respectively.

The simulation results are shown in Figure 1.16. It can be found that both

|AY[1]| and ∠AY[1] are approximately distributed in a planar surface over the

considered region. This phenomenon indicates that |AY[1]| and ∠AY[1] can be

locally treated as linear functions of ρ and λ. The same observations can also

be made in other cutting conditions and regions of ρ and λ. Thus, following

relations hold.

|AY[1]| = E11ρ+ E12λ+ E13

∠AY[1] = E21ρ+ E22λ+ E23

[1.69]

where Euv (u = 1, 2, v = 1, 2, 3) are unknown coefficients that can be

determined using the finite difference scheme in the following way.

E11 = (|AY[1]|3 − |AY[1]|1)/Δρ1
E12 = (|AY[1]|2 − |AY[1]|1)/Δλ1
E13 = |AY[1]|1 − (E11ρ1 + E12λ1)

E21 = [(∠AY[1])3 − (∠AY[1])1] /Δρ1

E22 = [(∠AY[1])2 − (∠AY[1])1] /Δλ1

E23 = (∠AY[1])1 − (E21ρ1 + E22λ1)

[1.70]

where ρ1, λ1 is a set of selected values satisfying ρmin ≤ ρ1, ρ2 ≤ ρmax and

λmin ≤ λ1, λ2 ≤ λmax. Assume that ρ2 = ρ1 + Δρ1, λ2 = λ1 + Δλ1. With

the aid of Steps 2 to 5, we can obtain |AY[1]|1 and (∠AY[1])1 related to ρ1
and λ1. |AY[1]|2 and (∠AY[1])2 related to ρ1 and λ2, |AY[1]|3 and (∠AY[1])3
related to ρ2 and λ1.

Now, ρ∗ and λ∗ can be easily obtained by relating equation [1.69] to the

experimental values of
∣∣AM

Y [1]
∣∣ and ∠AM

Y [1] through

[
ρ∗
λ∗

]
=

[
E11 E12

E21 E22

]−1 [
AM

Y [1]− E13

∠AM
Y [1]− E23

]
[1.71]
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Figure 1.16. Distribution of |AY[1]| and ∠AY[1] v.s. ρ and λ;
a) |AY[1]| v.s. ρ and λ; b) ∠AY[1] v.s. ρ and λ

It is worth noting that as |AY[1]| and ∠AY[1] are linearly approximated

over a local region, it is necessary to update the approximation on the new

design point in an iterative way. This means that the coefficients Euv involved

in equation [1.70] need to be re-evaluated iteratively. As a result,

Kq (q = T, R), ρ and λ should be iteratively determined according to the

following steps:

Step a: Set ρ1 = ρ0 and λ1 = λ0.

Step b: Calculate Euv by means of equation [1.70].

Step c: Calculate ρ∗ and λ∗ using equation [1.71].

Step d: Set ρ = ρ∗ and λ = λ∗. Then, repeat Steps 2 to 5.

Step e: If the error between two iterative results of δ(ρ, λ) attains the

prescribed tolerance, stop the iteration. Otherwise, repeat the above Steps b to

e by attributing ρ∗ and λ∗ to ρ1 and λ1.

1.3.3. Calibration method involving four cutter runout parameters

This method is mainly developed for the cutting force model, in which

the cutting force coefficients are expressed as the exponential function of the
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instantaneous uncut chip thickness. That is, the elemental cutting forces related

to the jth disk element of the ith flute are expressed as

FT,i,j(ϕ)=KThi,j(ϕ)zi,j

FR,i,j(ϕ)=KRhi,j(ϕ)zi,j

FA,i,j(ϕ)=KAhi,j(ϕ)zi,j

[1.72]

with

KT = kT[hi,j(ϕ)]
−mT

KR = kR[hi,j(ϕ)]
−mR

KA = kA[hi,j(ϕ)]
−mA

[1.73]

where kT, kR, kA, mT, mR and mA are constants required to be determined

from experiments.

Total cutting force components at cutter rotation angle ϕ can be obtained

by

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦ =

∑
i,j

⎧⎨
⎩Ti,j(ϕ)

⎡
⎣FT,i,j

FR,i,j

FZ,i,j

⎤
⎦
⎫⎬
⎭ [1.74]

with

Ti,j(ϕ) =

⎡
⎣− cos θi,j(ϕ) − sin θi,j(ϕ) 0

sin θi,j(ϕ) − cos θi,j(ϕ) 0
0 0 1

⎤
⎦ [1.75]

It should be noted that hi,j(ϕ) is calculated by equations [1.9] and [1.25], in

which the calculation of the actual radius ri,j of the circular tooth path includes

the influence of cutter runout. In this section, two types of cutter runout models,

i.e. radial and tilt cutter runout models, will be involved to reveal this effect:

– radial cutter runout model: its geometrical definition is given in section

1.2.1. In this model, ri,j can be calculated by using equation [1.18];
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– tilt cutter runout model: in this model, the actual installation state of the

cutter is considered. That is, besides axis offset, there exists more or less axis

tilt after the cutter is completely amounted in spindle, as shown in Figure 1.17.

The geometry of this kind of cutter runout is characterized by four parameters,

i.e. ρT, λT, τT and ϑ. Here, ρT and τT are the axial offset and tilt angle between

the cutter axis and the centerline of the spindle, respectively. λT is the location

angle measured as the angle between the direction of the offset and the tip of

the nearest tooth (tooth 1). ϑ is the locating angle of tilt, which is defined as

the angle between the direction of axis tilt and the direction of axial offset ρT.

Note that L labeled in Figure 1.17 means the cantilevered length of cutter after

installation. As shown in Figure 1.17, tilt cutter runout makes ri,j change from

AF to OF. Under this understanding, ri,j can be calculated by

ri,j = {ρ2T + r2n,i,j + (L− jzi,j)2sin2τT

+ 2rn,i,jρT cos(−λT + φ(z) +
2(i− 1)π

N
)+

2((L− jzi,j) sin τT[ρT cos(φ) + rn,i,j cos(ϑ− λT + φ(z) +
2(i− 1)π

N
)])} 1

2

[1.76]
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Figure 1.17. Definition of tilt cutter runout. For a color version of this
figure, see www.iste.co.uk/zhang/milling.zip
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By using the cutting forces measured from two milling tests, which satisfy

the following two conditions, a new scheme will be proposed for calibrating

the values of kq,mq (q=T, R, A) and ρT, λT, τT and ϑ:

– radial and axial depths of cut of the first test, i.e. ae and ap, should satisfy

equation [1.56] so that only one tooth is in contact with the workpiece at any

cutter rotation angle ϕ. At the same time, ap should be so small that zi,j can

be set to be ap;

– ap of the second test should be large enough, and generally it can be set

to be the value greater than D. At the same time, ae should be relatively small

so that the cutter cannot be broken under the combination of ae and ap.

Because ap in the first test is small, its cutter runout state in the range of 0−
ap along the cutter axis can be approximately treated as a radial cutter runout

model. Consequently, the first test is adopted to calibrate kq, mq (q=T, R,

A) and ρ, λ. Then, ρT, λT, τT and ϑ are calibrated based on the second test and

the calibrated results from the first test. Detailed procedures are as follows.

1.3.3.1. Calibration of kq, mq (q = T,R,A) and ρ, λ

Under the cutting condition of the first test, the cutting forces acting on the

ith flute at an arbitrary cutter rotation angle ϕ constitute the total forces of the

cutter. With this idea in mind, one can have

ap

⎡
⎣kT[hi,1(ϕ)]

1−mT

kR[hi,1(ϕ)]
1−mR

kA[hi,1(ϕ)]
1−mA

⎤
⎦ = [Ti,1(ϕ)]

−1

⎡
⎣FM

X (ϕ)

FM
Y (ϕ)

FM
A (ϕ)

⎤
⎦

�

⎡
⎣FM

T,i,1(ϕ)

FM
R,i,1(ϕ)

FM
A,i,1(ϕ)

⎤
⎦

[1.77]

With the aids of equation [1.77], kq and mq (q = T, R, A), ρ1 and λ1 can

be determined following the steps below:

Step 1: Set r = 0 and set ρ(r) = ρ∗ and λ(r) = λ∗. ρ∗ and λ∗ are the initially

selected values. Practically, ρ∗ and λ∗ can be set to be the values close to zero.

Here, r means the iteration step number.
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Step 2: Calculate h
(r)
i,1 (ϕk) for all cutter rotation angle ϕk(

k = 1, 2, . . . , Nsp

)
related to all sampled cutting forces. Nsp is the number

of sampling points.

h
(r)
i,1 (ϕk) =

N
min
m=1

{
mf sin θi,1(ϕk) + r

(r)
i,1 − r(r)i−m,1

}
[1.78]

where r
(r)
i,1 is calculated by equation [1.18].

Step 3: Establish the following relationship based on equations [1.77] and

[1.78].

B[kt,mT, kr,mR, ka,mA]
T = b [1.79]

with kt = ln(kT),kr = ln(kR),ka = ln(kA)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ln[h
(r)
i,1 (ϕ1)] 0 0 0 0

1 ln[h
(r)
i,1 (ϕ2)] 0 0 0 0

...
...

...
...

...
...

1 ln[h
(r)
i,1 (ϕNsp)] 0 0 0 0

0 0 1 ln[h
(r)
i,1 (ϕ1)] 0 0

0 0 1 ln[h
(r)
i,1 (ϕ2)] 0 0

...
...

...
...

...
...

0 0 1 ln[h
(r)
i,1 (ϕNsp)] 0 0

0 0 0 0 1 ln[h
(r)
i,1 (ϕ1)]

0 0 0 0 1 ln[h
(r)
i,1 (ϕ2)]

...
...

...
...

...
...

0 0 0 0 1 ln[h
(r)
i,1 (ϕNsp)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.80]
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b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln[FM
T,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
T,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...

ln[FM
T,i,1(ϕNsp)]− ln[h

(r)
i,1 (ϕNsp)]− ln(ap)

ln[FM
R,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
R,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...

ln[FM
R,i,1(ϕNsp)]− ln[h

(r)
i,1 (ϕNsp)]− ln(ap)

ln[FM
A,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
A,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...

ln[FM
A,i,1(ϕNsp)]− ln[h

(r)
i,1 (ϕNsp)]− ln(ap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.81]

where ln (∗) indicates the natural logarithm operation. Note that if

h
(r)
i,1 (ϕk) = 0 or FM

q,i,1(ϕk) < 0, the corresponding row should be canceled

from equation [1.79]

Step 4: Determine kT ,mT, kR ,mR , kA andmA by

[kt,mT, kr,mR, ka,mA]
T =

(
BTB

)−1
BTb

kT = ekt , kR = ekr , kA = eka

[1.82]

Step 5: Substitute kq and mq obtained from equation [1.82] into

equation [1.74]. Then, calculate Δ(r) by

Δ(r) =
∑

s=X,Y,Z

Nsp∑
k=1

∣∣FM
s (ϕk)− Fs(ϕk)

∣∣2 [1.83]

Step 6: If Δ(r) achieves the level of minimum among all cases of ρ(r) and

λ(r) , set kq, mq, ρ(r) and λ(r) as the final results of cutting force coefficients
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and radial cutter runout parameters ρ and λ. Otherwise, repeat the above Step

2 to Step 6 by setting ρ(r) and λ(r) to other values.

To increase the computing efficiency, an optimization algorithm, i.e. the

Nelder-Mead simplex method [LAG 98, NEL 65], is adopted to select the best

ρ(r) and λ(r) without the requirements of calculating the numerical or analytic

gradients. The major idea about this algorithm is as follows. An initial simplex

is firstly constructed. Then at each step of the search, a new point in or near the

current simplex is generated. The function value at the new point is compared

with the function’s values at the vertices of the simplex and, usually, one of

the vertices is replaced by the new point, giving a new simplex. This step is

repeated until the diameter of the simplex is less than the specified tolerance.

For details about this algorithm, one can refer to [LAG 98, NEL 65].

It is worth noting that in the above procedure ap should be generally in the

interval of [1 mm, 2 mm]. If ap is too large, it can not be approximated by one

disk element. If ap is too small, FM
s (ϕ) (s=X,Y,Z) will be greatly influenced

by the noise signals. As a result, equation [1.77] may lose validity.

1.3.3.2. Calibration of ρT, λT, τT and ϑ

If one treats the cutter installation state shown in Figure 1.17 as a radial

cutter runout model, the following important relationship between tilt and

radial cutter runout models can be obtained.

ρ=OA =

√
OB

2
+ BA

2
=

√
OB

2
+ (BC + CA)

2

λ = −∠FAW

∠FAG = ∠ECG

with

OB = ρT sinϑ

BC = ρT cosϑ

CA = (L− jzi,j) sin τT

[1.84]

Note that in this book the positive directions of λT and λ are defined as the

clockwise direction. According to this definition, λ given in equation [1.84] is
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negative. Further analysis of the geometry in Figure 1.17 gives the following

relationship

∠FAG = ∠FAW + ∠WAG = ∠FAW + ∠OAB

= ∠FAW + sin

(
OB

OA

)
∠ECG = ϑ− λT

[1.85]

By considering equations [1.84] and [1.85] together, one can obtain the

following expressions

ρ2 = (ρT sinϑ)
2 + (ρT cosϑ+ (L− jzi,j) sin τT)2

arcsin

(
ρT sinϑ

ρ

)
− λ = ϑ− λT

[1.86]

Because zi,j = ap in the first cutting test, j = 1 can be achieved. With this

idea in mind, equation [1.86] can be further simplified as.

ρT
2 + 2ρT(L− ap) sin τT cosϑ+ (L− ap)

2sin2τT − ρ2 = 0

λT = ϑ+ λ− sin

(
ρT sinϑ

ρ

) [1.87]

By solving the above quadratic equation, the following results are obtained

ρT =
−a+√

a2 − 4c

2

λT = ϑ+ λ− sin

(
ρT sinϑ

ρ

) [1.88]

with

a = 2(L− ap) sin τT cosϑ

c = (L− ap)
2sin2τT − ρ2
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Based on equation [1.88], ρT, λT, τT and ϑ are calibrated based on kq,mq

(q = T, R, A) and ρ, λ calibrated from section 1.3.3.1 and FM
s (ϕ) measured

from the second test.

Step 1: Set r = 0 and set ϑ(r) = ϑ∗, τ
(r)
T = τT,∗. ϑ∗ and τT,∗ are initial

values usually close to zero.

Step 2: Calculate ρT
(r) and λT

(r) by using

ρT
(r) =

−a+√
a2 − 4c

2
, λT

(r) = ϑ(r) + λ− arc sin(
ρT

(r) sinϑ(r)

ρ
)

a = 2(L− ap) sin τT
(r) cosϑ(r), c = (L− ap)

2sin2τT
(r) − ρ2

[1.89]

Step 3: Calculate h
(r)
i,j (ϕk) for all cutter rotation angle ϕk (k=1, 2, . . . ,

Nsp).

h
(r)
i,j (ϕk) =

N
min
m=1

{
mf sin θi,j(ϕk) + r

(r)
i,j − r(r)i−m,j

}
[1.90]

where r
(r)
i,j is calculated by equation [1.76].

Step 4: Substitute kq , mq and h
(r)
i,j (ϕk) into equations [1.72] and [1.74]

to predict Fs(ϕk). Then, calculate Δ(r) with equation [1.83].

Step 5: If Δ(r) achieves the level of minimum among all cases of ϑ(r)

and τ
(r)
T , set ρ

(r)
T , λ

(r)
T , τ

(r)
T and ϑ(r) as the final results of ρT, λT, τT and ϑ.

Otherwise, set r = r+1 and the above Step 2 to Step 5 by setting ϑ(r) and τ
(r)
T

to other values.

Similarly, to determine the values of ϑ(r) and τ
(r)
T , Nelder-Mead simplex

method [LAG 98, NEL 65] is used. This idea together with Nelder-Mead

simplex method can avoid the complex solving of nonlinear equations.

It is also worth noting that the proposed calibration procedures implies the

following important understanding:

a) if tilt cutter runout model is considered, sections 1.3.3.1 and 1.3.3.2

should be combined to calibrate kq, mq (q = T, R, A) and ρT, λT, τT, ϑ.

In this case, two cutting tests are needed;
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b) whereas, if radial cutter runout model is considered, the calibration of

kq, mq(q = T,R,A) and ρ, λ can be completed only by using section 1.3.3.1.

In this case, only the first cutting test is needed.

1.3.3.3. Model verification

Using the tests listed in the title of Table 1.2, the cutting force coefficients

and runout parameters based on two cutter runout models are calculated and

listed in Table 1.2. It is worth noting that with the procedures described in

section 1.3.3.2, the calibrations of ρT, λT, τT and ϑ for tilt cutter runout model

converge within 38 iteration steps. However, if we use one degree as the step

length of ϑ (0 ≤ ϑ ≤ 360◦) and 0.001 degree as the step length of τ
(0 ≤ τ ≤ 0.06◦, 0.06◦ is an artificially given maximum bound) for parametric

study, it requires about 360 × 60 (= 21600) iteration steps. Furthermore, the

calibrated results of ρT, λT, τT and ϑ from parametric study are:

ρT = 14.53 μm, λT = 132.79◦, τT = 0.028◦ and ϑ = 72◦. They are very

close to those listed in Table 1.2.

Radial cutter runout model Tilt cutter runout model

kT

(
N/mm2

)
758.17 758.17

mT 0.1723 0.1723

kR

(
N/mm2

)
86.10 86.10

mR 0.6609 0.6609

kA

(
N/mm2

)
143.10 143.10

mA 0.1555 0.1555

Runout parameters ρ = 32.84 μm ρT = 14.50 μm

λ = 85.69◦ λT = 131.95◦

τT = 0.02779◦

ϑ = 70.85◦

Result source Calibrated from Test 1 Calibrated from Tests 1 and 2

Table 1.2. Calibrated results of cutting force coefficients and runout parameters based
on different cutter runout models (for Test 1: ae = 8 mm, ap = 2 mm, f = 0.1667
mm/tooth, spindle speed=1200 RPM; for Test 2: ae = 0.8 mm, ap = 25 mm, f = 0.1
mm/tooth, spindle speed = 1000 RPM)

1.3.4. Identification of shear stress, shear angle and friction angle
using milling tests

According to the oblique theory proposed by [ARM 85], the milling

mechanism of the jth disk of the ith flute can be treated as an oblique cutting
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process, as shown in Figure 1.18. From the viewpoint of the principle of force

equilibrium,KT,KR andKA can be derived as [ALT 12]

KT =
τs

sinψn

cos(βn − αn) + tanβ tan η sinβn√
cos2(ψn + βn − αn) + tan2ηsin2βn

KR =
τs

sinψn cosβ

sin(βn − αn)√
cos2(ψn + βn − αn) + tan2ηsin2βn

KA =
τs

sinψn

cos(βn − αn) tanβ − tan η sinβn√
cos2(ψn + βn − αn) + tan2ηsin2βn

[1.91]

where η is chip flow angle. Equation [1.91] is a key bridge of

orthogonal-to-oblique method that relates the cutting forces to the process

geometric and physical parameters, i.e. τs, ψn, βn, αn and η. More details on

this derivation can be found in [ALT 12, BUD 96]. However the

determination of shear stress τs, shear angle ψn and friction angle βn
involved in the cutting force model still resorted to abundant orthogonal

cutting tests. For example, as reported in [ALT 12, BUD 96], more than 180

turning experiments were used for determination procedure. Instead of

orthogonal turning, milling experiments are directly designed to determine

shear stress, shear angle and friction angle in this section, and only a few

milling tests are required for the determination procedure.

1.3.4.1. Determination of normal friction angle βn
Figure 1.19(a) shows the geometric relations of cutting forces in normal

plane Pn. It can be found that

tan(βn − αn) = tanϕn =
FRn,i,j(ϕ)

FTn,i,j(ϕ)
or βn = αn + tan−1FRn,i,j(ϕ)

FTn,i,j(ϕ)
[1.92]

with

αn = tan−1(tanαr cosβ) [1.93]

where αr is radial rake angle of cutting edge. FRn,i,j(ϕ) and FTn,i,j(ϕ) are

projections of FR,i,j(ϕ), FT,i,j(ϕ) and FA,i,j(ϕ) onto normal plane Pn, which

is vertical to the cutting edge, as shown in Figures 1.18 and 1.19. Obviously,
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if the values of FRn,i,j(ϕ) and FTn,i,j(ϕ) are available, βn can immediately be

determined by using equation [1.92]. According to the theory in

[ALT 12, BUD 96], cutting is uniform along the cutting edge in orthogonal

turning process. Hence, FRn,i,j(ϕ) and FTn,i,j(ϕ) related to all disk elements

are equal and collinear with the fixed thrust and feed directions. Thus, in

turning process, βn can be determined by directly replacing FRn,i,j(ϕ) and

FTn,i,j(ϕ) with the total cutting forces measured experimentally. However, in

milling process, it is practically difficult to determine βn strictly from the

measured cutting forces because of the following two factors. First, even at

the same cutting instant, cutting forces associated with each disk element are

different in magnitude and direction. Second, the measured cutting forces

using dynamometer are available only in form of total cutting forces Fs (ϕ)
(s = X, Y, Z) and cannot be decomposed into force components related to

each single disk element, i.e. FRn,i,j(ϕ) and FTn,i,j(ϕ). Therefore, a new

approach is proposed below.
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Figure 1.18. Geometries and mechanics of flat end milling process. For
a color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Figure 1.19. Cutting forces related to the jth axial disk element of the
ith flute; a) General relationship in equivalent oblique cutting;

b) Relative geometrical diagram. For a color version of this figure,
see www.iste.co.uk/zhang/milling.zip
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Total cutting forces can be deemed to be contributed by a single disk

element under the following two conditions:

1) axial and radial depths of cut ap and ae satisfy equation [1.56]. That is,

only one flute remains to be in cut at any engagement instant;

2) ap is small enough so that it can be directly assigned to zi,j . Generally,

ap can be selected within the range of 1–2 mm.

Based on a test under the above two conditions, FRn,i,1(ϕ), FTn,i,1(ϕ) and

FAn,i,1(ϕ) shown in Figures 1.18 and 1.19 are then determined according to

the following steps:

1) measure the total cutting forces FM
XYZ(ϕ) using a force dynamometer;

2) assume that [FX,i,1(ϕ), FY,i,1(ϕ), FZ,i,1(ϕ)]
T = FM

XYZ(ϕ);

3) transform the measured forces FM
XYZ(ϕ) into tangential, radial and axial

components by using the following equation:

[FT,i,1(ϕ), FR,i,1(ϕ), FA,i,1(ϕ)]
T = [T(θi,1(ϕ))]

−1FM
XYZ(ϕ) [1.94]

4) calculate FRn,i,1(ϕ), FTn,i,1(ϕ) and FAn,i,1(ϕ) based on the geometric

relationship shown in Figure 1.18:

[FTn,i,1(ϕ), FRn,i,1(ϕ), FAn,i,1(ϕ)]
T = T(β)[FT,i,1(ϕ), FR,i,1(ϕ), FA,i,1(ϕ)]

T

[1.95]

Finally, βn can be determined by substituting FRn,i,j(ϕ) and FTn,i,j(ϕ)
obtained from equation [1.95] into equation [1.92].

1.3.4.2. Determination of shear angle ψn and chip flow angle η

The maximum shear stress principle indicates that shear occurs in the

direction of maximum shear stress, where the angle between the shear

velocity and the resultant force is π/4. The application of this principle to the

milling process of the jth disk element of the ith flute leads to the reslutant

force Fi,j(ϕ) making a π/4 acute angle with the shear direction Vs, as shown

in Figure 1.19(b). Mathematically, following relation holds for the shear force
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Fs,i,j(ϕ).

Fs,i,j(ϕ) = Fi,j(ϕ)(cosϕm cos(ϕn + ψn) cosψm + sinϕm sinψm)

= Fi,j(ϕ) cos
π

4
[1.96]

Furthermore, because Fs,i,j(ϕ) is the maximum shear force on the shear

plane, the component of the resultant force in the direction normal to the shear

on the shear plane must be zero.

Fi,j(ϕ)(cosϕm cos(ϕn + ψn) sinψm − sinϕm cosψm) = 0 [1.97]

Solutions of equations [1.96] and [1.97] give

sinψm =
√
2 sinϕm [1.98]

cos(ψn + ϕn) =
tanϕm
tanψm

[1.99]

Besides, according to [ALT 12], following geometric relations exist.

sinϕm = sinβa sin η [1.100]

tan(ϕn + αn) = tanβa cos η or tanβn = tanβa cos η [1.101]

where βa is the actual friction angle on the rake face. Chip flow angle η is

generally assumed to equal helix angle β according to the chip flow rule

proposed by [ALT 12].

Using βn obtained in section 1.3.4.1 as the initial value, solutions of ψn,

ϕm and ϕn can be achieved by combining equations [1.98] to [1.101].
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1.3.4.3. Determination of shear stress τs

Based onψn, ϕm andϕn determined above, shear stress τs can be calculated

as

τs =
Fs,i,1(ϕ)

As,i,1(ϕ)

=
Fi,1(ϕ)(cosϕm cos(ϕn + ψn) cosψm + sinϕm sinψm)

As,i,1(ϕ)
[1.102]

where Fi,1(ϕ) is obtained by substituting the components of the measured

forces FM,XYZ(ϕ) into the following equation.

Fi,1(ϕ) =
√

(FM
X,i,1(ϕ))

2
+ (FM

Y,i,1(ϕ))
2
+ (FM

Z,i,1(ϕ))
2

[1.103]

As,i,1(ϕ) is calculated by

As,i,1(ϕ) =
ap

cosβ

hi,1(ϕ)

sinψn
[1.104]

in which hi,1(ϕ) can be calculated by using equations [1.9] and [1.25] if radial

cutter runout parameters ρ and λ have been identified in advance. Alternatively,

to ignore the effect of cutter runout, both Fi,1(ϕ) and hi,1(ϕ) can be calculated

using the nominal components.

As ϕ varies, the milling cutter undergoes a trochoidal motion that yields a

continuous variation of chip thickness from zero to its maximum value, which

in turn leads to the instantaneous cutting forces over a wide range of chip

thickness. With these values, explicit expressions of τs, βn and ψn can be

established by treating τs, βn and ψn as the functions of instantaneous uncut

chip thickness.

The relations shown in Figure 1.20 are identified from two milling tests

using carbide flat end mill and 7050 aluminum alloy. It can obviously be seen

that βn and ψn are the functions of uncut chip thickness. Figure 1.21 compares

the measured cutting forces with the predicted ones by using the results from

Figure 1.20.
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Figure 1.20. Results of stress, friction angle and shear angle. For a
color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Figure 1.21. Comparisons of measured and predicted cutting forces.
For a color version of this figure, see www.iste.co.uk/zhang/milling.zip

1.4. Ternary cutting force model including bottom edge cutting
effect

A typical milling process of flat end mill is shown in Figure 1.22, from

which it can be seen that both the flank edge and the bottom edge can be

engaged with the workpiece during the actual cutting process. Thus, the

calculation of the total cutting forces should include the contributions of

the flank edge cutting and the bottom edge cutting effects. An illustration of
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the force components is also shown in Figure 1.22. The total cutting forces

can be expressed as

F(ϕ) = FF(ϕ) + FB(ϕ) [1.105]

where FF(ϕ) and FB(ϕ) are the cutting force vectors induced by flank and

bottom edges at the cutter rotation angle ϕ. More details for the procedure of

calculating FF(ϕ) and FB(ϕ) are given in the following.

 

 Bottom edge-

induced forces

Flank edge-

induced forces

pa

( )ib

Figure 1.22. Flat end milling process. For a color version of this figure,
see www.iste.co.uk/zhang/milling.zip
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1.4.1. Calculations of FB(ϕ)

The calculation of FF(ϕ) can be carried out according to

FF(ϕ) =

[
FX,F(ϕ)

FY,F(ϕ)

]
[1.106]

FX,F(ϕ) =
∑
i,j

{g(θi,j(ϕ))[−FT,F,i,j(ϕ) cos θi,j(ϕ)− FR,F,i,j(ϕ) sin θi,j(ϕ)]}

FY,F(ϕ) =
∑
i,j

{g(θi,j(ϕ))[FT,F,i,j(ϕ) sin θi,j(ϕ)− FR,F,i,j(ϕ) cos θi,j(ϕ)]}
[1.107]

with

FT,F,i,j(ϕ) = KTchF,i,j(ϕ)zi,j +KTezi,j

FR,F,i,j(ϕ) = KRchF,i,j(ϕ)zi,j +KRezi,j

hF,i,j(ϕ) = max{0, min
m=1,2,...,N

[mf sin θi,j(ϕ) + ri,j − ri−m,j ]}
[1.108]

Note that in equation [1.108], the cutting mechanism of flank edge is

characterized by dual mechanism model, in which the shearing effect and the

rubbing effect of the flank edge are described separately.

1.4.2. Calculations of FB(ϕ)

The cutting mechanism of the bottom edge is likely the rubbing effect of

the bottom edge rather than the shearing effect. Hence, the tangential force

FT,B,i(ϕ) and the radial force FR,B,i(ϕ) related to the ith flute can be written as

FT,B,i(ϕ) = KT,Bbi(ϕ)

FR,B,i(ϕ) = KR,Bbi(ϕ)
[1.109]

where KT,B and KR,B are tangential and radial coefficients related to the

bottom cutting effect of the bottom edge. bi(ϕ) is the bottom uncut chip width
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related to the ith bottom edge at the cutter rotation angle ϕ, as shown in

Figure 1.22. Based on equation [1.109], FB(ϕ) can be calculated by

FB(ϕ) =

[
FX,B(ϕ)

FY,B(ϕ)

]
[1.110]

with

FX,B(ϕ) = g(θi,0(ϕ))[−FT,B,i(ϕ) cos θi,0(ϕ)

− FR,B,i(ϕ) sin θi,0(ϕ)]

FY,B(ϕ) = g(θi,0(ϕ))[FT,B,i(ϕ) sin θi,0(ϕ)

− FR,B,i(ϕ) cos θi,0(ϕ)]

[1.111]

where θi,0(ϕ) is the angular position related to the ith flank edge tip at the

cutter rotation angle ϕ.

Without the loss of generality, model calibration will be illustrated for

equations [1.108] and [1.109]. Methods for the calibration of Kqc, Kqe and

Kq,B (q = T, R) are now described in detail.

1.4.3. Calibration of Kqc (q = T,R)

As long as the cutting is a single tooth engagement test with ap being in

the range of 1–2 mm, the total cutting forces measured in Cartesian X- and

Y-directions can be transformed into tangential and radial components with

good precision. Transformed tangential and radial forces show that they can

linearly be approximated with respect to chip load
∑
i,j

[hF,i,j(ϕ)zi,j ]. This

implies that the cutting force coefficients related to chip removal effect can

be treated as constants. Based on this fact, Kqc is calibrated by virtue of the

transformed tangential and radial forces in following steps:

1) select experimental parameters under the condition that the axial depth

of cut ap is in the range of 1–2 mm;

2) identify radial cutter runout parameters ρ and λ experimentally or

numerically;

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Cutting Forces in Milling Processes 59

3) measure the total cutting forces in X- and Y-directions by a force

dynamometer;

4) calculate hF,i,j(ϕ) in terms of ρ and λ using equation [1.108];

5) calculate chip load
∑

i,j [hF,i,j(ϕ)zi,j ];

6) transform the measured X- and Y-forces FM
XY(ϕ) = [FM

X (ϕ),FM
Y (ϕ)]

T

into tangential and radial components by;

FM
TR(ϕ) = [T(θi,0(ϕ))]

−1FM
XY(ϕ) [1.112]

where FM
TR(ϕ) = [FM

T (ϕ),FM
R (ϕ)]

T
.

7) plot FM
q (ϕ) (q = T, R) obtained from Step (6) as a function of chip load

for each tooth;

8) use linear function to fit the relationship between FM
q (ϕ) and chip load

for each tooth. The slope of each fitted line is symbolized as ki,q (i = 1, 2, ...,

N, q = T, R);

9) calculateKqc by means of

Kqc =
N∑
i=1

ki,q/N [1.113]

1.4.4. Calibrations of Kq,B (q = T,R)

Based on equation [1.106] and Kqc (q = T, R) calibrated above, the

cutting force FFc(ϕ), which is related to shearing effect, can be calculated

and then used together with the measured forces FM
XY(ϕ) to obtain the

following components.

FM
BFTR(ϕ) = [T(θi,0(ϕ))]

−1[FM
XY(ϕ)− FFc(ϕ)] [1.114]

where FM
BFTR(ϕ) = [FM

BFT(ϕ), F
M
BFR(ϕ)]

T
stands for the experimental force

component that only contains the flank rubbing and bottom edge cutting
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effects. Combining this component with the prediction expression leads to the

following equation.

[∑
i,j
zi,j bi(ϕ)

] [
Kqe

Kq,B

]
= FM

BFq(ϕ), q = T, R [1.115]

At all sampling instants of the full engagement period, equation [1.115] can

be expressed as

B
[
KTe, KT,B, KRe, KR,B

]T
= b [1.116]

with

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i,j
zi,j(ϕ1) bi(ϕ1) 0 0

...
...

...
...∑

i,j
zi,j(ϕn) bi(ϕNsap) 0 0

0 0
∑
i,j
zi,j(ϕ1) bi(ϕ1)

...
...

...
...

0 0
∑
i,j
zi,j(ϕn) bi(ϕNsap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.117]

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FM
BFT(ϕ1)

...

FM
BFT(ϕNsap)
FM

BFR(ϕ1)
...

FM
BFR(ϕNsap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.118]

Based on equation [1.116], Kqe and Kq,B (q = T, R) can be determined by

means of least-square fitting method.

[
KTe, KT,B, KRe, KR,B

]T
= [BTB]

−1
[BT b] [1.119]
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1.4.5. Experimental work

Experiments are performed in a three-axis CNC vertical machining center

for a three-fluted φ 16 Carbide end mill/aluminum AL 2618-T6 couple. The

cutter is normal right-handed mill with helix angle of 30◦. By using the above

procedure, final results of the corresponding coefficients are as follows.

[KTc,KRc,KTe,KRe,KT,B,KR,B]
T =

[690.89N/mm2, 179.32N/mm2, 10.22N/mm, 10.20N/mm, 100.58N/mm, 66.54N/mm]
T

[1.120]

Figure 1.23 shows the predicted cutting forces by using the model described

in this section and the one given in section 1.3.1. It can be found that the

proposed model holds the same order of prediction accuracy as the lumped

force model described in section 1.3.1.
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Figure 1.23. Comparisons of cutting forces predicted by two method.
For a color version of this figure, see www.iste.co.uk/zhang/milling.zip

1.5. Cutting force prediction in peripheral milling of a curved
surface

A typical peripheral milling of a curved surface is illustrated in

Figure 1.24. XYZ is a globally stationary coordinate system attached to the
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table, in which the workpiece boundary, the geometry of desired surface and

the tool path are described. XSYSZS is a locally moving coordinate system

attached to the spindle of the machine tool with its origin OS at the center of

the spindle. OSXS is aligned with the instantaneous feed direction of the

theoretical tool path. OSZS points upward along the spindle axis. OSYS is the

normal to the feed direction and follows the definition of right-hand

coordinate system. Then XSYSZS will move as the tool moves along the tool

path. θf (t) represents the angular location of the instantaneous feed direction

OSXS and is measured anti-clockwise from the positive direction of X-axis at

the sampling instant t. OTP (t) and RTP (t) denote the center of curvature and

the radius of curvature related to tool position OS (t) on the theoretical tool

path, respectively.

Generally speaking, the tool position depends upon the parametric

equation of theoretical tool path. The actual tool path generally used in NC

machining is made up of a series of straight line segments and circular arc

segments generated by the integrated CAM software, no matter how complex

the theoretical tool path is. One such approximation can easily be used to

determine the tool position without solving nonlinear equations and the

computing time is largely saved. Mathematically, the actual tool position

pa(t) is iteratively updated as

pa(t+ Ts)=

⎧⎨
⎩

pa(t)+VfTsfa(t) , for linear tool path segment

[R] (pa(t)−oCTP)+oCTP, for circular tool path segment

[1.121]

with

fa(t) =
pen − pst

|pen − pst| ,

[R] =

⎡
⎣cosαs − sinαs 0
sinαs cosαs 0
0 0 1

⎤
⎦ ,

αs =
VfTs

RCTP

where pa(t) = [Xa(t), Ya(t), 0]
T is the tool position on the actual tool path.

Ts is a given sampling time interval. Vf is the feed rate defined as the distance

that the mill feeds as the spindle rotates one radian. fa(t) is feed direction
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of the cutter. oCTP and RCTP are center point and radius of a circular tool path

segment. pst and pen are start point and end point of a linear tool path segment.

Figure 1.24. Representation of typical peripheral
milling of a curved surface

Theoretically, the feed direction along the actual tool path might be easily

determined by finding the tangential direction of the actual tool path.

Nevertheless, if the tool position strides over the joint of two adjacent tool

path segments, e.g. the joint of a straight line and a circle, as stated by Wei

et al. [WEI 10], the feed direction, the exterior normal direction and the

curvature of the actual tool path may be abruptly changed. In this section, the

problem is avoided based on the concept of equivalent point obtained by

mapping the tool position from the actual tool path to the theoretical one. The

detailed procedures is presented below.

As shown in Figure 1.25, pe (t) = [Xe(u(t)), Ye(u(t)), 0]
T is the

equivalent tool position on the theoretical tool path defined by the intersection
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point between the theoretical tool path and the normal of the actual tool path

at pa(t).

(pe (t)− pa(t))× na (t) = 0 [1.122]

where na (t) is the exterior normal of the actual tool path. u(t) is the parameter

variable of the theoretical tool path.

na (t) =

⎧⎪⎪⎨
⎪⎪⎩
[
0 0 1

]T × fa(t), for linear tool path segment

pa(t)− oCTP , for circular tool path segment (convex)

oCTP − pa(t) , for circular tool path segment (concave)

[1.123]

Figure 1.25. Interpolated tool position on the actual tool path:
a) linear tool path segment and b) circular tool path segment

Geometrically, the equivalent feed direction of the cutter fe (t) can be

defined as the tangential direction at pe (t). It can be easily obtained by means

of the value of u (t) solved from equation [1.122]. With fe (t) and u (t), the
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exterior normal direction ne (t) and curvature Ke (t) related to pe (t) are thus

calculated by

ne (t) =
[
0 0 1

]T × fe (t) [1.124]

Ke (t) =
Xe

′ (u (t))Ye
′′ (u (t))−Xe

′′ (u (t))Ye
′ (u (t))(

(Xe
′ (u (t)))2 + (Ye

′ (u (t)))2
) 3

2

[1.125]

In the following presentation, fe (t), ne (t) and Ke (t) are treated as the

equivalent feed direction, equivalent exterior normal direction and equivalent

curvature for the actual tool position pa(t).

Besides, the angular location of the feed direction, i.e. θf (t), is calculated

by the method reported in [WEI 10]

θf (t) = arccos

(
fe (t) � IX
|fe (t)|

)
[1.126]

where IX =
[
1 0 0

]T
is the unit direction vector of X-axis.

Based on the geometries described above, the instantaneous uncut chip

thickness and the entry and exit angles can be calculated as follows. Note that

for the convenience of study, the cutter is discretized into disc elements with

equal axial length zi,j .

1.5.1. Calculations of instantaneous uncut chip thickness

In case of zero cutter runout, instantaneous uncut chip thickness can be

expressed as an explicit function of feed per tooth and tooth positioning angle

of the cutting point [KLI 82a, ALT 91, BUD 96, FEN 94a]. Conversely,

instantaneous uncut chip thickness will be greatly redistributed in the

presence of cutter runout and is generally calculated as the distance between

two points, i.e. the cutting point related to the current circular path and the

corresponding one at the previous circular path [KLI 83, SUT 86]. Explicit

expressions relating the cutting parameters to cutter runout parameters were

derived [KOE 61, SUT 86] only for straight surface milling. Here, an explicit
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expression of instantaneous uncut chip thickness including the effect of cutter

runout is derived for the milling of curved surface with variable curvature. For

the milling of convex surfaces illustrated in Figure 1.24, suppose that the

current cutting point D related to the jth disk element of the ith flute, is

removing the surface left by the mth previous tooth. At the mth circular tooth

path, the cutting point related to D is symbolized by C. The tool positions

related to D and C are denoted by A and B, respectively. By definition,

instantaneous uncut chip thickness related to the jth disc element of the ith
flute can be expressed as

hi,j (t,m) = LCD = ri,j − LAC [1.127]

with ri,j being calculated by equation [1.18].

Equation [1.127] indicates that the value of hi,j (t,m) depends on LAC

whose calculation is as follows.

According to the triangle geometry relationship in 
ABC, LAC can be

mathematically derived as:

LAC =

√
r2i−m,j −

(
2RTP (t) sin

(
mf

2RTP (t)

)
cos

(
mf

2RTP (t)
+ θi,j (t)

))2

− 2RTP (t) sin

(
mf

2RTP (t)

)
sin

(
mf

2RTP (t)
+ θi,j (t)

)
[1.128]

where RTP (t) stands for the curvature related to arc. Theoretically, the radii

of curvature and the centers of curvature related to tool positions A and B

may be different due to the variable curvature of the theoretical tool path.

Nevertheless, as the feed per tooth used is relatively small in practical milling

and the curvature of arc between two adjacent tool positions A and B has a

very mild variation, the curvature of the arc can be assumed to be a constant

value equal to Ke (t) and both A and B have the same curvature center

OTP (t). Mathematically, we have

RTP (t) =
1

|Ke (t)| [1.129]

Notice that the corresponding RTP (t) should be recalculated by

equations [1.125] and [1.129] once the tool position changes.
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With the aid of equations [1.127] and [1.128], the instantaneous uncut chip

thickness can be calculated by [DES 09]

hi,j (t) = max

[
0, min

m=1,2,...,N
(hi,j (t,m))

]
[1.130]

Note that instantaneous uncut chip thickness can be obtained in a similar

way in the case of milling of concave surfaces.

1.5.2. Calculations of entry and exit angles

The presence of cutter runout not only influences instantaneous uncut chip

thickness but also the entry/exit angles in the milling of curved surface. Desai

et al. [DES 09] studied one such influence. In their computing of entry/exit

angles, the intersection point between the tooth path and the theoretical

workpiece boundary is obtained as long as the workpiece boundary is the

parallel offset of the geometry of desired surface. However, when the

workpiece boundary is not parallel to the geometry of desired surface, e.g. at

the disengaging stage, results of entry or exit angles will be erroneous. Wei et
al. [WEI 10] replaced the theoretical workpiece boundary with a set of

straight line and circular arc segments, which are the parallel offset of tool

path in pre-machining, i.e. the so-called actual workpiece boundary.

Unfortunately, the influence of cutter runout was not considered in their work.

In this section, improvements are made on the calculation of exit angle at

the engaging or disengaging stage including the influence of cutter runout. In

the case of continuous engagement, entry and exit angles are obtained using

the method in [DES 09]. At the engaging stage, as shown Figure 1.26, the exit

angle can be obtained by

θex,i,j (t) = min
m=1,2,...,N

(θex,i,j (t,m) , θB,ex,i,j (t)) [1.131]

in which θex,i,j (t,m) means the angle related to the intersection point of the

current tooth path and the mth previous tool path corresponding to the jth disc

element of the ith flute. It can be obtained by adopting the exit angle calculating

method in [DES 09]. θB,ex,i,j (t) is the angle related to the possible exit point,
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which is the intersection of the current tooth path and the actual workpiece

boundary.

θB,ex,i,j (t) = arccos

(
(pw (vB,ex,i,j (t))− pa (t)) � ne (t)

|pw (vB,ex,i,j (t))− pa (t)| |ne (t)|
)

[1.132]

where pw(vB,ex,i,j(t)) = [Xw(vB,ex,i,j(t)) Yw(vB,ex,i,j(t)) 0]T means the

parametric equations of actual workpiece boundary with vB,ex,i,j(t) being the

parameter variable of the workpiece boundary corresponding to the jth disc

element of the ith flute. Although the rotation radius of the concerned disc

element will deviate from its nominal value to ri,j due to cutter runout

[KLI 83, SUT 86, DES 09], the entry angle can still be obtained according to

the method in [DES 09], as long as the rotation radius is replaced by ri,j .
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Figure 1.26. Entry/exit angles at different stages. For a color version of
this figure, see www.iste.co.uk/zhang/milling.zip

Substitution of the instantaneous uncut chip thickness hi,j(t) into equation

[1.8] or equation [1.13] leads to the cutting force components FT,i,j (t) and
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FR,i,j (t), and then the total cutting force in locally moving coordinate system

can be calculated as

FXS
(t)=

∑
i,j

g(θi,j(t)) [−FT,i,j (t) cosθi,j (t)− FR,i,j (t) sinθi,j (t)]

FYS
(t)=

∑
i,j

g(θi,j(t)) [FT,i,j (t) sinθi,j (t)− FR,i,j (t) cosθi,j (t)]
[1.133]

where g(θi,j(t)) is obtained by substituting the entry angle θen,i,j (t) and exit

angle θex,i,j (t) into equation [1.15]. Due to the mobility of XSYSZS, the

transformation into the globally stationary XYZ coordinate system

corresponds to

FX (t) = FXS
(t) cos θf (t)− FYS

(t) sin θf (t)

FY (t) = FXS
(t) sin θf (t) + FYS

(t) cos θf (t)
[1.134]

Based on the above procedure, the predicted cutting forces are plotted in

Figure 1.27 along the entire tool path where the outline of the extreme value

variations of the predicted cutting forces indicates that no abrupt change occurs

along the entire tool path.
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Figure 1.27. Comparison of the measured and predicted cutting forces
in Y-direction vs. time for the entire tool path in test 2(ap = 10 mm,

ae = 3 mm, S = 2000 RMP, f = 0.05 mm/tooth). For a color version of
this figure, see www.iste.co.uk/zhang/milling.zip
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2

Surface Accuracy in Milling Processes

2.1. Predictions of surface form errors

Advanced manufacturing technologies constitute a basis for productivity

improvements in aeronautical and aerospace manufacturing industries. The

peripheral milling of thin-walled structural components such as entire girders,

aero-engine blades and turbine disks is an important machining process in

these industries. Due to the weak rigidity of workpieces, deflections induced

by cutting forces inevitably cause surface form errors that will severely

deteriorate the accuracy and quality of the workpiece. If the form errors

seriously violate the dimensional tolerance, the milling process will lead to

waste products. Therefore, reliable machining technologies must be employed

to obtain consistent part shapes and the machining accuracy. This can be

realized efficiently by numerical simulations combining the finite element

method with cutting mechanics, and furthermore by optimizing cutting

parameters to improve the cutting process.

In this section, to suit the geometric complexity of the workpiece, it is

modeled with irregular finite element meshes that can be generated

independently of the cutter. Additionally, based on the idea of the artificial

power law used in structural topology optimization, the rigidity variation of

the workpiece due to the material removal is updated without remeshing. The

proposed approach is finally integrated with an available finite element

analysis package. A general approach is developed with an enhancement of

the robustness of the numerical procedure and iterative algorithms.

Milling Simulation: Metal Milling Mechanics, Dynamics and Clamping Principles, 
First Edition. Weihong Zhang and Min Wan.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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To be able to calculate the deflections of complex structures in a practical

milling process, it is necessary to have a flexible and reliable modeling

scheme. The cutter and the workpiece will be modeled independently, i.e.

coordinate systems, meshing methods and element types are selected

separately according to their own structure characteristics. Suppose XYZ is a

local coordinate system which moves with the cutter. Axes Y and Z are

aligned with the normal direction of the machined surface and the cutter axis,

respectively. Here, the flat helical end mill is modeled as an equivalent

cantilevered beam with identical elements along the axial direction [KOP 90].

Notation (i, j) designates the cutter node which is the intersection between

one horizontal mesh line and the ith cutting edge, while notation {i, j} means

the jth disk element of the ith cutting edge, which is the cutting edge segment

between cutter node (i, j) and cutter node (i, j + 1), as shown in Figure 2.1.

Note that Ne in Figure 2.1 is the total number of cutter elements.

workpiece

collet

end mill shank

helical tooth

L

N

(1,0) (2,0)

(2,1)

(2,2)

(1,1)

(1,2)

{1,2}

O X

Y

workpiece

, ( )i j

T, , ( )i jF

A, , ( )i jF

R, , ( )i jF

e 1N
eN eN

1

1

Figure 2.1. Modeling of the cutter and the workpiece
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The coordinate system of the workpiece can be defined arbitrarily and is

independent of that of the cutter. Three dimensional irregular finite element

meshes and element types such as tetrahedral elements, prism elements,

hexahedral elements or a combination of them can be freely used to discretize

the workpiece, e.g. the structure of the workpiece in Figure 2.1. Due to the

independent modeling of the cutter and workpiece, a coherence description is

made to determine their relative position so that a geometric relationship

between the cutting edge and machined surface can be easily identified for the

cutting force discretization [WAN 05].

2.1.1. Calculation of cutting forces and process geometries

2.1.1.1. Calculation of cutting forces

Once three force components related to the cutter element {i, j}, i.e.

FT,i,j(ϕ), FR,i,j(ϕ) and FA,i,j(ϕ), are obtained from equation [1.8] or [1.13],

they can be mapped along X, Y and Z directions

⎡
⎣FX,i,j(ϕ)
FY,i,j(ϕ)
FZ,i,j(ϕ)

⎤
⎦ = g(θi,j(ϕ))ui,jT(θi,j(ϕ))

⎡
⎣FT,i,j(ϕ)
FR,i,j(ϕ)
FA,i,j(ϕ)

⎤
⎦ [2.1]

where g(θi,j(ϕ)) and T(θi,j(ϕ)) are calculated by equations [1.15] and [1.75],

respectively. ui,j is a correction factor of cutter element {i, j} defined as

ui,j = z
′
i,j/zi,j [2.2]

with z′i,j being the axial length of cutter element {i, j} in contact. For

example, one has ui,j = EC/ED for the correction factor of AB shown in

Figure 2.2.

After cutting forces are obtained for all engaged cutter elements, they will

then be discretized averagely to their adjacent cutter nodes. The obtained nodal

forces are further applied equivalently to the workpiece by projecting them

onto the nodes of the machined surface.
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Figure 2.2. Illustrations of correction factor of the cutting forces

The discretized cutting force f i,j acting on cutter node (i, j) is

approximately obtained as follows

⎧⎪⎪⎨
⎪⎪⎩

f i,j = Fi,j/2, j = 0

f i,j = Fi,j/2 + Fi,j−1/2, j = 1, ...,Ne − 1

f i,j = Fi,j−1/2, j = Ne

[2.3]

where Fi,j = [FX,i,j(ϕ), FY,i,j , FZ,i,j(ϕ)] is the cutting force associated with

cutter element {i, j}, and obtained by equation [2.1]. Hereinto, the first and

third expressions correspond to two extreme nodes of the concerned cutter

element.

To transfer cutting forces from the cutter to the workpiece, the

correspondence between each immersion cutter node and the machined

surface node of the workpiece has to be identified instantaneously. This can

be done either by finding v numbers of surface nodes of the workpiece, which

are near to the immersion cutter node or by identifying on the workpiece a

proper v-node grid, to which the immersion cutter node is projected. In this
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way, the cutting forces acting on the immersion cutter node are discretized

onto the v numbers of nodes of the machined surface. For the purpose of

convenience, two approximation schemes are used here to interpolate cutting

forces instead of using finite element shape functions.

Distance-based discretization scheme

As shown in Figure 2.3, an immersion cutter node (j, p) is surrounded by

v numbers of surface nodes with v = 4. According to the distance of the

immersion cutter node to the v numbers of surface nodes of the workpiece, the

cutting force is discretized approximately by

Fi =

1
di,j,p∑ 1
dk,j,p

f j,p [2.4]

in which di,j,p denotes the distance from the immersion cutter node (j, p) to

node i of the workpiece and Fi denotes the cutting force on the ith surface

node after discretization.

Projection of the jth cutting

edge on machined surface 
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rth workpiece node

to the projection of 

cutter node( j, p) 
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k
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r
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( j, p+1)

l,j,pd
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, ,k j pd
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Figure 2.3. Cutting force discretization

Averaging force discretization scheme

If the FE model of the workpiece is established with a refined FE mesh, the

cutting force can be discretized averagely with a sufficient accuracy by

Fi =
f j,p
v

[2.5]
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However, it is known that deflections of the cutter and of the workpiece as

well as the rigidity change of the workpiece strongly influence the cutting

forces in the practical milling of thin-walled workpieces. To ensure the

computing accuracy, the following studies are performed to suit the

complexity of the problem.

2.1.1.2. Calculation of θi,j(ϕ) and ui,j

Obviously, values of θi,j(ϕ) and ui,j must be known in advance before

computing the cutting forces. To do this, it is necessary to judge whether the

concerned cutter element is engaged with the workpiece.

With a given initial configuration of the cutter in the milling process, e.g.

down milling shown in Figure 2.4(a), we can see that cutter nodes may be

in contact with the workpiece only when rotating to the right side of axis Y.

Hence, an angular zone can be defined for each cutter node (i, j) by

[Θl,i,j ,Θu,i,j ] [2.6]

where Θl,i,j and Θu,i,j are the entering and leaving angles of cutter node (i, j)
with respect to the right side of axis Y, respectively. Note that both bounds

will remain unchanged provided that the cutter rotates with entire periods. As

shown in Figure 2.4, the initial position of cutter node A(i,j) can be

geometrically described by ξi,j that is defined as an anticlockwise rotation

angle from the positive direction of Y to the negative direction of X, whether

it is concerned with down milling or up milling. ξi,j reads

ξi,j = ξ1,0 + 2π(i− 1)/N + jzi,j2 tanβ/D [2.7]

where N is the tooth number, and ξ1,0 is the angular value of node (1,0) in the

initial configuration of the cutter. Clearly, the determination of Θl,i,j and Θu,i,j

depends upon ξi,j and can be made as follows:

a) Down milling process

– if cutter node (i, j) is to the left side of axis Y, e.g. at node A in

Figure 2.4(a) with ξi,j ≤ π, then

Θl,i,j = ξi,j Θu,i,j = ξi,j + π [2.8]
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– if cutter node (i, j) is to the right side of axis Y, e.g. at node A
′

in

Figure 2.4(a) with ξi,j > π, then two solutions exist

Θl,i,j = ξi,j Θu,i,j = 2π [2.9]

and

Θl,i,j = 0 Θu,i,j = ξi,j − π [2.10]

b) Up milling process

The angular zone in the up milling is to the left side of axis Y, as shown in

Figure 2.4 (b). We have then

Θl,i,j = αi,j − π Θu,i,j = ξi,j , if ξi,j ≥ π [2.11]

or alternatively

Θl,i,j = 0 Θu,i,j = ξi,j , if ξi,j < π [2.12]

and

Θl,i,j = ξi,j + π Θu,i,j = 2π, if ξi,j < π [2.13]
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Figure 2.4. Definitions of contact zones: a) down milling; b) up milling

Now, it becomes easier to determine whether the cutter element {i, j} is

engaged with the workpiece. Since the cutter rotation angle ϕ is periodic, it is

limited to ϕ ∈ [0,2π]. Therefore, if Θl,i,j ≤ ϕ ≤ Θu,i,j , it means that cutter
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node (i, j) may be engaged with the workpiece. Cutter node (i, j) is therefore

engaged with the workpiece provided that

θen,i,j(ϕ) ≤ θn,i,j(ϕ) ≤ θex,i,j(ϕ) [2.14]

where θn,i,j(ϕ) means the angle measured clockwise from axis Y to the current

position of cutter node (i, j). Specifically, calculations of θn,i,j(ϕ) can be

performed as follows:

– in down milling, when equation [2.8] or equation [2.9] is retained, one

has

θn,i,j(ϕ) = ϕ− ξi,j [2.15]

Alternatively, if equation [2.10] is verified, one has

θn,i,j(ϕ) = ϕ− ξi,j + 2π [2.16]

As shown in Figure 2.4(a), θex,i,j(ϕ) = π while θen,i,j(ϕ) depends on the

radial depth of cut ae,i,j related to cutter node (i, j).

θen,i,j(ϕ) = arccos
2ae,i,j −D

D
[2.17]

– in up milling, one has

θen,i,j(ϕ) = π θex,i,j(ϕ) = 2π − arccos
2ae,i,j −D

D
[2.18]

If equation [2.11] or equation [2.12] is retained, one has

θn,i,j(ϕ) = ϕ− ξi,j + 2π [2.19]

Otherwise, if equation [2.13] is retained, one has

θn,i,j(ϕ) = ϕ− ξi,j [2.20]
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Therefore, it concludes that cutter element {i, j} contacts the workpiece as

long as both cutter nodes (i, j) and (i, j + 1) are engaged with the workpiece.

Then, following relations hold

θi,j(ϕ) = θn,i,j(ϕ)− zi,jtanβ
D

[2.21]

and

ui,j = 1 [2.22]

If neither cutter node (i, j) nor (i, j + 1) is engaged with the workpiece,

cutting forces will not be necessarily computed since ui,j = 0. If only cutter

node (i, j) contacts the workpiece instead of (i, j + 1), it implies that cutter

element {i, j} is partially engaged with the workpiece so that z′i,j can be

obtained approximately by

z′i,j =
(θn,i,j(ϕ)− θen,i,j(ϕ))D

2tanβ
[2.23]

If cutter node (i, j + 1) contacts the workpiece instead of (i, j), then

z′i,j =
(θex,i,j+1(ϕ)− θn,i,j(ϕ))D

2tanβ
[2.24]

Finally, note that ui,j and θi,j(ϕ) will still be evaluated by means of

equation [2.2] and equation [2.21], respectively when the cutter element is

partially engaged in last two cases.

2.1.1.3. Correction of workpiece rigidity due to material removal

To consider the rigidity change of the workpiece due to the material

removal, the idea of softening materials as used in structural topology

optimization is implemented [ZHA 03a]. This technique is to correct the

element stiffness matrix in terms of its volume variation without remeshing so

that

Kst,k = �kKst,k [2.25]
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where Kst,k is the nominal stiffness matrix of the kth element. �k denotes the

ratio of volume variation of the kth element after sweeping with

�k =
ΔVk
Vk
, (10−6 = ε1 ≤ �k ≤ 1) [2.26]

in which ΔVk and Vk designate the remaining and nominal volume of the kth

element before and after cutting, respectively. Here, a lower bound ε1 is used

to prevent the singularity of the element stiffness matrix when the material is

completely removed in milling. The determination of �k is made in two basic

steps:

1) Identification of the element status of the workpiece

An element status depends on its relative position with respect to actual

radial cutting depth. For an element, if distances calculated from all its nodes

to the machined surface are less than the actual radial cutting depths at

corresponding machined surface positions, it means that this element is cut

off completely; if distances are more than the corresponding radial cutting

depths, the element is not cut off at all; if only some distances are less than the

corresponding radial cutting depths, the element is cut off partially. As shown

in Figure 2.5, distances of nodes P0 and P1 to the machined surface are d0
and d1, respectively. P0 and P1 have a common projection to Pn so that the

same radial cutting depth ae can be used. In this case, the k1th element is cut

off completely with �k1 = ε1 because distances of all attached nodes are less

than corresponding radial depths. The k2th element is partially cut off because

d0 < ae and d1 > ae. The k3th element is not cut at all so that �k3 = 1.

2) Identification of the cutting boundary for partially cut-off elements

Based on the obtained radial cutting depths from equation [2.29], the

cutting boundary can be determined by finding its intersection with all edges

of elements being partially cut off. For example, when it is concerned with

edge P0P1 of the k2th element, we can write

ae = d0 + (d1 − d0)ς with 0 < ς < 1 [2.27]

If such a parameter ς exists, the intersection point is then

P = P0 + (P1 −P0)ς [2.28]
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Figure 2.5. Correction of workpiece rigidity due to material removal;
a) corrections of the element stiffness; b) partially cut-off cases for

tetrahedral element

As illustrated in Figure 2.5(b), a summary of all possible cutting cases is

presented for tetrahedral elements. Each element is partitioned into (I) and (II),

and either of two parts can be retained as the remaining one.

To simplify the calculation of volume variations, it is necessary to remark

that element edges will be approximated by straight-line segments when they

are curved ones. After the rigidity of the workpiece is modified, the same

numerical procedure that stabilizes oscillations as described above will be used

to evaluate the actual cutting forces.

2.1.2. Iterative algorithms of surface form errors

2.1.2.1. Development of algorithms

As shown in Figure 2.6, due to the existence of deflections caused by the

cutting forces, the ideal contact curve AB will be shortened to QB. Meanwhile,

the nominal intersection line DF between the cutter and the workpiece will be

shifted to EH. As a result, for any engaged cutter node, the radial depth of cut,

instantaneous uncut chip thickness and the immersion angle will be deviated

from their nominal values.
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Figure 2.6. Illustration of immersion angle. Note that θim,i,j(ϕ) is the
immersion angle related to cutter node (i, j)

From this point of view, for cutter node (i, j) at any cutting position, the

radial depth of cut is corrected by

a
(k+1)
e,i,j = ae,i,j − [δ

(k)
t,Y,i,j + δ

(k)
w,Y,i,j ]

s.t.∣∣∣a(k+1)
e,i,j − a(k)e,i,j

∣∣∣ ≤ ε2 k = 0, 1, · · · , n
[2.29]

where a
(k+1)
e,i,j and ae,i,j are the corrected and radial depths of cut for cutter

node (i, j). k stands for the number of iterations. δ
(k)
t,Y,i,j and δ

(k)
w,Y,i,j denote

the normal deflections of cutter node (i, j) and the workpiece at the cutting

position after the kth iteration, respectively. ε2 is the prescribed tolerance to

control the iteration process.

As shown in Figure 2.6, due to the deflection, a certain number of cutter

disk elements that should be completely in cut becomes now partially engaged,

e.g. {i, j}. The actual contact axial length z′(k+1)
i,j can be written as

z′(k+1)
i,j = u

(k+1)
i,j zi,j
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where u
(k+1)
i,j denotes the correction factor in the (k+1)th iteration defined as

u
(k+1)
i,j =

(θ
(k+1)
im,i,j (ϕ) + θn,i,j(ϕ)− π)D

2zi,j tanβ
[2.30]

where θ
(k+1)
im,i,j (ϕ) denotes the variation of the immersion angle related to cutter

node (i, j) and it can be evaluated in terms of a
(k+1)
e,i,j by

θ
(k+1)
im,i,j (ϕ) = arccos(1− a

(k+1)
e,i,j

ri,j
) [2.31]

The instantaneous uncut chip thickness is iterated as

h
(k+1)
i,j (ϕ) = −Λ(k) cosΥ(k) + ri,j − ri−m,j [2.32]

with

Λ(k) =

√
(mf + δ

(k)
t,X,i,j − δ(k)t,X,i−m,j)

2
+ (δ

(k)
t,Y,i,j − δ(k)t,Y,i−m,j)

2
[2.33]

Υ(k) = π − θi,j(ϕ) + arccos

⎛
⎝δ(k)t,Y,i,j − δ(k)t,Y,i−m,j

Λ(k)

⎞
⎠ [2.34]

Equation [2.32] is the so-called numerical scheme for regeneration

phenomenon simulation. During the iteration procedure of equation [2.29],

numerical oscillations may however occur because the variation of radial

cutting depth is found to be very practical. The increase of radial cutting

depth in the previous iteration will directly lead to an increase of cutting

forces and deflections in the current iteration. Consequently, the radial cutting

depth will decrease after one iteration step. In the subsequent iterative steps,

such a decrease will lead to the increase of radial depth. These phenomena

can be seen schematically in Table 2.1. Therefore, the iteration scheme of

equation [2.29] may be divergent and values of the radial cutting depth will be

in oscillation. The similar phenomenon can also be found in equation [2.32].
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Iteration No. Variation tendency of cutting forces Variation tendency of a
(k)
e,i,j

1 - ↓
2 ↓ ↑
3 ↑ ↓
4 ↓ ↑

. . . . . . . . .

Table 2.1. Variations of cutting forces and radial depth of cut

To avoid the divergence, following sub-iteration algorithms are adopted:

– a relatively small change of the chip thickness is used

h̃
(k+1)
i,j (ϕ) = ε1 · (h(k+1)

i,j (ϕ)− h̃(k)i,j )(ϕ) + h̃
(k)
i,j (ϕ) 0 < ε1 ≤ 1 [2.35]

where h̃
(k+1)
i,j (ϕ) is the corrected value of the uncut instantaneous chip

thickness for cutting force calculation in the (k+1)th iteration. h
(k+1)
i,j (ϕ) is the

value of the instantaneous uncut chip thickness. ε1 is the weighted parameter

given a priori.

– the oscillation of radial depth of cut is presented as follows.

Case 1: Single cutter element in oscillation

As shown in Figure 2.7, suppose that the cutter element {i, j} is engaged

partially in contact with the workpiece. Because cutter/workpiece deflections

lead to a relatively large variation of radial depth of cut a
(k)
e,i,j , the correction

factor ui,j defined in equation [2.2] may be divergent as illustrated in

Figure 2.8. To solve this problem, a sub-iterative scheme is firstly adopted

to stabilize ui,j .

ũ
(k+1)
i,j = ε2 · (u(k+1)

i,j − ũ(k)i,j ) + ũ
(k)
i,j

u
(k+1)
i,j =

z
(k+1)
i,j

zi,j

s.t.

0 < ε2 ≤ 1∣∣∣ũ(k+1)
i,j − u(k+1)

i,j

∣∣∣ ≤ ε3

[2.36]
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where ũ
(k+1)
i,j is the corrected value of the correction factor for cutting force

calculation in the (k+1)th iteration. u
(k+1)
i,j and z

(k+1)
i,j are the actual values of the

correction factor and the axial contacting length related to cutter element {i, j},

respectively. ε2 is the weighted parameter given a priori. ε3 is the prescribed

tolerance to control the iteration.
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Figure 2.7. Illustration of partially engaged cutter elements
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Figure 2.8. Oscillation of a single correction factor ui,j

Case 2: Multiple cutter elements in oscillation

Some cutter elements, e.g. {i, s},{i, s + 1},...,{i, j} shown in Figure 2.7,

may also be engaged in cutting in the current iteration and disengaged in
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the next one. In this case, the following procedure is proposed to ensure the

convergence of the iteration scheme:

a) Assume that cutter elements from {i, s+ 1} to {i, j} are not engaged in

cutting. So, set a
(k)
e,i,l = 0 for all (s+ 1 ≤ l ≤ j);

b) Start the iterative process of equations [2.35] and [2.36] for the cutter

element {i, s} with ũ
(k+1)
i,s until the convergence is reached;

c) If 0 ≤ ũ
(k+1)
i,s < 1, the convergence achieves for all cutter elements

and stop the iteration. Otherwise, continue step (b) by setting s = s + 1 and

a
(k)
e,i,s = a

(k)
e,i,s−1.

After ũ
(k+1)
i,s is updated, the axial depth of the cut will be corrected

correspondingly. Note that Case 1 and Case 2 discussed above correspond to

the down milling process. In the up milling process, Case 1 is still applicable.

Instead, the oscillation will happen for cutter elements near the cutter tip in

Case 2. Therefore, oscillating cutter elements, e.g. {i, s}, {i, s − 1}, ..., {i, j}
are needed to be identified sequentially as performed in down milling.

Note that after the radial dept of cut is corrected, the axial depth of the cut

will be corrected correspondingly. The surface form error can be defined as

the normal deviation of the final machined surface from the desired machined

surface. In the peripheral milling process, the cutter/workpiece deflections in

the direction normal to the machined surface constitute the form errors. At a

certain position P, as shown in Figure 2.9, the surface form error eP is evaluated

by

eP = δt,Y,i,j + δw,Y,i,j [2.37]

where the cutter deflection δt,Y,i,j is calculated according to cantilevered

beam theory, while the deflection of the workpiece, δw,Y,i,j , is calculated

using the finite element analysis (FEA) method. It should be mentioned that

in fact, as the presence of cutter runout leads to the non-uniform distributions

of cutting forces in different tooth periods, the cutting force-induced

deflections will be different in different tooth period. Therefore, the

combination effect of error curves associated with each tooth period must be

considered in the determination of final surface dimensional error

distribution. To do this, the final surface dimensional error is achieved by
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finding the maximal value envelope from the error superposition curve

section of all teeth, as illustrated in Figure 2.10.

Actual machined surface

Initial surface to be machined

Nominal

Radial depth of
cut  

Desired machined surface

e
p

P

Figure 2.9. Definition of the surface form error
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Figure 2.10. Constitution of the surface form error for a four-fluted
end mill. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip

To estimate values of surface form errors along the tool path, the milling

trajectory is firstly split into a sequence of discrete cutting locations. Surface

form errors along each surface generation line will be calculated at the current

cutting location before the cutter shifts to the next one. At the same time,

rigidities of elements swept between these two adjacent locations are

corrected as illustrated in the previous section. This routine continues until

analyses of all locations are finished.
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It is well recognized that the cutting forces are strongly influenced by the

deflections of cutter and workpiece as well as the rigidity variation of the

workpiece due to material removal. In different situations, two available

models are selected to calculate the form errors:

1) Rigid model: it is a simplified model in which the cutter/workpiece

deflections and the workpiece rigidity change caused by the material removal

are ignored. The form errors will be calculated directly based on the nominal

cutting parameters.

2) Flexible model: both the cutter/workpiece deflections and the workpiece

rigidity change induced by material removal are taken into account. At any

cutting instant, the proposed iteration algorithm is used to correct the radial

depth of cut and the instantaneous uncut chip thickness.

2.1.2.2. Example and experimental verification

A carbide flat end mill with identical diameter of 20 mm and a helix angle

of 30◦ is adopted to cut aluminum alloy 7050. Note that the cutter is a

single-fluted flat end mill, which is designed to eliminate the runout effect on

form error distributions. A cantilever plate with a dimension of

102 mm × 29.4 mm × 2.21 mm is used to validate the proposed cutting force

model. 3D finite element meshes are used to discretize the workpiece. The

cutter has a tool gauge length of 61 mm and is discretized into 61 axial

elements. The Young’s moduli of the cutter and the workpiece are 600 GPa

and 71.7 GPa, respectively. The flexibility of the plate is considerable when

the cutting is carried out with a radial depth of 0.95 mm and axial depth of cut

of 29 mm. Cutting forces are measured with a Kistler 9255B dynamometer.

Figure 2.11 shows the form errors along the cutter axial direction at two

feed stations of both plates predicted by the present simulation model and

measured by experiment. It can be seen that the results predicted by the rigid

model and the flexible model have a good coherence in the variation tendency

when compared with the experimental data. In particular, the flexible model is

shown to be more reliable because the material removal and the coupling

effect are considered. By comparing Figure 2.11(a) with Figure 2.11(b), it is

found that both predicted and measured results indicate increasing trend in

the form error amplitudes in the feed direction. This is due to the decreasing

stiffness of the workpiece as a result of material removal. Additionally, the

iteration history of correction factor u1,16 in down milling is shown in
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Figure 2.12 when the cutter has a rotation of 26.65◦ from the feed position

42 mm. The iteration scheme is very efficient because it is stabilized after

only a few steps.
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Figure 2.11. Surface form errors: a) when the cutter feeds 42mm; b)
when the cutter feeds 90 mm
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Figure 2.12. Iteration history of correction factor u1,16

2.2. Control strategy of surface form error

2.2.1. Development of control strategy

The aim is to develop method for the reduction of the surface form error so

that the surface quality could meet the requirement of the prescribed

tolerance. Traditionally, this is done by using mirror error compensation
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method to correct the nominal cutter path. According to this method, as

shown in Figure 2.13, if the cutter deflection is e, the nominal cutter path will

be offset to a distance of e in the opposite direction of the deflection.

However, this kind of method may still be unable to ensure that the maximum

and minimum values of the surface form errors is in the range of error

tolerance.

tool path 

before compensation

tool path

after compensation

e
nominal tool path

-e

Figure 2.13. Mirror compensation method

In fact, to solve this problem, the key issue is to ensure the machining

precision and the productivity by optimally selecting the feed rate and radial

depth of cut for the maximum feed per tooth and tolerance feasibility. In the

following content, a bi-parameter-based optimization will be described in

detail. The aim is to increase the cutting efficiency and satisfy the tolerance in

the meantime. Mathematically, the design model is to find optimal values of f
and ae that maximize f subjected to the tolerance condition and parameter

bounds.

min −f
s.t.

cmin ≤ emax ≤ cmax

cmin ≤ emin ≤ cmax

fmin ≤ f ≤ fmax

ae,min ≤ ae ≤ ae,max

[2.38]

where cmax and cmin denote the given maximum and minimum bounds of the

surface form error tolerance. fmax and fmin are the upper and lower bounds

of f, respectively. ae,max and ae,min are the upper and lower bounds of ae,

respectively.
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To solve this problem, the key is to approximately develop the explicit

expressions of emax and emin in terms of f and ae. For this reason, it is

interesting to study the following test case. Consider a three-fluted flat end

mill with a diameter of 16 mm and a helix angle of 30
◦

to cut aluminum alloy

7050. Dynamometer Kistler 9255B is used to measure the cutting forces.

Cutting conditions are listed in Table 2.2. All tests are realized without

coolant. Test 1 is used to cut a thick block for calibrating the cutting force

coefficients and cutter runout. Test 2 and Test 3 are selected for model

verification with the flexible cantilever rectangle plate of dimension

107.7 mm × 29 mm × 1.85 mm. The cutter runout offset ρ and its location

angle λ are calibrated as 28.85 μm and 91.12◦, respectively.

Test

No.

Wokpiece material Feed per tooth

f (mm/tooth)

Axial depth of

cut ap (mm)

Radial depth of cut

ae (mm)

1 AL 7050 0.133 1 8

2 AL 7050 0.02 28 0.8

3 AL 7050 0.00487 28 0.855

Table 2.2. Cutting conditions
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Figure 2.14. The distributions of emax and emin v.s. ae

and f; a) emax and b) emin

The initial and the desired dimensions of the workpiece used in Test 2 are

considered as the machining requirements to show the distributions of emax

and emin vs. f and ae. ae and f are chosen to vary from 0.65 mm to 1.05 mm

and from 10−6 mm/tooth to 0.01 mm/tooth, respectively. The simulation

results corresponding to the surface generation line where the cutter feeds

3 mm are shown in Figure 2.14. It can be found that both emax and emin are
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approximately distributed in a planar surface over the considered region. This

phenomenon indicates that emax and emin can be locally treated as linear

functions of ae and f. The same observations can also be made in other cutting

conditions and feed positions. Thus, following relations hold.

emax = A11f +A12ae +A13

emin = A21f +A22ae +A23

[2.39]

where Aij(i=1,2; j=1,2,3) are unknown coefficients that can be determined

using the finite difference scheme in the following way.

A11 = (emax 3 − emax 1)/Δf1

A12 = (emax 2 − emax 1)/Δae,1

A13 = emax 1 − (A11f1 +A12ae,1)

A11 = (emin 3 − emin 1)/Δf1

A12 = (emin 2 − emin 1)/Δae,1

A23 = emin 1 − (A21f1 +A22ae,1)

[2.40]

where ae,1 and f1 are selected radial depth of cut and feed rate satisfying

ae,min ≤ ae,1, ae,2 ≤ ae,max and fmin ≤ f1, f2 ≤ fmax. Assume that

ae,2 = ae,1 +Δae,1, f2 = f1 +Δf1. Note that emax 1 and emin 1 are related to

ae,1 and f1; emax 2 and emin 2 are related to ae,2 and f1; emax 3 and emin 3 are

related to ae,1 and f2.

Based on equation [2.39], equation [2.38] can be easily solved as a linear

programming problem. Note that, as mentioned above, emax and emin are

linearly approximated over a local design region; hence, it is necessary to

update the approximation on the new design point in an iterative way. This

means that the coefficients Aij involved in equation [2.39] need to be re-

evaluated iteratively. Detailed optimization procedure is shown in Figure 2.15,

whose key steps are summarized below:

1) set the initial values of ae,1 andf1;

2) calculate Aij by means of equation [2.40];
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3) solve equation [2.38] as a linear programming problem;

4) attribute the obtained ae and f to ae,1 and f1 for the next iteration;

5) repeat Steps(2) and (3);

6) steps (2) to (5) are repeated until the error between two iterative results

of f attains the prescribed precision.
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Figure 2.15. Optimization algorithm for surface form error control

2.2.2. Verification of control strategy

The cutting conditions given in Table 2.2 are used to validate the control

strategy. The nominal radial depth of cut is 0.8 mm. The tolerance parameters

cmax and cmin are set to be +0.2 mm and −0.05 mm, respectively. Test 2 is

carried out with the nominal radial depth of cut, i.e. 0.8 mm, and the initial

value of feed per tooth being 0.02 mm/tooth. Test 3 is carried out with the

optimized radial depth of cut and the feed per tooth. For the proposed method,

suppose thatfmax = 0.01mm/tooth, fmin = 0mm/tooth, ae,max = 1.05 mm,

ae,min = 0.65mm, Δf1 = 0.005 mm/tooth and Δae,1 = 0.03 mm.

The iteration histories of ae and f are illustrated in Figure 2.16. It can be

seen that the control strategy is time-saving due to the automatic optimization.

After convergence, the optimal results are: ae = 0.856 mm and f = 0.00675

mm/tooth. Note that Figure 2.16 just corresponds to the surface generation line

when the cutter feeds 3 mm. For the whole milling surface of the workpiece,

all surface generation lines must be considered. Instead of interpolation, the
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radial depth of cut along the cutter trajectory is set to be the minimum value

of the optimized results, i.e. ae = 0.855 mm, for the sake of simplification.

The final result of f equals 0.00487 mm/tooth. These are set to be the cutting

parameters of Test 3.
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Figure 2.16. Iteration histories of ae and f
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Figure 2.17. Distributions of surface form errors at the specified
surface generation lines; a) when the cutter feeds 20 mm; b) when the

cutter feeds 80 mm. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

Figure 2.17 shows the predicted and measured surface form errors along

the cutter axial depth at two feed positions of Test 2 and Test 3 before and

after optimization. It can be seen that the predicted results have a relative

good coherence in the variation tendency and magnitude when compared with

the experimental data. This turns out that the error model proposed in section

2.2.1 is reliable. It can be seen that all errors are in the tolerance interval after

optimization. This means that the proposed strategy is able to find the best
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appropriate cutting parameters for the requirements of tolerance and

productivity.

2.3. Surface topography in milling processes

In the milling simulation, finding the machined surface topography, the

geometric shape and texture of machined surface, is essential since the latter

affects directly the surface quality, especially the surface roughness. For a ball

end milling process, the surface topography also affects the cutting force and

chip load calculations.

This chapter presents a general numerical method to simulate the

machined surface topography and roughness in milling process. The key issue

related to the proper parameter initialization and computing scheme is

investigated to ensure the convergence and efficiency of the iteration process.

Effects of milling parameters upon the surface roughness are analyzed. This

method has the advantage of simplicity and it is a mesh-independent direct

computing method over the traditional interpolation scheme. Firstly, the

trajectory equation system of the cutting edge relative to the workpiece in the

milling process is formulated with the illustration of the height of the cut

remainder. Then, numerical methods are developed to solve the equation

system for end and ball end milling. Finally, some examples are studied to

evaluate the topography and roughness. Results are compared with

corresponding experimental ones. In addition, the developed algorithm also

has the advantage of determining the tool position whenever the machined

surface is generated in any desired node. This will be helpful in the prediction

of form errors due to machining deformation.

In the milling process, the machined surface quality depends upon a variety

of factors, e.g. tool geometry, tool path, cutter runout, material properties of

the workpiece, vibration of the overall machine system, etc. In this chapter,

an analytical model is proposed for the prediction of the topography of the

generated surface.

Firstly, consider an arbitrary contour mill and machined surface illustrated

in Figure 2.18. Under the premise of disregarding the influence of material

properties of the workpiece and the tool, vibration of the machine system, the

machined surface topography mainly depends on the tool geometry, tool path

and cutter runout. In order to facilitate the description of the relative motion
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relationship between the blade of the cutter and workpiece in the milling

process, a set of coordinate systems are established a priori, as shown in

Figure 2.18.

1) OWXWYWZW represents a reference coordinate system fixed on the

workpiece;

2) OAXAYAZA is the local coordinate system fixed on the spindle of the

milling machine;

3) OCXCYCZC is the local coordinate system fixed on the cutter. The

cutter revolves round the spindle, i.e. axis ZA, with the angle speed Ω;

4) OCXiYiZi is defined as the local coordinate system attached to the ith
cutting edge;

5) ONXNYNZN is the local coordinate system whose origin is located at

node ON on the machined surface with axis ZN being the normal vector of the

machined surface at ON.

Y
W

Z
W

X
W

O
W

Y
C

X
N

Y
A

Y
N

Y
i

X
C

X
A X

i

Z
N

O
C

Z
A

O
N

O
A

z

Z
i

Z
C

P

G(z)

i

Figure 2.18. Coordinate systems in the milling process

In addition, f is the feed vector. ζj is the angle between the axis Xi and axis

XC. In the coordinate system OCXiYiZi, let� and z be curvilinear parameters,
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then the coordinates of a given point P on the ith cutting edge can be expressed

by [XU 01]

(G(z(�)) cos�,G(z(�)) sin�, z(�)) [2.41]

where G(z) is parametric equation of the generator.

Based on these coordinate systems and the expression in equation [2.41],

the trajectory equations of point P in the local coordinate system ONXNYNZN

can be obtained through a series of coordinate transformations as follows

⎧⎪⎪⎨
⎪⎪⎩
x = x(�, t)

y = y(�, t)

z = z(�, t)

[2.42]

Based on the geometrical characteristics of the cutting edge and the tool

path, the topography corresponds to the z-value with such � and time t
satisfying the following equation system

{
x(�, t) = 0

y(�, t) = 0
[2.43]

Generally, because solutions of � and t are not unique, multiple values of

z can be obtained after substituting � and t into z = z(�, t). By definition,

the topography value that we have to evaluate refers to the minimum of z. In

the following sections, discussions will focus on the topography simulations

of end milling and ball end milling processes, respectively.

2.3.1. Prediction method for flat-end milling

2.3.1.1. Derivation of a simulation algorithm

In this section, numerical simulation and prediction method for flat end

milling are investigated in detail. Without the loss of generality, the effect of

spindle runout is included in the topography simulation. Based on the above

rule, the involved set of coordinate systems is established, as shown in

Figure 2.19:
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1) OWXWYWZW represents a reference coordinate system attached to the

workpiece;

2) OAXAYAZA is the local coordinate system attached to the main-shaft

of the mill machine. Axis ZA is along the main-shaft. Axes XA and YA are

parallel to axes XW and YW, respectively. T(xT, yT, zT) is the initial position

of the origin OA;

3) OCXCYCZC is the local coordinate system fixed on the cutter. Axis YC

and the vector of spindle runout, ρ, are superposed. The cutter revolves with

the angle speed Ω round the spindle, i.e. axis ZA. The angle between axis YC

and YA is Ωt+ΩI, with ΩI being the initial angle;

4) OCXiYiZi denotes the local coordinate system attached to the ith cutting

edge. Axis Xi intersects with the ith cutting edge and the angle between axis

Xi and XC is ζj ;

5) ONXNYNZN is the local coordinate system of the given node

ON (xN, yN, zN)on the machined surface. Axis YN is along the feed direction.
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iX

AO

CO
T f

iζ
P

WO

Ω

It +

NO

Figure 2.19. Coordinate systems in end milling process

In the coordinate system OCXiYiZi, consider an arbitrary point P on the ith
cutting edge, whose coordinates are expressed as

[x y z 1]Ti = [
D cos�

2

D sin�

2

D�

2 tanβ
1]Ti [2.44]
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The latter can be expressed in the coordinate system ONXNYNZN through

coordinate transformation.

[x y z 1]TN = TM [x y z 1]Ti [2.45]

with TM being the overall transformation matrix

TM =

⎡
⎣ 0 0 −1 −zT + zN
− sin(Ωt+ΩI − ζj) cos(Ωt+ΩI − ζj) 0 ρ cos(Ωt+ΩI) + ftt+ yT − yN

cos(Ωt+ΩI − ζj) sin(Ωt+ΩI − ζj) 1 ρ sin(Ωt+ΩI) + xT − xN

0 0 0 1

⎤
⎦[2.46]

where ft means the feed rate, mm/s.

By inserting equation [2.44] and equation [2.46] into equation [2.45], the

equation system reads

⎡
⎢⎣
x

y

z

⎤
⎥⎦ =

⎡
⎣ −D�

2 tan β−zT + zN

−R sin(Ωt+ΩI − ζi −�) + ρ cos(Ωt+ΩI) + ftt+ yT − yN

R cos(Ωt+ΩI − ζi −�) + ρ sin(Ωt+ΩI) + xT − xN

⎤
⎦ [2.47]

To evaluate the minimum value of z for the topography, � will be firstly

obtained in a closed form by solving x(�, t) = 0. From equation [2.47], one

can have

� =
2 (zN − zT) tanβ

D
[2.48]

Therefore, node ON is cut by such particular points P of all cutting edges,

having the same parameter � (independent of i ).

As shown in Figure 2.20, for a workpiece section with x (�) = 0, the

trajectory of the point P in the Y–Z plane with respect to the given node ON

on the workpiece is trochoid. Here, the gray and hatched parts represent the

workpiece and the remainder cut by one tooth, respectively. In this case, the z
value of point A with y (�, t) = 0 is what one should evaluate.

Due to the nonlinearity of equation [2.47], it is impossible to give rise to

the analytic expression of time t. Here, parameter t is derived numerically. To
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stabilize the iteration process, the initial value t0 is set to be the parameter of a

particular point B (see Figure 2.20), satisfying following conditions,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂z

∂t

∣∣∣∣
t=t0

= 0

∂2z

∂t2

∣∣∣∣
t=t0

≥ 0, |y (�, t0)| ≤ Nf
2

[2.49]

A

B

Z

Y

workpiece N f

Figure 2.20. Trajectory of the point on the ith cutting edge

From the first equation in equation [2.49], it follows that

t0 = − 1

Ω

(
ΩI − arctan

D
2 sin (ζi +�) + ρ
D
2 cos (ζi +�)

)
+ kπ, k ∈ Z [2.50]

Note that k is an integer whose value is determined by the second equation

in equation [2.49].

Consequently, the value of t satisfying y(�, t) = 0 can be obtained by

means of the Newton–Raphson method that proves to be highly convergent in

our applications. Note that according to equation [2.49], for any cutting edge

i, the initial value and solution of t are both unique. Hence, for any node on

the machined surface, the number of calculating z′s is equal to the number of

cutter teeth N .

2.3.1.2. Simulation examples and experimental verifications

Numerical examples are considered and the surface topography of end

milling processes is numerically simulated. Ra or the Root Mean Square
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(RMS) is evaluated to characterize the machined surface roughness

quantitatively. A Taylor-Hobson contour device is used to measure the

roughness of the machined surface for comparison with the simulation

results. The surface roughness is measured along the feed direction for the

end milling process.

Cutting conditions are described in Table 2.3. Simulation results given in

Figure 2.21 show that the up and down milling processes result in different

surface textures. From Table 2.4, it is noticed that the simulated Ra associated

with the up milling is less than that of the down milling and is very similar to

the measured outcome. This result agrees with the basic knowledge of

machining experiences.

D N β S f ae ρ

6 mm 3 30
◦

800 rpm 0.167 mm/tooth 1 mm 0.012 mm

Table 2.3. Cutting conditions in flat end milling process

Milling type Measured Ra Simulated Ra Relative error

Up milling 2.075 μm 2.368 μm 14.1%

Down milling 2.225 μm 2.495 μm 12.1%

Table 2.4. Simulation results in flat end milling process

The comparison of the profile between the simulation and experimental

results is shown in Figure 2.22. Obviously, the simulation curve is periodic

since the roughness is predicted kinematically without considerations of

vibration, tool wear and other factors. The correlation between these results is

evident.

2.3.2. Prediction method for multi-axis ball end milling

2.3.2.1. Derivation of simulation algorithm

In this section, different coordinate systems related to multi-axis ball end

milling are established first. Then the trajectory equation of the cutting edge

relative to the workpiece is formulated. Due to the mathematical complexity,

a numerical iterative algorithm is developed to solve the trajectory equation.

As we are focused on the finish milling process with the depth of cutting
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being small, effect of machining temperature, the cutter-workpiece flexibility

and the dynamic property of the machine system are ignored.
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Figure 2.21. Simulation results in end milling process: a) up milling;
b) down milling
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Figure 2.22. Comparison of the profile between simulation and
experimental results. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip

For an arbitrary linear feed portion of the whole tool trajectory, the involved

set of coordinate systems shown in Figure 2.23 is established in order to obtain
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the parametric trajectory equation of the cutting edge relative to an arbitrary

point, ON, on the workpiece:

Figure 2.23. Coordinate systems in the ball end milling process

1) OXYZ: global coordinate system in which the workpiece machining

surface and the tool path are described;

2) OWXWYWZW: simulation coordinate system attached to the workpiece

with the axis ZW being parallel to the tool axis ZA;

3) OAXAYAZA: local coordinate system attached to the spindle of the

mill machine and moves in pure translation of feed speed ft relative to the

workpiece. Axis ZA is along the spindle. Axes XA and YA are parallel to axes

XW and YW, respectively;

4) OCXCYCZC: local coordinate system fixed on the cutter. Axis YC and

the vector of spindle run-out, ρ, are aligned. The cutter revolves around the

spindle at the angle speed. The angle between YC and YA is Ωt+ ΩI with ΩI

being the initial eccentricity angle;

5) OCXiYiZi: local coordinate system attached to the ith cutting edge.

Axis Xi intersects with the ith cutting edge and has an angle ζi with axis XC;
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6) ONXNYNZN: local coordinate system of any given node on the

machined surface. ONZN is the normal direction of node ON. Note that axis

ONF is parallel to the linear feed velocity vector f . All axes can be derived

below.

ONXN = τ̃1 (xτ̃1 , yτ̃1 , zτ̃1) = τ̃1/||τ̃1||, τ̃1 = f × n
ONYN = τ̃2 (xτ̃2 , yτ̃2 , zτ̃2) = τ̃2/||τ̃2||, τ̃2 = n× τ̃1
ONZN = n (xn, yn, zn) = n/||n||

[2.51]

where τ̃1, τ̃2 and n stand for the direction vectors of axes XN, YN and ZN, as

illustrated in Figure 2.23. Let � and z be the curvilinear parameters denoting

the position angle of the cutter and the z coordinate of the given point on the

cutting edge, respectively. Then coordinates of point P on the ith cutting edge

can be expressed as

[x, y, z, 1]Ti = [rP cos�, rP sin�, z, 1]Ti [2.52]

in which rP =
D
√

tan2β−	2

2tanβ and z = − D	
2tanβ , 0 ≤ � ≤ tanβ.

After multiple coordinate system transformations, the overall

transformation matrix, denoted by TMiN , from coordinate OCXiYiZi to

coordinate ONXNYNZN consists of

TMiN = TMWNTMAWTMCATMiC [2.53]

in which TMiC , TMCA , TMAW and TMWN denote the transformation matrix

from OCXiYiZi to OCXCYCZC, OCXCYCZC to OAXAYAZA,

OAXAYAZA to OWXWYWZW and OWXWYWZW to ONXNYNZN for

each of them.

Hence, in ONXNYNZN, the trajectory equation of a given point on the ith
cutting edge relative to the workpiece is written as:

⎡
⎣ xy
z

⎤
⎦
N

= TMiN

⎡
⎣ xy
z

⎤
⎦
i

=

⎡
⎣ xT1

yT1

zT1

⎤
⎦ [2.54]
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with

xT1 = Cτ̃1rP cos(Ωt+ΩI − ζi −� + γτ̃1)− zτ̃1
D�

2 tanβ

− Cτ̃1ρ sin(Ωt+ΩI + γτ̃1) + dτ̃1

yT1 = Cτ̃2rP cos(Ωt+ΩI − ζi −� + γτ̃2)− zτ̃2
D�

2 tanβ

− Cτ̃2ρ sin(Ωt+ΩI + γτ̃2) + dτ̃2 + (xτ̃2xf + yτ̃2yf + zτ̃2zf) t

zT1 = CnrP cos(Ωt+ΩI + ζj −� + γn)− zn D�

2 tanβ

− Cnρ sin(Ωt+ΩI + γn) + dn + (xnxf + ynyf + znzf) t

Cc =
√
x2c + y

2
c , cos γc = xc/Cc, sin γc = yc/Cc

dc = xc (xA − xN) + yc (yA − yN) + zc (zA − zN) (c = τ̃1, τ̃2, n)

where ζi = ζ1 − (i− 1)2π/N (i = 1, 2, ..., N). (xf, yf, zf) means the direction

vector of the feed velocity. [xN, yN, zN] denotes the coordinates of node, ON,

in OWXWYWZW, and [xA, yA, zA] denotes the coordinates of cutter center,

OA, in OWXWYWZW.

In fact, equation [2.54] holds under the assumption that the local

coordinate system OAXAYAZA is parallel to the global coordinate system

OXYZ. However, in most cases, the axes of and OWXWYWZW are not

parallel in multi-axis ball end milling. Namely, the tool cutter axis is typically

inclined with respect to the normal of the workpiece machining surface and

moves ahead with varying angles in the feed direction and pick-feed

(cross-feed) direction. As the workpiece and tool paths are described under

the global coordinate system OXYZ, we have to determine [xN, yN, zN],

[xA, yA, zA] and the normal at point ON involved in equation [2.54] in

advance by means of coordinate transformation from OXYZ into

OWXWYWZW.

As shown in Figure 2.24, such a transformation constitutes two steps in a

5-axis ball end milling: (1) OXYZ revolves around axis Y with an angle γI
to OWX′Y′Z′. (2) OWX′Y′Z′ revolves around axis X′ with an angle ηT to
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OWXWYWZW. It is noticed that OWZW is parallel to the cutter axis and the

signs of γI and ηT are determined using the right hand helix rule. Denote TM1

and TM2
to be the transformation matrices of the circumrotation around axis

Y and axis X′, respectively, one can have

TM1 =

⎡
⎣ cos γI 0 − sin γI

0 1 0
sin γI 0 cos γI

⎤
⎦ [2.55]

TM2 =

⎡
⎣ 1 0 0
0 cos ηT sin ηT
0 − sin ηT cos ηT

⎤
⎦ [2.56]

Y(Y ')

WO ( O )

I

Z

T
η

pick-feed
feed

Z

X

WY

WZ

WX ( X )

Figure 2.24. Coordinate system transformation
in multi-axis ball end milling

Consequently, the overall transformation matrix TM from OXYZ to

OWXWYWZW is written as

TM = TM2TM1 =

⎡
⎣ cos γI 0 − sin γI
sin ηT sin γI cos ηT sin ηT cos γI
cos ηT sin γI − sin ηT cos ηT cos γI

⎤
⎦ [2.57]

From equation [2.54], it can be seen that when parameters D, β, Ω, ΩI, ρ
and ζi are given in advance, the trajectory equation is a nonlinear system in
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function of both parameters � and t. When a considered point on the

workpiece is in cut, the general form of the trajectory equation written in

ONXNYNZN is

{
x(�, t) = 0
y(�, t) = 0

[2.58]

� and t will be evaluated numerically due to the implicit relations. Their

substitution into the z expression of equation [2.54] will thereafter give rise to

the remainder height of the considered point being in cut. The resulting

topography value of this point then corresponds to the minimum of all

remainder heights formed by all cutting edges. Here, the key issue associated

with topography simulation is how to solve equation [2.58] in an efficient

way. The Newton–Raphson iteration scheme is employed in this work and the

appropriate selection of the starting iteration point is investigated below.

Firstly, the curve defined by equation [2.58] with ρ=0 is plotted in

Figure 2.25. It can be seen that x(�, t)|ρ=0 = 0 is a periodical function of

parameter t with the periodicity being 2π/Ω.

tanβ

t

y(   ,t)=0
x(   ,t)=0

(   ,t)

(       ,t
0
)

max

max

A

B

Figure 2.25. Isovalue curves of equation system
without cutter runout (ρ=0)

Now, the aim is to determine firstly � and t at the intersection point

between two families of curves and thereafter the corresponding z-value.

Without the loss of generality, consider point A in Figure 2.25. Suppose

p = cos(Ωt+ΩI − ζi −� + γτ̃1) p ∈ [−1 , 1] [2.59]
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by solving x(�, t)|ρ=0 = 0, the following equation is obtained.

� =
2zτ̃1dτ̃1 + 2Cτ̃1 |p|

√(
z2τ̃1 + p

2C2
τ̃1

)
(D2 )

2 − d2τ̃1
D
(
z2τ̃1 + p

2C2
τ̃1

) tanβ [2.60]

As shown in Figure 2.26, � is symmetrical with respect to p and each

bifurcation is monotone. Accordingly, when p takes the extreme value with

|p| = |cos(Ωt+ΩI − ζi −� + γτ̃1)| = 1 [2.61]

the maximum value of � occurs with

�max =
zτ̃1dτ̃1 + Cτ̃1

√(
z2τ̃1 + C

2
τ̃1

) (
D
2

)2 − d2τ̃1
D
2

(
z2τ̃1 + C

2
τ̃1

) tanβ [2.62]

0 1-1
p

Figure 2.26. Relationship between 	 and p

Furthermore, in the specific coordinate system ONXNYNZN, due to the fact

that

z2τ̃1 + C
2
τ̃1 = z2τ̃1 +

(
x2τ̃1 + y

2
τ̃1

)
= ‖τ̃1‖2 = 1 [2.63]

equation [2.62] can be simplified as

�max =
2zτ̃1dτ̃1 + 2Cτ̃1

√(
D
2

)2 − d2τ̃1
D

tanβ [2.64]
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Such a �max is, in fact, the parameter of the extreme point B shown in

Figure 2.25. To ensure the convergence of the iteration, the initialization is

made by setting �0 = �max.

By inserting equation [2.64] into x(�, t)|ρ=0 = 0 of equation [2.54], the

corresponding analytical value of t0 reads

t0 =
1

Ω

[
cos−1 zτ̃1D�0 − 2dτ̃1 tanβ

Cτ̃1D
√
tan2β −�2

0

− (ΩI − ζi −�0 + γτ̃1) + 2kπ

]
, k ∈ Z

[2.65]

According to equation [2.61], equation [2.65] can be further simplified as

t0 = (cos−1q − (ΩI − ζi −�0 + γτ̃1) + 2kπ)/Ω, k ∈ Z [2.66]

with

q =

{
1, zτ̃1D�0 − 2dτ̃1

tanβ ≥ 0

− 1, zτ̃1D�0 − 2dτ̃1
tanβ < 0

A different k gives a different t0. Hence, the latter together with the given

�0 will result in a set of z-values whose minimum is the desired topography

value. From such a starting point B (�0,t0), usually the iteration process

converges quickly to point A following numerical experiences. Likewise,

when the cutter runout exists initial parameter values given above are also

reliable to stabilize the iteration process because of ρ � D
2 . In addition,

numerical experience confirms that the convergence is not influenced by other

parameters, such as feed rate and spindle speed.

It is important to remark that since all developments are concerned with

an arbitrary feed direction and an arbitrary node on the machined surface, the

proposed method is therefore applicable to any machined curved surface.

With the starting point (�0, t0), the solution of equation [2.58] can be

quickly obtained. In the Newton–Raphson iteration, the convergence will be

controlled when x(�, t) ≤ ε4 and y(�, t) ≤ ε4 are satisfied. Here, ε4 is the
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prescribed tolerance. Simulation examples demonstrate that a suitable value

of ε4 is needed to ensure both the precision and the computing efficiency. To

have an overall idea, the following procedure is provided to show how the final

topography of an arbitrary machined surface is evaluated in multi-axis ball end

milling.

Step 1: input the tool paths, cutting parameters and the geometrical

surface model of the workpiece to be machined;

Step 2: determine the linear feed velocity vector, f , of each segmented

linear feed path and then carry out coordinate transformation by means of

equation [2.57];

Step 3: determine the cutting areas swept along this linearized tool path

according to the cutting depth and cutter radius;

Step 4: calculate the cutter remainder height of the considered point

inside the workpiece cutting areas swept by the current cutting edge following

equation [2.54] and [2.58];

Step 5: calculate the cutter remainder height for the next cutting edge

and update the cutter remainder height by comparing the relative magnitude

between the current value and the existing one;

Step 6: repeat steps 4 and 5 for all cutting edges and calculate the

remainder cutter height of the next point on the workpiece until all the points

in the cut are calculated;

Step 7: repeat steps 2-6 and treat the following linear tool path until the

whole cutting process is carried out;

Step 8: output the final topography and roughness of the simulation

process.

Alternatively, the time step method [SOS 04, ZHA 03b, LIU 06, SRI 06,

YAN 01] is a straightforward one. In such a method, the concept of a discrete

cutting tooth is employed to denote a tool model. Time steps are used to index

both the cutter’s forward motion and tool rotation. The important thing is how

to determine the time step, the axial slice thickness and the tolerance that

considerably affect the accuracy and the computing time. The first parameter

should satisfy the condition that the feeding distance formed by a time step is

less than the basic grid length along the feed direction. As the final cutter
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remainder height of a node is finally determined by the lowest axial slice that

sweeps this node, the second parameter should take a value small enough for

the trade-off between the accuracy and computing time. Comparatively, the

proposed iterative method is an indirect method, whose result accuracy is

merely affected by the tolerance. However, due to the discretization of the

workpiece surface and the tool-cutting motion, the simulation results of both

the iterative method and time step method could not accurately represent the

surface characteristics at the microscale.

To clarify, consider the simulation case where the workpiece is meshed

into a 34 × 34 grid and the basic grid length is 0.03 mm. Assume that the

roughness computation accuracy is 0.001 mm. Then, the axial slice thickness

used in the time step method should be less than 0.001 mm. As a result, the

computing time is 514 seconds and 246 seconds when the time step method

and the iterative method are used, respectively. Therefore, in the same

condition, the iterative method proposed is much faster.

2.3.2.2. Simulation examples and experimental verifications

Several simulation examples are illustrated for both plane milling and

sculptured surface milling. Influences of the feed rate, cutting modes,

inclination direction and inclination angle of the cutter upon the surface

topography and roughness are studied. The maximum peak value of the

machined surface topography, RZ, is evaluated to characterize the surface

roughness. To validate the simulation accuracy, experimental tests are

performed on the machine bed of a Mikron 1350ucp machine center with

coolant. The ball end mill is a four-fluted HSS (high-speed steel) cutter with a

30◦ helix angle and 10 mm diameter. The pick-feed is set to be 0.5 mm. The

workpiece material is al7075-T6. RZ is measured by a Taylor–Hobson

contour device. The micrograph of the machined surface is taken by a Nikon

SMZ800 microscope.

As shown in Figures 2.27(a)–(c), each represents the unidirectional up

milling, unidirectional down milling and bidirectional milling modes,

respectively when the cutter-axis has an inclined angle γI in the pick-feed

direction. Similarly, in Figures 2.27(d)–(e), each case corresponds to the

cutter-axis of an inclined angle ηT in the feed direction. When both angles, γI
and ηT take no zero values simultaneously, this becomes the case of a 5-axis

milling, as shown in Figure 2.24. In fact, any kinematics of 5-axis milling
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modes can be described by a proper combination of the above single inclined

angle cases given in Figure 2.27.

Iγ
Iγ Iγ

(a)

pick-feed

pick-feed

pick-feed

pick-feed

(d) (e) (f)

pick-feed 

pick-feed 

TηTηTη

k

k

k

k
k

k

k+1 k+1 k+1

k+1

k+1 k+1

(b) (c)

Figure 2.27. Typical plane cutting modes: a) unidirectional up milling with inclined
angle γI; b) unidirectional down milling with inclined angle γI; c) bidirectional
milling with inclined angle γI; d) unidirectional up milling with inclined angle ηT; e)
unidirectional down milling with inclined angle ηT; f) bidirectional milling with inclined
angle ηT

Complicated simulations of multi-axis ball end milling are addressed. Two

cases of cutter-axis inclination are considered with γI = 15
◦
, ηT = 10

◦
and

γI = 15
◦
, ηT = 0

◦
. Figures 2.28(a–d) represent the simulated topographies in

both milling modes. Correspondingly, Figures 2.28(e–h) represent machined

surface micrographs obtained by a Nikon smz800 microscope. The main

difference between Figures 2.28(a)–(d) is that the elliptical topographies are

orientated differently depending upon the milling mode. In Figure 2.28(a), the

ellipses incline right, whereas in Figure 2.28(b) the ellipses incline left and

right alternatively. In Figure 2.28(c), the ellipses orient upright and in

Figure 2.28(d) the ellipses orient horizontally and upright alternately. The

same orientations can be found in the micrographs of Figure 2.28(e–h). Note

that arrows in these figures denote the cutter feed direction.

Relevant roughness is listed in Table 2.5 for comparison. Although the

surface topography shows a good level of accordance in certain cases, some
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deviations do exist between the simulated roughness and the measured one.

From the mechanistic point of view, it is known that the cutter will be pushed

away in down milling and be pulled over in up milling. Here, the

unidirectional milling mode shown in Figure 2.28 corresponds to the up

milling while the bidirectional milling mode corresponds to an alternant

effect of up milling and down milling. Hence, the difference between the

measured roughness and the simulated roughness is relatively large in the

bidirectional milling mode. Additionally, further investigations should be also

made about the effect of the cutter deflection caused by cutting force upon the

machined surface topography and roughness.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.28. Simulations and experiments of surface topographies: a) simulated
unidirectional up milling (γI = 15

◦
, ηT = 10

◦
); b) simulated bidirectional milling

(γI = 15
◦
, ηT = 10

◦
); c) simulated unidirectional up milling (γI = 15

◦
, ηT = 0

◦
);

d) simulated bidirectional milling (γI = 15
◦
, ηT = 0

◦
); e) measured unidirectional up

milling (γI = 15
◦
, ηT = 10

◦
); f) measured bidirectional milling (γI = 15

◦
, ηT = 10

◦
);

g) measured unidirectional up milling (γI = 15
◦
, ηT = 0

◦
); h) measured bidirectional

milling (γI = 15
◦
, ηT = 0

◦
)

Feed mode γI(
◦) ηT(◦) Simulated RZ(μm ) Experimental RZ(μm )

Unidirectional up 15 10 8.006 7.907

Bidirectional 15 10 7.996 11.620

Unidirectional up 15 0 8.649 10.790

Bidirectional 15 0 7.777 9.036

Table 2.5. Roughness comparison
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Dynamics of Milling Processes

Self-excited vibrations caused by regeneration of waviness, also known as

regenerative chatter, result in unstable cutting processes, poor surface finish,

reduced productivity and damage of machine tools and cutters. To ensure

stable cutting, many strategies such as prediction of chatter stability in

advance, installation of extra energy absorption devices and disruption of

regenerative chatter have been proposed. Among these, the most time-saving

method is to select chatter-free cutting parameters from the stability lobe

diagram (SLD) based on the governing equation involving the frequency

response function (FRF) of tool point. The prediction of milling stability lobe

together with the method obtaining FRF will be detailed in this chapter.

3.1. Governing equation of the milling process

Self-excitation in the generation of chip thickness is the main cause of

machine tool chatter vibrations. A wavy surface generated during the current

cut period will be removed by the next cut period. As a result, a new wavy

surface will be left owing to the structural vibration excited by cutting forces.

Phase shift between two adjacent waves will lead to exponential growth of

chip thickness, and thus regenerative chatter occurs. The fundamentals of the

governing equation under this phenomenon will be explained in this section.

Milling Simulation: Metal Milling Mechanics, Dynamics and Clamping Principles, 
First Edition. Weihong Zhang and Min Wan.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Figure 3.1. Schematic mechanical model of a two degree of freedom
(DOF) milling system (illustration for a 4-fluted cutter). For a color

version of this figure, see www.iste.co.uk/zhang/milling.zip

As shown in Figure 3.1, the cutting forces excite the structure in X and Y

directions, causing lateral dynamic displacements x(t) and y(t), which then

lead to an additional dynamic chip thickness to the static one. That is, chip

thickness hi,j(t) physically consists of static, hST,i,j(t), and dynamic,

hDY,i,j(t), components.

hi,j(t) = hST,i,j(t) + hDY,i,j(t) [3.1]

with

hST,i,j(t) = mf sin θi,j(t) + ri,j − ri−m,j

hDY,i,j(t) = x
R(t)− xR(t− τm)

← xR(t) = x(t) sin θi,j(t) + y(t) cos θi,j(t)

[3.2]

where t means time variable. τm is the time delay between the current cut

location of the jth disk element of the ith flute and previously generated surface.

It means that the current tooth at the present time t is to remove the surface

waves that was generated at time t − τm. Here, variable m in equation [3.2]

means that the current cutting point is removing the surface mark left by the

mth previous tooth. For a constant pitch cutter, the delay term τm in equation

[3.2] is often assumed to be equal to the tooth passing period τ . That is, the
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τ -delay differential system assumption is mostly adopted to model the real

dynamic milling process. However, the occurrence of cutter runout will greatly

affect the actual cutting radius of the concerned cutting point. As a result, the

entry and exit angles related to different tooth will deviate from their nominal

values.

iO
iO

32P

 2ex ,θ  2ex ,θ

ea

Workpiece Workpiece 

:the centre of the i-th cutting trajectory :the centre of the i-th cutting trajectory

1D

2D

1O
1O1O

1O
2O 2O

31P

i=1i=1

32P

G

G
E

E

1

2

3

4

Workpiece 

Cutter

31P
Ω

4O 4O

ea

(a)

(b) (c)

3O 3O

3D

Figure 3.2. Cutting trajectories for a four-fluted mill with cutter runout:
a) the cutter-workpiece contact state at the concerned time t; b) for

cross-section G-G; c) for cross-section E-E. For a color version of this
figure, see www.iste.co.uk/zhang/milling.zip

For an evenly pitched four-fluted cutter with cutter runout, Figures 3.2(b)

and 3.2(c) illustrate the cutting trajectories of different cutting points related

to two different cross-sections, i.e. G-G and E-E. From Figure 3.2(b) it can be

seen that the value of exit angle corresponding to the second tooth is changed

from π to θ′ex,2. Based on these influences produced by cutter runout, the

following phenomena are found:

1) consider the same cutting point at different cutting instant. As shown in

Figure 3.2(b), if P32 is in the D1D2 region of the third cutting trajectory, it will

remove the surface left by the second tooth. Whereas, as time changes, it will
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rotate from the D1D2 region to the D2D3 region. Correspondingly, it will then

remove the surface generated by the first tooth. Here, P32 is the cutting point

on the third tooth. This phenomenon means that even though the same cutting

point is considered, at different cutting instant it may be to remove the surface

generated by different tooth;

2) consider different cutting points at the same time. Let’s use two different

cutting points on the third cutting tooth at time t as an example, i.e. P31 and P32

as shown in Figure 3.2(a). From Figures 3.2(c) and 3.2(b) it can be obviously

seen that P31 is to remove the surface generated by the second tooth whereas

P32 will remove the surface left by the first tooth. This indicates that even

though the same cutting instant is considered, different cutting points may be

to remove the surface generated either by the first previous tooth or the mth

(m = 2, 3, ..., N) previous tooth.

The above two features mean that there may be multiple delay terms in

milling process when cutter runout occurs. Further analysis shows that any

cutting point may be to remove the surface left either by the first previous

tooth or the mth previous tooth (m > 1).

On the other hand, it should be noted that if the wavy surface and the

current vibration between two subsequent teeth are in phase, the dynamic

chip thickness hDY,i,j(t) will equal zero even though the tool is vibrating

during material removal. This case corresponds to forced vibration or stable

cutting. In contrast, if the wavy surface and the current vibration are not in

phase, dynamic chip thickness hDY,i,j(t) will lead to self-excited vibrations

and unstable cutting.

By substituting equation [3.1] into equations [1.8] and [1.14], one can

obtain the total cutting forces as follows.

[FX,i,j(t), FY,i,j(t)]
T = FST,i,j(t) + FDY,i,j(t) [3.3]

where FST,i,j is the cutting forces components related to the static chip

thickness and defined as follows.

FST,i,j(t) = [FSX,i,j(t), FSY,i,j(t)]
T

= g(θi,j(t))Ti,j(t)[1 : 2, 1 : 2][KTzi,jhST,i,j(t),KRzi,jhST,i,j(t)]
T [3.4]
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where Ti,j(∗) is a transformation matrix defined as equation [1.75]. FDY,i,j is

the cutting forces induced by dynamic chip thickness and in the global

directions it can be expressed as a function of tool vibrations as

FDY,i,j(t) = Ti,j(t)[1 : 2, 1 : 2][Hm,i,j(t)Q(t)−Hm,i,j(t)Q(t− τm)]
Q(t) = [x(t), y(t)]T

[3.5]

with

Hm,i,j(t) = g(θij(t))zi,j

[
KT sin θi,j(t) KT cos θi,j(t)
KR sin θi,j(t) KR cos θi,j(t)

]
[3.6]

It should be noted that during the derivation procedure of equations [3.4]

and [3.5], the cutter rotation angle ϕ occurring in equations [1.8] and [1.14] is

directly replaced with t since ϕ is directly related to time t through the spindle

rotation speed Ω.

The total dynamic cutting force vector (F(t)) acting on the tool is evaluated

by summing the contributions of all disk elements which remove the material:

F(t) = FST(t) + FDY(t)
FST(t) =

∑
i,j

FST,i,j(t)

FDY(t) =
∑
i,j

FDY,i,j(t) =
Nd∑
m=1

Hm(t)Q(t)−
Nd∑
m=1

[Hm(t)Q(t− τm)]

Hm(t) =
∑
i,j

{Ti,j(t)[1 : 2, 1 : 2]Hm,i,j(t)}

[3.7]

where Nd means the total number of delay items. FDY(t) is the dynamic

cutting force during milling expressed in equation [3.7]. The mechanical

model of standard 2-DOF milling process is shown schematically in

Figure 3.1, where the cutter is supposed to be flexible in comparison to the

rigid workpiece. The lateral vibrations (x(t), y(t)) of tool are modeled in the

global X and Y directions as follows

MQ̈(t) +CQ̇(t) +KQ(t) = FDY(t) [3.8]
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where M, C and K are the mass, damping and stiffness matrices. Note that

the linearization of the system around stationary cutting, which is a periodic

motion of the tool, will lead to a situation where the static component of the

cutting force can be directly dropped from the right-hand side of the governing

equation. The static chip thickness therefore does not contribute to the dynamic

chip load regeneration mechanism. As a result, the static component FST is not

involved in equation [3.9].

MQ̈(t) +CQ̇(t) +KQ(t) = FDY(t)

=
Nd∑
m=1

Hm(t)Q(t)−
Nd∑
m=1

[Hm(t)Q(t− τm)]
[3.9]

The equation [3.9] is the basic governing equation used to study the chatter

stability of milling process. In the following sections, emphasis will be placed

on how to obtain the mode parameters and how to develop the stability analysis

method.

3.2. Method for obtaining the frequency response function

The frequency response function (FRF) of the tool point is generally

obtained by impact testing, which may be too costly and time-consuming in

actual machining. Moreover, measurements of the FRFs are almost

impractical for micro-machining tool. Hence, developments of general

computing methods become a vital alternative for the determination of FRF

of tool point. Receptance coupling substructure analysis (RCSA) allows the

analytical assembly of spindle-holder substructure and the overhung part of

tool substructure.

In this section, a systematic method is presented to predict the FRF of tool

point. The tool-collet and holder-collet joint interfaces are considered as two

distributed layers with varying stiffness. The tool is assumed to partly rest on

the collet via a distributed damped-elastic tool-collet interface while the collet

is assumed to rest on the resilient support provided by the spindle-holder

assembly via a distributed damped-elastic holder-collet interface. Stiffness

and damping properties of both joint interfaces are identified by minimizing

the discrepancy between the measured and predicted FRFs of tool point. A

computing procedure is proposed to eliminate repeated impact tests in

obtaining the dynamics of the spindle-holder assembly of different sizes.
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3.2.1. Derivation of calculation formulations

3.2.1.1. Tool point dynamics analysis method

Mathematically, the FRF of the tool point is defined as:

H (ω) =
XeJωt

FeJωt
[3.10]

where XeJωt is the dynamic displacement of the tool point under harmonic

force FeJωt. t and ω denote time and angular frequency, respectively. It can be

seen that the key issue related to the FRF is how to obtain the solution ofXeJωt

under FeJωt. Based on Euler-Bernoulli beam theory, a procedure for solving

XeJωt is presented in this section. J is the unity of imaginary number.

2v
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J ωtFe

x

Flutes part

Tool

MNv
1v

1K ( x )1U ( x,t )

2U ( x,t ) 3U ( x,t )

4U ( x,t )
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Overhung part

without flutes

Zero thickness

elastic layers

Collet

Inserted part

V(x,t)

O

Holder

Spindle

Figure 3.3. The tool-spindle-holder assembly. For a color version of this
figure, see www.iste.co.uk/zhang/milling.zip

As shown in Figure 3.3, the tool-collet and holder-collet joint interfaces

are modeled as two distributed joint interfaces. This is different from the

existing one layer model [SCH 07, STA 64, AHM 07, AHM 10b]. Both joint

interfaces are regarded as zero-thickness damped-elastic layers, whose

contact rigidities are characterized by non-uniform stiffness coefficients

K1 (x) and K2 (x), respectively. Here, x means the distance from the point
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concerned to the end of the inserted part of the tool, as shown in Figure 3.3.

The collet is modeled as a continuous beam with variable cross sections

resting on a flexible support via the holder-collet joint interface. The tool is

considered as a continuous step beam with three parts: inserted part of tool

(IPT), tool overhung part without flutes (TOPWF) and flutes part of tool

(FPT). The IPT rests on the collet via the tool-collet joint interface. Based on

the Euler–Bernoulli beam theory, dynamics of the collet and the three parts of

the tool are modeled as [AHM 07, RAO 11, LEI 11]:

For collet : 0 ≤ x < L1 :
∂2

∂x2

[
E1 I1 (x)

∂2U1(x,t)
∂x2

]
+m1 (x)

∂2U1(x,t)
∂t2

= K2 (x) [V (x, t)− U1 (x, t)]−K1 (x) [U1 (x, t)− U2 (x, t)] ,
For IPT : 0 ≤ x < L1 :

E2 I2
∂4U2(x,t)

∂x4 +m2
∂2U2(x,t)

∂t2
= K1 (x) [U1 (x, t)− U2 (x, t)] ,

For TOPWF : L1 ≤ x < L2 :

E2 I3
∂4U3(x,t)

∂x4 +m3
∂2U3(x,t)

∂t2
= 0,

For FPT : L2 ≤ x ≤ L : E2 I4
∂4U4(x,t)

∂x4 +m4
∂2U4(x,t)

∂t2
= 0.

[3.11]

where L, L − L2 and L1 are the lengths of overall part, flutes and inserted

part of the tool. E1 and E2 stand for the Young’s moduli of the materials of

the collet and the tool. V (x, t) designates the lateral displacement of the

holder at time t. U1 (x, t), U2 (x, t), U3 (x, t) and U4 (x, t) are the lateral

displacements of the collet, IPT, TOPWF and FPT. I1 (x), I2, I3 and I4 are

the area moments related to collet, IPT, TOPWF and FPT. m1 (x), m2, m3

andm4 are the mass per unit length corresponding to collet, IPT, TOPWF and

FPT. I1 (x) andm1 (x) are functions of position x expressed as:

I1 (x) =
π
[
(dC + 2kCx)

4 − dT4
]

64
[3.12]

m1 (x) =
πρ
[
(dC + 2kCx)

2 − dT2
]

4
[3.13]

where dC and kC are small diameter and slope of the outer profile of the collet.

ρ is the material density of the collet. dT is the diameter of the IPT.K1 (x) and
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K2 (x), the stiffness coefficients of the tool-collet and holder-collet interfaces,

can be approximated in polynomial form [AHM 07, EIS 94]:

K1 (x) = (1 + JηA)
Q∑

q=0
κA,qx

q

K2 (x) = (1 + JηB)
Q̂∑

q̂=0

κB,q̂x
q̂

[3.14]

where ηA and ηB are structural damping factors. κA,q and κB,q̂ are polynomial

coefficients. q and q̂ denote the degree of each term of both polynomials.Q and

Q̂ designate the degrees of both polynomials. Here, structural damping is used

to take into account the displacement-dependent energy dissipation mechanism

of the interface layers [AHM 07, AHM 10b, RAO 11]. To identifyK1 (x) and

K2 (x), an iterative procedure will be presented in section 3.3.

Based on the variable separation method, the solutions of equation [3.11]

are expressed in the following form to separate the time and displacement.

Uk (x, t) =Wk (x) e
Jω t, k = 1, 2, 3, 4

V (x, t) = v (x) eJω t [3.15]

where Wk (x) (k = 1, 2, 3, 4) and v (x) are the complex shape functions due

to the non-proportional damping mechanism of the system. Subsequently, if

the extended holder is divided into NM elements with identical axial length,

V (x, t) can be further expressed as a polynomial interpolation of the lateral

displacements related to these elements.

V (x, t) = v (x) eJω t = [p1 (x) v1 + p2 (x) v2 + ...+ pNM
(x) vNM

] eJω t

= pTveJω t [3.16]

with

p = [p1 (x) , p2 (x) , ..., pNM
(x)]T = P

[
1, x, x2..., xNM−1

]T
v = [v1, v2, ..., vNM

]T
[3.17]
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in which vk (k = 1, 2, ..., NM) is the lateral displacement of the holder related

to element k. pk (x) (k = 1, 2, ..., NM) is the Lagrange basis polynomials of

degree (NM − 1). Matrix P is as follows.

P =

⎡
⎢⎢⎢⎢⎢⎣
P̄1,1 P̄1,2 P̄1,3 · · · P̄1,NM

P̄2,1 P̄2,2 P̄2,3 · · · P̄2,NM

P̄3,1 P̄3,2 P̄3,3 · · · P̄3,NM

...
...

...
. . .

...

P̄NM,1 P̄NM,2 P̄NM,3 · · · P̄NM,NM

⎤
⎥⎥⎥⎥⎥⎦ [3.18]

with

P̄k1,k2 = P̂k1,k2/
NM∏

k3=1,k3 �=k1

(xk1 − xk3)
P̂k1,NM

= 1

P̂k1,NM−1 = −
NM∑

k4=1,k4 �=k1

xk4 =
NM∑

k4=1,k4 �=k1

T
(k1)
1,k4

P̂k1,NM−k5 =
NM−k5+1∑
k4=1,k4 �=k1

(
−xk4

NM−k5+2∑
k6=k4+1,k6 �=k1

T
(k1)
k5−1,k6

)

=
NM−k5+1∑
k4=1,k4 �=k1

T
(k1)
k5,k4

(k5 = 2, 3, . . . , NM − 1)

T
(k1)
k5,k4

= −xk4
NM−k5+2∑

k6=k4+1,k6 �=k1

T
(k1)
k5−1,k6

where xk is the coordinate corresponding to vk.

The substitution of equation [3.15] into equation [3.11] yields

For collet : 0 ≤ x < L1 :

E1 I1 (x)
d4W1 (x)

dx4
+ E1

d2I1 (x)

dx2
d2W1 (x)

dx2

+2E1
dI1(x)
dx

d3W1(x)
dx3 −m1 (x)ω

2W1 (x)

= K2 (x) [v (x)−W1 (x)]−K1 (x) [W1 (x)−W2 (x)]
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For IPT : 0 ≤ x < L1 :

E2 I2
d4W2 (x)

dx4
−m2ω

2W2 (x) = K1 (x) [W1 (x)−W2 (x)]

For TOPWF : L1 ≤ x < L2 :

E2 I3
d4W3 (x)

dx4
−m3ω

2W3 (x) = 0

For FPT : L2 ≤ x ≤ L :

E2 I4
d4W4 (x)

dx4
−m4ω

2W4 (x) = 0

[3.19]

Solutions of the above equations will be detailed below.

3.2.1.2. Solutions of the dynamic equations
According to the Weierstrass approximation theorem [RUD 76],

continuous shape functions W1 (x) and W2 (x) in equation [3.15] can be

approximated by the following polynomial functions

W2 (x) =
NK∑
k=1

akx
k−1 = aTx

W1 (x) =
NK∑
k=1

bkx
k−1 = bTx

[3.20]

with a = {a1, a2, ..., aNK
}T, b = {b1, b2, ..., bNK

}T, and

x =
{
1, x, x2, ..., xNK−1

}T
. k − 1 means the degree of each term of the

polynomial. NK−1 designates the degree of the polynomial.

After substituting equations [3.12], [3.14], [3.16] and [3.20] into the first

two equations of equation [3.19] and making the coefficients of polynomials on

both sides of two equations equal, the recursive relation about a1, a2, ..., aNK

can be expressed as:

ak =
(k − 5)!

E2I2 (k − 1)!

⎡
⎣min(Q,k−5)∑

j1=0

κA,j1 (bk−4−j1 − ak−4−j1) +m2ω
2ak−4

⎤
⎦
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with k = 5, 6, ..., NK.

While the recursive relation about b1, b2, ..., bNK
can be expressed as:

1) b5 corresponding to the coefficient of the constant term is

πE1

64

4!

0!

(
dC

4 − dT4
)
b5 +

πE1kC
4

dC
3 3!

0!
b4 +

3πE1kC
2

4
dC

2 2!

0!
b3

−πρω
2

4
dC

2b1 +
πρω2

4
dT

2b1 = κB,0 (w1 − b1)− κA,0 (b1 − a1)

2) b6 corresponding to the coefficient of the linear term (k = 6) is

πE1

64

5!

1!

(
dC

4 − dT4
)
b6 +

πE1

64
C3
4dC

3(2kC)
1 4!

0!
b5

+
πE1kC

4
C2
3dC

2(2kC)
1 3!

0!
b4 +

πE1kC
4

C3
3dC

3(2kC)
0 4!

1!
b5

+
3πE1kC

2

4
C1
2dC

1(2kC)
1 2!

0!
b3 +

3πE1kC
2

4
C2
2dC

2(2kC)
0 3!

1!
b4

−πρω
2

4
C1
2dC

1(2kC)
1b1 − πρω

2

4
C2
2dC

2(2kC)
0b2
πρω2

4
dT

2b2

=

min(Q̂,k−5)∑
i5=max(k−4−NM,0)

κB,i5wk−4−i5 −
min(Q̂,k−5)∑

i6=0

κB,i6bk−4−i6

−
min(Q,k−5)∑

i7=0

κA,i7 (bk−4−i7 − ak−4−i7)

3) b7 corresponding to the coefficient of the quadratic term (k = 7) is

πE1

64

6!

2!

(
dC

4 − dT4
)
b7 +

πE1

64
C2
4dC

2(2kC)
2 4!

0!
b5

+
πE1

64
C3
4dC

3(2kC)
1 5!

1!
b6 +

πE1kC
4

C1
3dC

1(2kC)
2 3!

0!
b4

+
πE1kC

4
C2
3dC

2(2kC)
1 4!

1!
b5 +

πE1kC
4

C3
3dC

3(2kC)
0 5!

2!
b6
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+
3πE1kC

2

4

2∑
i3=0

Ci3
2 dC

i3(2kC)
2−i3 (k − 5 + i3)!

(k − 7 + i3)!
bk−4+i3

−πρω
2

4

2∑
i4=0

Ci4
2 dC

i4(2kC)
2−i4bk−6+i4 +

πρω2

4
dT

2bk−4

=

min(Q̂,k−5)∑
i5=max(k−4−NM,0)

κB,i5wk−4−i5 −
min(Q̂,k−5)∑

i6=0

κB,i6bk−4−i6

−
min(Q,k−5)∑

i7=0

κA,i7 (bk−4−i7 − ak−4−i7)

4) b8 corresponding to the coefficient of the 3th-order term (k = 8) is

πE1

64

7!

3!

(
dC

4 − dT4
)
b8 +

πE1

64
C1
4dC

1(2kC)
3 4!

0!
b5

+
πE1

64
C2
4dC

2(2kC)
2 5!

1!
b6 +

πE1

64
C3
4dC

3(2kC)
1 6!

2!
b7

+
πE1kC

4

3∑
i2=0

Ci2
3 dC

i2(2kC)
3−i2 (k − 5 + i2)!

(k − 8 + i2)!
bk−4+i2

+
3πE1kC

2

4

2∑
i3=0

Ci3
2 dC

i3(2kC)
2−i3 (k − 5 + i3)!

(k − 7 + i3)!
bk−4+i3

−πρω
2

4

2∑
i4=0

Ci4
2 dC

i4(2kC)
2−i4bk−6+i4 +

πρω2

4
dT

2bk−4

=

min(Q̂,k−5)∑
i5=max(k−4−NM,0)

κB,i5wk−4−i5 −
min(Q̂,k−5)∑

i6=0

κB,i6bk−4−i6

−
min(Q,k−5)∑

i7=0

κA,i7 (bk−4−i7 − ak−4−i7)
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5) bk corresponding to the coefficient of the (k − 5)th-order term

(k = 9, 10, ..., NK) is

πE1

64

(k − 1)!

(k − 5)!

(
dC

4 − dT4
)
bk

+
πE1

64

3∑
i1=0

Ci1
4 dC

i1(2kC)
4−i1 (k − 5 + i1)!

(k − 9 + i1)!
bk−4+i1

+
πE1kC

4

3∑
i2=0

Ci2
3 dC

i2(2kC)
3−i2 (k − 5 + i2)!

(k − 8 + i2)!
bk−4+i2

+
3πE1kC

2

4

2∑
i3=0

Ci3
2 dC

i3(2kC)
2−i3 (k − 5 + i3)!

(k − 7 + i3)!
bk−4+i3

−πρω
2

4

2∑
i4=0

Ci4
2 dC

i4(2kC)
2−i4bk−6+i4 +

πρω2

4
dT

2bk−4

=

min(Q̂,k−5)∑
i5=max(k−4−NM,0)

κB,i5wk−4−i5 −
min(Q̂,k−5)∑

i6=0

κB,i6bk−4−i6

−
min(Q,k−5)∑

i7=0

κA,i7 (bk−4−i7 − ak−4−i7)

where wk∗ is the element of vector w, which equals PTv.

The above derivation yields the following relationship

c =
{
aT,bT

}T
= Tvv +Tc{a1, a2, a3, a4, b1, b2, b3, b4}T
= Tvv +Tcĉ

ĉ = {a1, a2, a3, a4, b1, b2, b3, b4}T
[3.21]
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where Tv and Tc are two matrices with sizes 2NK × 2NM and 2NK × 8.

Derivation procedure indicates that high-order polynomial coefficients ak and

bk (k = 5, ..., NK) involved in equation [3.21] can be expressed by ĉ and v.

This means that only a1, a2, a3, a4, b1, b2, b3, b4 are needed to characterize

equation [3.21]. v is the lateral displacement vector satisfying the following

expression

v = H (ω) F [3.22]

where H (ω) is the NM ×NM displacement-to-force receptance matrix of the

spindle-holder assembly. F is the discretization of the force applied on the

holder, i.e. the counterforce ofK2 (x) [v (x)−W1 (x)] in equation [3.19], and

can be formulated as follows

F = (f1, f2, ..., fNM
)T=

∫ L1

0
pK2 (x) [W1 (x)− v (x)]dx [3.23]

After substituting equation [3.23] into equation [3.22] and then replacing

v (x) with pTv, we have

v = (INM×NM
+HJc)

−1H
∫ L1

0 pK2 (x)W1 (x)dx

= (INM×NM
+HJc)

−1HF0

Jc =
∫ L1

0 K2 (x)pp
Tdx

[3.24]

where INM×NM
is the identity matrix. F0 is expressed as

F0 =

∫ L1

0
pK2 (x)W1 (x) dx

=

∫ L1

0
pK2 (x)

NK∑
k=1

bkx
k−1dx =

NK∑
k=1

bk

∫ L1

0
pK2 (x)x

k−1dx
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=
[ ∫ L1

0 pK2 (x) dx
∫ L1

0 pK2 (x)xdx ...
∫ L1

0 pK2 (x)x
NK−1dx

]
×{b1, b2, ..., bNK

}T [3.25]

= Mb = [O,M]
{
aT,bT

}T
= M̃c

in which M̃ = [O,M]. M is anNM×NK matrix, and O is anNM×NK zero

matrix.

The combination of equations [3.21], [3.24] and [3.26] leads to

c = Sĉ [3.26]

with

S =
(
I2NK×2NK

−Tv(INM×NM
+HJc)

−1HM̃
)−1

Tc [3.27]

According to the theory of differential equations, the solutions of the last

two equations of equation [3.19], i.e. shape functionsW3 (x) andW4 (x), can

be written in the following general form [RAO 11, LEI 11].

W3 (x) = C1e
iα3x + C2e

−iα3x + C3e
α3x + C4e

−α3x, L1 ≤ x < L2

W4 (x) = D1e
iβ4x +D2e

−iβ4x +D3e
β4x +D4e

−β4x, L2 ≤ x ≤ L [3.28]

with

α43 =
m3ω2

E3 I3

β44 = m4ω2

E4 I4

[3.29]

The above derivations show thatWk (x) (k = 1, 2, 3, 4) can be expressed in

terms of sixteen independent coefficients, whose determinations are presented

below based on boundary and compatibility conditions.

Concerning the tool tip, related boundary conditions are a unit harmonic

force and zero moment.

−E4 I4
d3W4 (L)

dx3
= 1, a unit harmonic force

E4 I4
d2W4 (L)

dx2
= 0, zero moment

[3.30]
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Boundary conditions at the other end of the tool are zero lateral force and

zero moment.

E2 I2
d3W2 (0)

dx3
= 0, zero lateral force

E2 I2
d2W2 (0)

dx2
= 0, zero moment

[3.31]

Regarding the connection section between IPT and TOPWF, the

compatibility conditions correspond to the continuities of displacement,

slope, moment and lateral force.

W2 (L1)−W3 (L1) = 0, displacement continuity

dW2 (L1)

dx
− dW3 (L1)

dx
= 0, slope continuity

E2 I2
d2W2 (L1)

dx2
− E3 I3

d2W3 (L1)

dx2
= 0, moment continuity

E2 I2
d3W2 (L1)

dx3
− E3 I3

d3W3 (L1)

dx3
= 0, lateral force continuity

[3.32]

Similarly, compatibility conditions at the connection section of TOPWF

and FPT are:

W3 (L2)−W4 (L2) = 0, displacement continuity

dW3 (L2)

dx
− dW4 (L2)

dx
= 0, slope continuity

E3 I3
d2W3 (L2)

dx2
− E4 I4

d2W4 (L2)

dx2
= 0, moment continuity

E3 I3
d3W3 (L2)

dx3
− E4 I4

d3W4 (L2)

dx3
= 0, lateral force continuity

[3.33]
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The boundary conditions on the left and right ends of the collet are zero

lateral force and moment:

E1 I1 (0)
d2W1 (0)

dx2
= 0, zero moment on left end

d

dx

[
E1 I1 (x)

d2W1 (x)

dx2

]
x=0

= 0, zero lateral force on left end

E1 I1 (L1)
d2W1 (L1)

dx2
= 0, zero moment on right end

d

dx

[
E1 I1 (x)

d2W1 (x)

dx2

]
x=L1

= 0, zero lateral force on right end

[3.34]

Equations [3.30] – [3.34] can be rewritten as:

Z (ω)d = {1, 0, ..., 0}T
d =

{
D1, D2, D3, D4, C1, C2, C3, C4, ĉ

T
}T [3.35]

where Z (ω) is a 16 × 16 full rank matrix closely related to matrix S and

expressed as.

Z =

⎡
⎢⎢⎢⎢⎣
Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Z10 Z11 Z12

Z13 Z14 Z15

⎤
⎥⎥⎥⎥⎦ ,

where Z2, Z4 and Z5 are three 2× 4 zero matrices. Z3 is a 2× 8 zero matrix.

Z12 is a 4× 8 zero matrix. Z7, Z13 and Z14 are three 4× 4 zero matrices.

Z1 =

[
E4I4Jβ

3
4e

Jβ4L −E4I4Jβ
3
4e

−Jβ4L −E4I4β
3
4e

β4L E4I4β
3
4e

−β4L

−β24eJβ4L −β24e−Jβ4L β24e
β4L β24e

−β4L

]

Z6 is a 2× 8 matrix whose elements are

Zk1k2 =

{
S4,k2 k1 = 1, k2 = 1, 2, ..., 8
S3,k2 k1 = 2, k2 = 1, 2, ..., 8

.
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Z8 =

⎡
⎢⎣

−eJα3L1 −e−Jα3L1 −eα3L1 −e−α3L1

−Jα3e
Jα3L1 Jα3e

−Jα3L1 −α3eα3L1 α3e
−α3L1

E3I3α
2
3e

Jα3L1 E3I3α
2
3e

−Jα3L1 −E3I3α
2
3e

α3L1 −E3I3α
2
3e

−α3L1

E3I3Jα
3
3e

Jα3L1 −E3I3Jα
3
3e

−Jα3L1 −E3I3α
3
3e

α3L1 E3I3α
3
3e

−α3L1

⎤
⎥⎦

Z9 is a 4× 8 matrix whose elements are

Zk1k2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

Lk−1
1 Sk,k2 k1 = 1, k2 = 1, 2, ..., 8

K∑
k=2

(k − 1)Lk−2
1 Sk,k2 k1 = 2, k2 = 1, 2, ..., 8

E2I2
K∑
k=3

(k−1)!
(k−3)!L

k−3
1 Sk,k2 k1 = 3, k2 = 1, 2, ..., 8

E2I2
K∑
k=4

(k−1)!
(k−4)!L

k−4
1 Sk,k2 k1 = 4, k2 = 1, 2, ..., 8

Z10 =

⎡
⎢⎣

−eJβ4L2 −e−Jβ4L2 −eβ4L2 −e−β4L2

−Jβ4e
Jβ4L2 Jβ4e

−Jβ4L2 −β4eβ4L2 β4e
−β4L2

E4I4β
2
4e

Jβ4L2 E4I4β
2
4e

−Jβ4L2 −E4I4β
2
4e

β4L2 −E4I4β
2
4e

−β4L2

E4I4Jβ
3
4e

Jβ4L2 −E4I4Jβ
3
4e

−Jβ4L2 −E4I4β
3
4e

β4L2 E4I4β
3
4e

−β4L2

⎤
⎥⎦

Z11 =

⎡
⎢⎣

eJα3L2 e−Jα3L2 eα3L2 e−α3L2

Jα3e
Jα3L2 −Jα3e

−Jα3L2 α3e
α3L2 −α3e−α3L2

−E3I3α
2
3e

Jα3L2 −E3I3α
2
3e

−Jα3L2 E3I3α
2
3e

α3L2 E3I3α
2
3e

−α3L2

−E3I3Jα
3
3e

Jα3L2 E3I3Jα
3
3e

−Jα3L2 E3I3α
3
3e

α3L2 −E3I3α
3
3e

−α3L2

⎤
⎥⎦

Z15 is a 4× 8 matrix whose elements are

Zk1k2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SNK+3,k2
k1 = 1, k2 = 1, 2, ..., 8

6I1 (0)SNK+4,k2
+ 2I1

′ (0)SNK+3,k2
k1 = 2, k2 = 1, 2, ..., 8

NK∑
k=3

(k−1)!
(k−3)!L

k−3
1 SNK+k,k2

k1 = 3, k2 = 1, 2, ..., 8

I1 (L1)
NK∑
k=4

(k−1)!
(k−4)!L

k−4
1 SNK+k,k2

+I1
′ (L1)

K∑
k=3

(k−1)!
(k−3)!L

k−3
1 SNK+k,k2

k1 = 4, k2 = 1, 2, ..., 8

Note that Sk1,k2 in the above equations denote elements of matrix S defined

in equation [3.27].
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Note that the first element of the right-hand side vector equaling one

corresponds to the first equation of equation [3.30], which is

non-homogenous among the boundary and compatibility conditions. If the

receptance of the spindle-holder assembly H (ω) is given in equation [3.27],

the sixteen unknown coefficients can be immediately obtained by solving

equation [3.35]. Subsequently, the tool point receptance HT (ω) given in

equation [3.10] can be calculated using the determined D1, D2, D3 and D4.

HT (ω) =
W4 (L) e

Jωt

eJωt
= D1e

Jβ4L +D2e
−Jβ4L +D3e

β4L

+D4e
−β4L [3.36]

3.2.2. Identification of model parameters

3.2.2.1. Calculation of spindle-holder assembly receptance

As stated above, the receptance matrix of spindle-holder assembly H (ω)
is the precondition for solving equation [3.35]. A literature review shows that

it was generally determined by experimental methods [AHM 07]. The

inconvenience of this kind of methods lies in the fact that once the holder

changes its size, impact testing has to be re-carried out. In this section, a

computing method is presented to determine H (ω) based on RCSA

[SCH 05, SCH 09, SCH 00, EWI 00].

As illustrated in Figure 3.4, the spindle-holder assembly is first partitioned

into two rigidly connected components, i.e. spindle-holder base

(Component I) and extended holder (Component II). The latter is divided into

M identical elements with the nodes numbered in a sequence that begins with

1 from the free end of the holder, as shown in Figure 3.4. The procedure for

determining Hk1k2 (ω) is taken as an example to illustrate how to obtain an

arbitrary element of H (ω). Mathematically,Hk1k2 (ω) is defined as

Hk1k2 = Yk1/F k2
[3.37]

where Yk1 means the lateral displacement of assembly related to node k1 under

the lateral force Fk2 applied to node k2, and is calculated according to the

following RCSA procedure.
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1M(N )

1M( N )y
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1k
y
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1M( N )f

1 1

By

Spindle-holder assembly Component  I:  spindle-holder base Component  II : extended holder

2k

2k
f

2k
F

2k

Figure 3.4. Spindle-holder assembly and components

For Components I and II, corresponding lateral displacements yB and

y(NM+1) at the partition section of both components are expressed as:

yB = hBBfB, component I
y(NM+1) = h(NM+1)(NM+1)f(NM+1) + h(NM+1)k2fk2 , component II

[3.38]

where hBB and fB denote the receptance and the lateral force of Component I

at this partition section, respectively. hk1k2 is the receptance at node k1 under

the lateral force fk2 applied to node k2. Similarly, the lateral displacement yk1
of node k1 under the lateral force fk2 and f(NM+1) can be written as

yk1 = hk1k2fk2 + hk1(NM+1)f(NM+1) [3.39]

According to the equilibrium and compatibility conditions, the lateral

forces and displacements at the partition section of both components satisfy

f(NM+1) + fB = 0, fk2 = Fk2 , y(NM+1) = yB [3.40]
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Since the component and assembly coordinates are coincident, the

following relation holds

yk1 = Yk1 [3.41]

Note that upper case variables are used to designate assembly terms, and

lower case variables to identify component terms.

The combination of equations [3.38]–[3.41] gives

Yk1 =
[
hk1k2 − hk1(NM+1)

(
hBB + h(NM+1)(NM+1)

)−1
h(NM+1)k2

]
Fk2 [3.42]

Finally, the substitution of equation [3.42] into equation [3.37] leads to

Hk1k2 =
Yk1
Fk2

=
yk1
Fk2

=

[
hk1k2

−hk1(NM+1)

(
hBB+h(NM+1)(NM+1)

)−1
h(NM+1)k2

]
Fk2

Fk2

= hk1k2 − hk1(NM+1)

(
hBB + h(NM+1)(NM+1)

)−1
h(NM+1)k2

[3.43]

Notice that only lateral displacements (yk1 , Yk1) and shear forces

(fk2 , Fk2) are taken into consideration in the above derivation. Furthermore,

as stated in [SCH 09, PAR 03], both rotations (θk1 ,Θk1) and moments

(mk2 ,Mk2) have obvious effects on Hk1k2 . Thus the influences from both

factors should be considered in obtaining Hk1k2 . Minor modification should

be carried out in equation [3.43]. Concretely, displacement-to-force

receptances (hk1k2 , Hk1k2) in equation [3.43] are replaced by receptance

matrices (Rij ,Gij) which contain displacement-to-force (hk1k2 , Hk1k2),

displacement-to-moment (lk1k2 , Lk1k2), rotation-to-force (nk1k2 , Nk1k2), and

rotation-to-moment (pk1k2 , Pk1k2) receptances.

Gk1k2 = Rk1k2 −Ri(NM+1)

(
RBB +R(NM+1)(NM+1)

)−1
R(NM+1)k2 [3.44]

with RBB =

[
hBB lBB

nBB pBB

]
, Rk1k2 =

[
hk1k2 lk1k2
nk1k2 pk1k2

]
, Gk1k2 =

[
Hk1k2 Lk1k2

Nk1k2 Pk1k2

]
,

lk1k2 = yk1/mk1 , nk1k2 = θk1/fk2 ,pk1k2 = θk1/mk2 . Notice that
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Lk1k2 = Yk1/Mk2 , Nk1k2 = Θk1/Fk2 and Pk1k2 = Θk1/Mk2 . Rk1k2 ,

Rk1(NM+1), R(NM+1)k2 and R(NM+1)(NM+1) are calculated by the RCSA

proposed in [INS 02]. The receptance matrix RBB of the spindle-holder base

(Component I) can be obtained by the inverse receptance coupling

substructure analysis (IRCSA) method [SCH 05, ALB 13]. The final

Hk1k2 (ω) is taken as the first element of matrix Gk1k2 .

Figure 3.5 presents a total computing routine for the calculation of tool

point receptance, as well as the identification of the properties of joint

interfaces.

Figure 3.5. Total computing routine of tool point receptance

3.2.2.2. Identification of stiffness and damping coefficients of joint
interfaces

The stiffness and damping properties of the tool-collet and holder-collet

joint interfaces are identified by minimizing the discrepancy between the

predicted FRF and that measured from a sample tool.

min
κA,q ,ηA,κB,q̂ ,ηB

∥∥log ∣∣HM
T −HP

T

∣∣∥∥ [3.45]

where HM
T is the tool point FRF measured by impact testing. HP

T is the tool

FRF predicted by using the calculation procedure described in
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section 3.2.1.1. It should be noted that only the first-order polynomial forms

of equation [3.14] are used to characterize the stiffness coefficients and

damping of the joint interfaces, since high order polynomial forms cannot

obviously improve the accuracy but drastically increase computing time. The

identification procedure is shown in Figure 3.6.

, AA,q B ,q
k η ,k  and η  .

B

Initializing parameters of collet,

IPT,TOPWF and FPT

No

Yes

Stop

Convergence of the 

discrepancy between H  P

T
M

Tand H ?

V C

P

T

Calculating T ,T ,S ,

Z ,d and H  in sequence.

�

�, AA,q B ,q
k η ,k  and η  .

B

Initializing stiffness and damping coefficients

Updating stiffness and damping coefficients

Figure 3.6. Identification procedure for properties of joint interfaces

3.2.2.3. Experimental identification of spindle-holder assembly
receptances

The receptance matrix of the spindle-holder base RBB is obtained

experimentally on machining center. The spindle-holder system given in

Figure 3.7(a) is illustrated for the identification of the FRF of the

spindle-holder base. It should be noted that since the spindle-holder base is

rigidly connected with the extended holder, a direct measurement of RBB by

exciting the base with impact testing will be greatly influenced by the

additional mass of the extended holder. In other words, it is generally difficult

to directly measure RBB. Hence, the indirect approach given in [SCH 05] is

adopted to extract the FRF of the spindle-holder base. Three positions of the

extended holder, shown in Figure 3.7(a), are first adopted to measure the

corresponding direct and cross FRFs, and then the finite difference method

and IRCSA method are adopted to calculate the receptance matrix of

spindle-holder base RBB. Figure 3.7(b) illustrates a set of results obtained

from these experiments.

With the receptance matrix of the spindle-holder base obtained above, the

receptances of any spindle-holder assembly with different extended holder

geometries can be predicted by using the method described in section 3.2.2.1.
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Figure 3.7. Extraction of receptance matrix of spindle-holder base: a)
experimental set-up for extraction of spindle-holder base receptance
matrix; b) elements of receptance matrix of spindle-holder base RBB.
For a color version of this figure, see www.iste.co.uk/zhang/milling.zip

3.3. Prediction of stability lobe

3.3.1. Improved semi-discretization method

The vibration vector Q(t) in equation [3.9] can be described by the modal

displacements as

Q(t) = Uq(t)

q(t) = [q1(t), q2(t), ..., qNmo(t)]
T [3.46]

where Nmo is the number of the dominant modes. U and q(t) are the mass

normalized mode shape and the modal coordinates, respectively. After

substituting equation [3.46] into equation [3.9], the delayed differential

equation can be expressed in the modal space as

q̈(t) + 2ξξξωωωq̇(t) + ωωω2q(t) = UTH(t)Uq(t)

−
Nd∑
m=1

[UTHm(t)Uq(t− τm)] [3.47]
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with

H(t) =

Nd∑
m=1

Hm(t) [3.48]

where ξξξ and ωωω are the diagonal damping ratio and natural frequency matrices

with the size Nmo ×Nmo, respectively.

Equation [3.47] is a typical second-order nonlinear damping system with

multiple delays. The roots of such a mathematical problem may be obtained

by the method in [STE 89]. It is difficult to directly determine the stability of

this system. Fortunately, by using Cauchy transformation, equation [3.47] can

be rewritten as a set of first-order differential equations:

Θ̇(t) = A(t)Θ(t) +

Nd∑
m=1

Bm(t)Θ(t− τm) [3.49]

with

Θ(t) = [q(t)T, q̇(t)T]T

A(t) =

[
ONmo×Nmo INmo×Nmo

−ωωω2 +UTH(t)U −2ξξξωωω

]
Bm(t) =

[
ONmo×Nmo ONmo×Nmo

−UTHm(t)U ONmo×Nmo

] [3.50]

where O∗×∗ and I∗×∗ are zero and identity matrices, respectively.

Obviously, the nonlinear problem has been transformed into a linear

problem. Now, the problem is how to determine the stability of this linear

damping system. If Nd=1, equation [3.49] is degenerated into a single delay

problem, which has been solved by Insperger et al. [INS 04]. However, the

existing method is not suitable for systems in which the delay number is more

than one. In the present section, an improved version of the

semi-discretization method is proposed for time periodic systems with

multiple delays.
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Equation [3.49] can be discretized in the time domain by dividing the

spindle period T into ς number of equal time intervals with the length

Δt = T/ς . If Δt is small enough, the following linear ordinary differential

equation can be used to approximate equation [3.49] at discrete time interval

[aΔt, (a+ 1)Δt]

Θa+1 = AaΘa +

Nd∑
m=1

(wm,1Bm,aΘa−vm+1 + wm,2Bm,aΘa−vm) [3.51]

with

Θa = Θ(aΔt)
wm,1 = wm,2 =

1
2

[3.52]

where Aa=(1/Δt)
∫ (a+1)Δt
aΔt A(t)dt and Bm,a=(1/Δt)

∫ (a+1)Δt
aΔt Bm(t)dt, and

vm is the number of intervals covering the delay item τm. By using the solution

of equation [3.51] and applying the continuity conditions at the two ends of the

interval, the following linear map can be obtained to bridge the solutions at the

two consecutive time intervals:

Va+1 = ΦaVa ← Va

= [Θa
T,Θa−1

T, ...,Θa−v1
T, ...Θa−v2

T, ...Θa−vNd

T]T [3.53]

where Φa is the state matrix related to equation [3.51] and can be evaluated as

Φa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pa 0 0 · · · 0 w1,1V1,a w 1,2V1,a · · · 0 w 2,1V2,a w2,2V2,a · · · 0 wNd,1VNd,a wNd,2VNd,a

I 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0

0 I 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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.

.
.
.
.

.

.

.
.
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.
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.
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.

.

.
.
.
.

.

.

.

0 0 0 · · · 0 0 0 0 0 0 0 · · · I 0 0

0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[3.54]

The process is periodic at spindle period T = ςΔt, i.e. Φa equals Φa+ς .

Thus, Floquet theory can be used to project Va to Va+ς through the following

transition matrix:

Ψ = Φa+ς−1Φa+ς−2 · · ·Φa+1Φa [3.55]
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whose eigenvalues are applied to evaluate the stability of the system. If all the

eigenvalues of Ψ at each spindle speed and axial depth of cut are less than

unity, the system is asymptotically stable. Otherwise, if any one of the

eigenvalues is outside the unit circle, the process is unstable. The critical

stability occurs when the eigenvalues lie on the unit circle. By repeating the

eigenvalue evaluation at the interested range of spindle speeds and axial

depths of cut, the stability lobes can be constructed. Note that when the

system is dominated by one mode (Nmo = 1), the dimension of the transition

matrix is reduced.

The typical characteristics of the proposed method can be listed as

follows; multiple delays are considered. The influence of every possible delay

on the Floquet transition matrix is separately reflected in equation [3.54]. This

constitutes an important mathematical basis for studying the practical milling

process that may have two or more delays due to cutter runout or un-pitch

space angles. However, only one delay is involved in [ALT 92, INS 04,

ALT 00, KOE 67], where the least period of the system is assumed to be the

tooth passing period τ of constant pitch cutter, regardless of the runout’s

effect. Besides, although the above model is derived for a two-DOF milling

system, a similar analysis can be performed for any n-DOF delay system only

by changing the dimensions of Va and Ψ, as long as their basic mathematical

problems are the same.

Experiments will now be described to verify the algorithm.

Cutting tests are performed on a vertical CNC milling machine to cut

aluminum alloy 7050. A three-fluted end mill with a diameter of 16mm and a

helix angle of 30
◦

is used. Four down milling tests are conducted. The cutting

conditions are listed in Table 3.1. By employing the method described in

[WAN 09a], Test 1 and Test 2 are combined to calibrate the cutting force

coefficients and the runout parameters. The average values from both tests are

used for stability prediction in the present work. Table 3.2 shows the values of

the modal parameters and the cutting force coefficients. In the following

stability results, only the first mode is considered in the proposed simulation

method, as it is significantly more flexible than the second one. The stability

lobes are predicted for the following cutting conditions: f = 0.0273
mm/tooth and ae = 5 mm. As described in the above section, there may be at

most three delays for this cutter, i.e. Nd = 3. For every cutting instant, the
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delay corresponding to every disk element can be determined using the

method in [KLI 83].

Test No. Radial depth of cut

ae(mm)

Axial depth of cut

ap(mm)

Feed per tooth

f (mm/tooth)

Spindle speed(rpm)

1 8 2 0.05 2000

2 8 2 0.05 2000

3 5 13.2 0.0273 4500

4 5 13.2 0.0273 5500

Table 3.1. Cutting conditions

Parameter type Parameter items

Direction Mode
Natural frequency

(Hz)

Modal

effective

mass (kg)

Damping

ratios (-)

Modal
X

1 898.22 1.576 0.040041

parameters 2 1135.3 44.259 0.00535

Y
1 852.51 0.852 0.036768

2 1185.1 22.589 0.00777

Cutting force

coefficients and

cutter runout

prameters

KT (MPa) KR (MPa) ρ ( μm) λ (◦)

1209.355 501.095 7.2 65.09

Table 3.2. Cutting parameters of the milling system

To see the effect of runout on stability lobes, both the actual runout

parameters (i.e. ρ = 7.2 μm and λ = 65.09◦) and the zero runout parameters

(i.e. ρ = 0 μm and λ = 0◦) are taken into account in the proposed method.

The simulation results are shown in Figure 3.8. The stability boundaries

predicted by the method developed by Altintas [ALT 00] are also plotted in

Figure 3.8 for comparison. As can be seen from Figure 3.8, when the runout

parameters are zero, the proposed method and the method of Altintas are

close to one another. However, once the actual runout parameters are

considered, obvious deviations occur among the three charts.

Firstly, let us consider the stability chart predicted by Altintas’s method

and the one predicted by the proposed method under the zero-runout

assumption. Both lobes indicate that the milling system would be unstable at

a spindle speed of 5500 rpm, axial depth of ap = 13.2 mm, radial depth of

ae = 5 mm and the feed per tooth of 0.0273 mm/tooth (i.e. the cutting
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condition of Test 4). However, the cutting test results given in the right

column of Figure 3.8 show that the milling process is stable under the above

cutting conditions. The reason is that the cutter runout may have a relatively

great influence on the stability lobes. On the other hand, the stability lobes, in

which the actual runout parameters are considered, indicate that the cutting

condition of Test 4 would be stable, which agrees well with the milling test

results. The stability lobes obtained from different methods and different

conditions indicate that the cutting condition of Test 3 would lead to unstable

milling, which is verified by the cutting test results, as shown in Figure 3.8.

The Fast Fourier Transformation of FY shows the severity of chatter

vibrations which produce large amplitude forces and spectrum at a chatter

frequency of 821.4 Hz. It is worth noting that the spectrum Spp
(p = 1, 2, ..., 5) in Figure 3.8 is the harmonics force produced by the cutter

runout. For details about this issue, one can refer to [LIA 94, WAN 09a].

3.3.2. Lowest envelope method

3.3.2.1. Proof of the lowest envelope method

Firstly, the modal parameters listed in Table 3.3, which are taken from

[ALT 13], are selected to carry out a numerical study by using the improved

SDM described in section 3.3.1. Based on the four pairs of dominant modes

listed in Table 3.3, simulations are performed by the following steps.

1) predict the stability lobe by only using the kth mode;

2) predict the stability lobe by including all modes in computation;

3) plot the results obtained from the above steps in the same figure.

Final results are shown in Figure 3.9. It can be found that the lowest

envelope of the stability lobes associated with each single mode is very close

to the stability lobe directly predicted from multiple modes. This means that

the stability lobe of a system with multiple modes may be approximately

obtained by taking the lowest envelope of stability lobes corresponding to all

single modes other than directly using the multiple modes. Without the loss of

generality, a theoretical proof will be made to confirm that taking the lowest

envelope can be used as a basic principle for the construction of stability

lobes in the following. It should be mentioned that since SDM is a time

domain solution performed from a numerical point of view, it is very difficult
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to directly conduct the theoretical proof in the semi-discrete time domain.

Fortunately, expressing milling dynamics problem in the frequency domain is

a powerful analytical means, which makes it possible to conduct theoretical

analysis. For this reason, frequency domain analysis, i.e. the ZOA method

reported in [ALT 12], is employed to carry out the following theoretical proof.

Surface quality after millingSurface quality after milling

Frequency [Hz]Frequency [Hz]

A
m

p
li

tu
d
e 

[N
]

A
m

p
li

tu
d
e 

[N
]

0

60

40

20

0
1000 1200800600400200

80
Tooth passing frequency

(225Hz)
Chatter frequency

(821.4Hz)

FFT for F
Y

0 1000 1200800600400200

60

40

20

0

80

Sp1
Sp2

Tooth passing frequency (275Hz)

FFT for F
Y

Sp3

Sp4 Sp5

Cutter rotation angle [Deg.] 

0 2500 3000200015001000500

400

200

0

-200

600

400

200

0

-200

600
Measured values of F

Y
Measured values of F

Y

Cutter rotation angle [Deg.] 

0 2500 3000200015001000500

F
Y
 [

N
]

F
Y
 [

N
]

7000 80006000500040003000 11000 12000100009000

Spindle speed [rpm] 

18

10

2

14

12

16

4

8

6

20

0

A
x
ia

l 
d
ep

th
 o

f 
cu

t 
[m

m
]

The proposed method 
(ρ=0.0072mm; λ=65.09°）

The proposed method 
 (ρ=0mm; λ=0°）

ZOA method in
 Altiatas(2012) 

Figure 3.8. Stability lobes, forces and surface quality obtained by
experiments and simulations for constant pitch cutter with runout. For a

color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Modal

Direction

Mode No. k Natural

Frequency

ωs,k(Hz)

Damping

Ratio

ξs,k(10−2)

Modal Mass

ms,k(Kg)

X 1 624 5.2 5.3344

X 2 871 3.3 5.3756

X 3 2311 2.2 0.4126

Modal X 4 3052 2.9 0.3943

parameters Y 1 692 4.2 4.0201

Y 2 862 5.2 4.0621

Y 3 2289 1.9 0.3819

Y 4 3050 2.7 0.4084

Cutting parameters KT (MPa) KR(MPa)

713 50.4

Table 3.3. Cutting parameters of the milling system in [ALT 13]
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Figure 3.9. Simulated stability lobes using the improved SDM. “Mode k (k = 1, 2,
3, 4)” means that the result is obtained by only using the kth dominant mode in
computation, while “multiple modes” corresponds to the stability lobe that is calculated
by directly substituting all modes into SDM. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

According to [ALT 12], the critical axial depth of cut ap, lim for the chatter

stability limit can be determined by

ap, lim = −2πΛR

NKT
(1 + κD

2)

κD = ΛI/ΛR

[3.56]
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where ΛR and ΛI are the real and imaginary parts of the eigenvalue of the

following characteristic equation.KT is the tangential cutting force coefficient.

a0Λ
2 + a1Λ + 1 = 0 [3.57]

with

a0 = υϕXX(Jωc)ϕYY(Jωc)
a1 = αXXϕXX(Jωc) + αYYϕYY(Jωc)

ϕss(Jωc) =

Nmo∑
k=1

ϕss,k(Jωc)

=

Nmo∑
k=1

1

ms,k(Jωc)
2 + 2ξs,kωs,kms,k(Jωc) + ω2s,kms,k

[3.58]

with

υ = αXXαYY − αXYαYX

s = X or Y
[3.59]

in which αXX, αYY, αXY and αYX are the average directional factors which

depended on the radial depth of cut bounded by entry (θen) and exit (θex)

angles, as reported in [ALT 12]. J is the imaginary unit of complex number.

ϕss,k(Jωc) is the transfer function of mode k (k = 1, 2, ..., Nmo), with ξs,k and

ωs,k being the damping ratio and natural frequency in direction s
(s = X or Y).

The solution Λ of equation [3.57] can also be written as

Λ =
−1

2a0

(
a1 ±

√
a21 − 4a0

)
[3.60]

Substituting equation [3.58] into equation [3.60] and rearranging it gives

Λ =
−χ1 ∓ χ2

2υϕXX(Jωc)ϕYY(Jωc)
[3.61]
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with

χ1 = αXXϕXX(Jωc) + αYYϕYY(Jωc)

χ2 =
√
(αXXϕXX(Jωc) + αYYϕYY(Jωc))

2 − 4υϕXX(Jωc)ϕYY(Jωc)

[3.62]

Since the milling tool-spindle assembly is nearly a symmetric system, the

measured dynamic receptances of the tool point in X and Y directions are

always close to each other, as observed by a number of previous researchers

[MAN 05, GRA 05, ZHA 01b, CIF 10, LI 14]. Thus, by assuming

ϕXX(Jωc) = ϕYY(Jωc), equation [3.61] can be rewritten as

Λ =
χ

ϕXX(Jωc)
[3.63]

with

χ = −αXX + αYY ±√α2XX + α2YY + 2αXXαYY − 4υ

2υ
[3.64]

Obviously, Λ directly varies with respect to ϕXX(Jωc) as χ in equation

[3.63] is a certain real number. Actually, ϕXX(Jωc) can be rearranged as

follows.

ϕXX(Jωc) =

Nmo∑
k=1

1

−mX,kω2c + 2ξX,kωX,kmX,kωcJ +mX,kω
2
X,k

=

Nmo∑
k=1

mX,k(ω
2
X,k − ω2c )− 2ξX,kωX,kmX,kωcJ

m2
X,k(ω

2
X,k − ω2c )2 + 4ξ2X,kω

2
X,km

2
X,kω

2
c

=

Nmo∑
k=1

mX,k(ω
2
X,k − ω2c )− 2ξX,kωX,kmX,kωcJ

m2
X,k(ω

4
X,k + ω

4
c )− 2ω2X,km

2
X,kω

2
c + 4ξ2X,kω

2
X,km

2
X,kω

2
c

[3.65]

Generally, ξX,k is a pure fractional number smaller than 0.1 in most metal

structures as reported in [ALT 12, ZHA 01b, ALT 13, LI 14, BRA 05]. Based
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on this fact, the following derivation can be achieved.

ξX,k < 0.1

⇒ ξ2X,k < 0.01

⇒ ξ2X,k < 0.04 = 0.02× 2 � 2

⇒ ξ2X,kω
2
X,km

2
X,kω

2
c < 0.02× 2ω2X,km

2
X,kω

2
c � 2ω2X,km

2
X,kω

2
c

[3.66]

Equation [3.66] means that 4ξ2X,kω
2
X,km

2
X,kω

2
c is a small quantity that is less

than 2/100 of 2ω2X,km
2
X,kω

2
c . Thus, it can be dropped from the denominator of

equation [3.65]. It is noted that, as verified in section 3.3.2, dropping out this

term does not greatly affect the prediction accuracy. That is,

m2
X,k(ω

2
X,k − ω2c )2 + 4ξ2X,kω

2
X,km

2
X,kω

2
c

= m2
X,k(ω

4
X,k + ω

4
c )− 2m2

X,kω
2
X,kω

2
c + 4ξ2X,kω

2
X,km

2
X,kω

2
c

≈ m2
X,k(ω

4
X,k + ω

4
c )− 2m2

X,kω
2
X,kω

2
c

= m2
X,k(ω

2
X,k − ω2c )2

[3.67]

As a result, equation [3.65] can be rewritten as

ϕXX(Jωc) ≈
Nmo∑
k=1

mX,k(ω
2
X,k − ω2c )− 2ξX,kωX,kmX,kωcJ

m2
X,k(ω

2
X,k − ω2c )2

[3.68]

It is important to note that the critical depth of cut ap, lim is solved by

substituting a chatter frequency ωc around a dominant mode ωX,k into

equations [3.63] and [3.56] . This means that ap, lim corresponds to a

frequency ωc that is very close to one of ωX,1, ωX,2,...,ωX,Nmo . If

ωc = (1 + μD)ωs,k (|μD| < 0.1) and the preconditions discussed in section

3.3.2.2 are satisfied, the following relationship holds

mX,k(ω
2
X,k−ω2

c )−2ξX,kωX,kmX,kωcJ

m2
X,k(ω

2
X,k−ω2

c )
2

�
Nmo∑

ς=1, ς �=k

mX,ς(ω2
X,ς−ω2

c )−2ξX,ςωX,ςmX,ςωcJ

m2
X,ς(ω

2
X,ς−ω2

c )
2

[3.69]
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In light of equations [3.69], [3.68] can be approximated as

ϕXX(Jωc) =
mX,k(ω

2
X,k − ω2c )− 2ξX,kωX,kmX,kωcJ

m2
X,k(ω

2
X,k − ω2c )2

[3.70]

Substituting equation [3.70] into equation [3.63] gives

Λ =
χ

ϕXX(Jωc)
= χ

m2
X,k(ω

2
X,k − ω2c )2

mX,k(ω
2
X,k − ω2c )− 2ξX,kωX,kmX,kωcJ

= χm2
X,k(ω

2
X,k − ω2c )2

mX,k(ω
2
X,k − ω2c ) + 2ξX,kωX,kmX,kωcJ

m2
X,k(ω

2
X,k − ω2c )2 + 4ξ2X,kω

2
X,km

2
X,kω

2
c

[3.71]

Combining equation [3.71] with equation [3.67] yields

Λ ≈ χ[mX,k(ω
2
X,k − ω2c ) + 2ξX,kωX,kmX,kωcJ] =

χ

ϕXX,k(Jωc)
[3.72]

Evidently, in the case of multiple modes, the solutions of equation [3.57]

associated with the selected chatter frequency ωc are approximate to the

solutions related to the dominant mode around which ωc is selected. This

implies that the final ap, lim is taken as the minimum of all candidate values,

which are calculated based on the solutions of equation [3.57] through

scanning the chatter frequencies around all dominant modes evident on the

transfer functions. This concludes that the solution of the stability lobe can

be alternatively treated as a single mode problem instead of a multiple modes

problem, according to the following procedure:

– predict the stability lobe under the kth dominant mode as a single mode

problem;

- select chatter frequencies around this mode, and solve the

corresponding eigenvalues from equation [3.60],

- calculate the critical depth of cut from equation [3.56],

- calculate the spindle speed for each stability lobe based on the method

given in [ALT 12],
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- construct the stability lobe related to this mode;

– repeat the above procedure for all modes;

– select the lowest envelope of the stability lobes associated with all

dominant modes as the ultimate stability lobe.

In other words, the above scheme proves that the lowest envelope of a

group of stability lobes, which are calculated by separately considering

different dominant modes composing the overall dynamic compliance, can be

used to predict the stability lobes of milling systems with multiple dominant

modes. For convenience, this procedure is called the lowest envelope method

(LEM). Note that although LEM is proved in the frequency domain, it cannot

be treated as a frequency domain solution. It is just a general principle that

can be used to explain the construction mechanism of stability lobes under

multiple modes, and it can be performed by combination with either

frequency domain methods or time domain solutions.

It should also be noted that the frequency domain solution can predict the

stability lobe much more efficiently than the time domain method. At this

point, there is no obvious advantage of computational efficiency by

combining LEM with a frequency domain method such as the ZOA method.

The frequency domain method is not a panacea. It will fail in prediction if

there exist simultaneous multiple modes and instantaneous process

parameters such as cutter runout-induced multiple delays. In this case, one

must resort to other means such as a time domain method, e.g. the

semi-discretization method (SDM). To this end, as demonstrated below, LEM

is of great significance to save prediction time and memory usage when

combined with the improved SDM.

Simulations were performed on a 3.30 GHz Intel(R) Xeon(R) CPU

computer for the same milling case as in Figure 3.9. Spindle speed increased

with an interval of 500 rpm and the axial depth of cut increased with a step of

0.5 mm. Three cases of the number of time intervals with w = 40, 80 and 120

were considered in simulations. Results show that the time cost related to

multiple modes is higher than that of LEM, which is the time summation

associated with all single modes. Especially, the time difference between the

two methods becomes very large, along with the increase of w. For example,

in the case of w = 120, the time cost of LEM is only 9 percent of the time

spent executing multiple modes codes. Besides, the memory usage of LEM is
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greatly lower than that related to multiple modes, and the difference between

both increases with w.

3.3.2.2. Premise of the lowest envelope method

This section aims at explaining the precondition of LEM from the

theoretical point of view. First, a two-mode symmetric system with the

transfer function defined in equation [3.73] is selected for illustration. Since

ϕXX(Jωc) is assumed to be equal to ϕYY(Jωc) in section 3.3.2.1, only the X

direction is used for explanation:

ϕXX(Jωc) = ϕXX,R + ϕXX,I × J [3.73]

with

ϕXX,R(Jωc) =
1

mX,1(ω2X,1 − ω2c )
+

1

mX,2(ω2X,2 − ω2c )

ϕXX,I(Jωc) = − 2ξX,1ωX,1ωc

mX,1(ω2X,1 − ω2c )2
− 2ξX,2ωX,2ωc

mX,2(ω2X,2 − ω2c )2
[3.74]

where ϕXX,R(Jωc) and ϕXX,I(Jωc) are the real and imaginary parts of

ϕXX(Jωc). For convenience, ωX,2 is assumed as

ωX,2 = ηDωX,1 ← ηD > 1 [3.75]

If chatter frequency ωc is generally selected in the vicinity of the first

dominant frequency ωX,1, ωc can be expressed as

ωc = (1 + μD)ωX,1 ← |μD| < 0.1 [3.76]

Substitution of equations [3.75] and [3.76] into equation [3.74] gives

ϕXX,R(Jωc) =
1

ω2X,1

[
1

mX,1(−2μD − μD2)
+

1

mX,2(ηD2 − (1 + μD)
2)

]

[3.77]
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ϕXX,I(Jωc) =
2(1 + μD)

ωX,1
2

×

⎡
⎢⎣ ξX,1

mX,1μD2(μD + 2)2
+

ξX,2

mX,2

[
ηD2 − (1 + μD)

2
]2
⎤
⎥⎦ [3.78]

Based on equations [3.77] and [3.78], the following relative errors are

defined.

δR =
mX,1(−2μD − μD2)

mX,2[ηD2 − (1 + μD)
2]

[3.79]

δI =
ηDξX,2mX,1μD

2(2 + μD)
2

ξX,1mX,2[ηD2 − (1 + μD)
2]
2 [3.80]

Actually, as long as

|δR| ≤ εE [3.81]

|δI| ≤ εE [3.82]

the second items of equations [3.77] and [3.78] could be considered removable.

Here, εE is a given small tolerance.

Substitution of equation [3.79] into [3.81] gives

ηD ≥ ηδ [3.83]

with

ηδ =

√
mX,1 |−2μD − μD2|

mX,2E
+ (1 + μD)

2 [3.84]
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If equations [3.83] and [3.82] hold, it means that equation [3.68] could

be approximated by equation [3.70]. That is, the stability of the system with

multiple modes can be predicted by the proposed LEM. It should be mentioned

that for a milling system with multiple modes, equations [3.83] and [3.82] need

to be repeatedly checked for all mode pairs that are arbitrarily paired among

all dominant modes.

It is also important to note that the actual chatter frequency changes over

cutting conditions, as shown in Figure 3.8. As a result, μD is not a constant. For

example, with respect to mode 4, μD is in [-0.022, +0.018]. Here, Figure 3.10

is the chatter frequency versus natural frequency related to the example given

in section 3.3.2. To comprehensively consider the varying process information,

equations [3.83] and [3.82] are checked according to the following steps:

1) calculate the chatter frequency of the system with multiple modes by

using the frequency method given in [ALT 12];

2) estimate the value of μD related to each mode by taking the ratio of

average chatter frequency to the natural frequency, and select the maximum

of μD associated with all modes as the final value of μD;

3) substitute the value of μD obtained above into equation [3.84] to calculate

ηδ;

4) calculate ηD for each pair of modes group using equation [3.75], and

select the minimum of η related to all pairs as the final value of ηD;

5) check whether equation [3.83] is satisfied based on the final values of ηD
and ηδ obtained above. If equation [3.83] is not satisfied, it confirms that LEM

cannot be used in this case; otherwise, go to step 6;

6) check whether equation [3.82] is satisfied based on the final value of ηD
obtained from the step (4). If it is, this confirms that LEM is effective to predict

the stability.

Table 3.4 checks the preconditions of LEM for the milling system shown

in Table 3.3. It can be found that that both equations [3.83] and [3.82] are

satisfied. Hence, as indicated in Figure 3.9, the stability of the system can be

predicted by LEM.
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Example

No.

Value of μD

related to each

mode

Final value

of μD

Final value

of ηD
ηδ

Is equation

[3.83]

satisfied?

Is equation

[3.82]

satisfied?

Example 1:

milling

system in

section

3.3.2.1

For mode 1:

0.0152

For mode 2: no

chatter frequency

For mode 3:

0.0019

For mode 4:

0.0049

0.0152 1.327 1.284 Yes Yes

Table 3.4. Checking the preconditions of
LEM (εE is artificially set to be 0.05)

3.3.3. Time-domain simulation method

From equations [3.1] to [3.3] it can be clearly found that the calculation of

total cutting forces relies on both hi,j(t) , KT and KR. hi,j(t) can be

calculated by equation [3.1]. KT and KR should have enough calibration

accuracy to accurately predict the cutting forces. Generally, the constant

cutting force coefficient [ALT 00] and the instantaneous cutting force

coefficient [YUN 01, WAN 07a, AZE 04, WAN 07b, WAN 09a, WAN 10a]

are two typical concepts used for cutting force modeling. The former

combines the shearing effect and the rubbing effect into a single constant

coefficient for each cutting force component, whereas the latter often treats

the coefficients as a nonlinear function of the instantaneous uncut chip

thickness.

In fact, most existing stability lobe prediction methods were conducted

under the assumption of constant cutting force coefficients. However, the

influence of the instantaneous cutting force coefficients on the stability lobes

of a milling system is still under research. Recently, Ahmadi and Ismail

[AHM 10a] used the instantaneous cutting force model to detect the chatter

phenomenon in flank milling of curved surfaces on a 5-axis machine. However,

the distribution of stability lobes was not explored for instantaneous cutting

force coefficients. Although Dombovari et al. [DOM 10] adopted a nonlinear

function of the chip thickness to express cutting force coefficients, predicted

stability lobes are limited to use constant cutting force coefficients averaged

over a spindle period. In the following presentation, based on three cutting

force models, the time-domain simulation method will be described to solve
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the deflection of the milling system; and then stability lobe predictions will be

studied:

– cutting force model 1: the cutting force coefficients given in equation

[1.57] are used;

– cutting force model 2: the cutting force coefficients given in equation

[1.73] are used;

– cutting force model 3: constant cutting force coefficients are used

[WAN 09a].

A time-domain simulation method is described to solve the vibration

deflection time history of the cutter motion. It incorporates the instantaneous

cutting force coefficients, the instantaneous variation of the entry and exit

angles and the influences of multiple delays together. Details will be

presented below.

Theoretically, equation [3.8] is a typical second-order delay differential

equation (DDE) in terms of Q(t). It cannot be integrated in any analytical

way due to its high nonlinearity. A possible approach is to resort to the

implicit Runge-Kutta method [SHA 01] aiming at solving general first-order

problems of the following form

ż(t) = fun(χ(t), χ(t− τ1), χ(t− τ2), ..., χ(t− τNk
)) [3.85]

where τk (k=1,2,...,Nk) is a constant delay with min(τ1, τ2, ..., τNk
) > 0 and

independent of time t. Nk is the total number of delay items. χ stands for the

unknown system variable vector of the delay equation concerned.

Considering the multiple delays induced by cutter runout of mills with

regular pitches, equation [3.8] can be rewritten in the following compact form

ż(t) = v[z(t), z(t− τ), z(t− 2τ), ..., z(t−Ndτ)] [3.86]

where

z(t) =
[
x(t), y(t), ẋ(t), ẏ(t)

]T
[3.87]
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v =

⎡
⎢⎢⎣

ẋ(t)
ẏ(t)

1
mX
FX(t)− 2ξXωXẋ(t)− ω2Xx(t)

1
mY
FY(t)− 2ξYωYẏ(t)− ω2Yy(t)

⎤
⎥⎥⎦ [3.88]

Note that FX(t) and FY(t) depend on z(t− kτ) (k=0, 1, 2,...,Nd), and KT

and KR. Obviously, equation [3.86] is a typical application case of equation

[3.85] to solve x(t − kτ) and y(t − kτ) (k=0, 1, 2, ..., Nd). Three remarks

should be considered before solving equation [3.86]:

Determination of the initial values of z(0) and Fs(0) (s=X, Y)

Since the cutter is stationary at the initial cutting instant with zero

deflections and velocities, z(0) can be predetermined as

z(0) = [0, 0, 0, 0]T [3.89]

Under this condition, the dynamic chip thickness hDY,i,j(0) can be directly

dropped from equation [3.1] at t=0. FX(0) and FY(0) can be calculated with

equation [3.3] by replacing hi,j(0) with hST,i,j(0).

Determination of the instantaneous values of θen(t) and θex(t)

Both angles involved in FX(t) and FY(t) denote the instantaneous

engagement state between the cutter and the workpiece. It is well known that

large vibrations will directly lead to loss of the contact. This implies that

θen(t) and θex(t) are also influenced by the current vibration deflection Q(t).

Now, down milling will be taken as an example to illustrate the influence

of Q(t) on θen(t) and θex(t). If y(t) is larger than the nominal radial depth

of cut ae, the cutter will be completely in air cut. In this case, one can set

θen(t) = θex(t). If y(t) < ae, the entry angle will be changed according to the

following pattern.

θen(t) = arccos(
2ae(t)−D

D
) = arccos(

2ae − 2y(t)−D
D

) [3.90]

where ae(t) is the instantaneous radial depth of cut corresponding to time t.
Similarly, the engagement variation in up milling can be simulated as above:
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Determination of the instantaneous values of cutting force coefficient Kq

(q=T, R)

From equations [1.57] and [1.73] it can be seen that Kq relates to hi,j(t),
which is associated with the vibration deflections x(t − kτ) and y(t − kτ)
(k=0, 1, 2, ...,Nd ), as indicated in equation [3.2]. Thus, at each considered

time t, one should use equations [3.1] and [3.2] to update hi,j(t), and then use

equation [1.57] or equation [1.73] to update Kq.
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Figure 3.10. 1/revolution sampled time history of vibration deflection
signals. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip

With the above points and the schemes in [SHA 01], the vibration

deflections over time t can be successfully obtained from equation [3.86].

Subsequently, a sequence of points can be obtained by a 1/revolution

sampling method from the obtained vibration deflection time history.

Figure 3.10 illustrates two typical cases of the 1/revolution sampled time

history for the periodical second-order nonlinear oscillator of equation [3.8].

Poincaré section theory shows that if the system is stable, the 1/revolution

sampled values will reach a fixed point in the last few periods, as shown in

Figure 3.10(b). Whereas once the system becomes unstable, the 1/revolution

sampled values will be in the status of decentralization, as shown in

Figure 3.10(a). An in-depth analysis indicates that the stable milling case will

satisfy the following criterion;

σ =
δp−max − δp−min

max{∣∣δp−max

∣∣ , ∣∣δp−min

∣∣} < εS [3.91]
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in which δp−max and δp−min are the maximum and the minimum values of the

1/revolution sampled deflections in the range of ξS Sspan, as shown in

Figure 3.10(a). ξS is the scale factor. εS is the tolerance used to ensure stable

milling.

With the criterion equation [3.91], the stability lobe could be theoretically

plotted by sweeping the axial depth of cut and spindle speed to check the

system stability. Obviously, this sweeping procedure may lead to a relatively

large simulation time because every possible case should be checked.
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Figure 3.11. Schematic charts of stability lobes: a) small radial
immersion; b) large radial immersion. For a color version of this figure,

see www.iste.co.uk/zhang/milling.zip

A review of the literature indicates that the stability lobe generally has the

distribution as in Figure 3.11, from which it can be clearly seen that:

– for large radial immersion, the axial depth of cut is a single-valued

function of spindle speed, as shown in Figure 3.11 (b);

– for small radial immersion, island-like or byland-like lobes may arise

due to period-doubling bifurcations [PAT 08, ZAT 06, WAN 10b], as shown in

Figure 3.11(a). These phenomena directly lead to the presence of some narrow

chatter-free regions, such as the regions A and B indicated in Figure 3.11(a).

Theoretically, the axial depth of cut in these regions can be considered for

chatter-free milling design. However, due to the disturbance effect of noise

factors, chatter may still occur if the cutting parameters are selected from

these narrow regions. In industry practice, the acceptable chatter free cutting
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parameters are often ensured by the lobe’s outer contour (see the dashed lines

shown in Figure 3.11(a)), which is also a single-valued function of spindle

speed.

The above two comments imply that the axial depth of cut can be assumed

to be the single-valued function of spindle speed for the stability lobes in

industry application, no matter what radial immersion is concerned. Keeping

this in mind, one can use the dichotomy method to constitute the stability lobe

based on equation [3.91] according to the following steps:

1) Set the values of ae, f and Sspan. Suppose that the effective cutting

length of the cutter is amax
p ;

2) Set l=0 and S(l)=SIn; SIn is the initial spindle speed used for simulation;

3) Set k=0 and attribute amax
p to ap

(k). Set ap,L = 0 and ap,U = amax
p . ap,L

and ap,U are the lower and upper bounds used to designate dichotomy interval;

4) Set t=0 and substitute ae(0) into equation [3.90] to calculate θen(0) and

θex(0). Calculate hST,i,j(0) with equation [3.2] and set hi,j(0) = hST,i,j(0).
Note that ae(0) = ae;

5) Set z(0) by equation [3.89];

6) Determine the instantaneous cutting force coefficientKq using equation

[1.57] or [1.73], or directly using the constant coefficient Kq;

7) Based on θen(t) and θex(t), calculate FX(t) and FY(t) with equation

[3.7];

8) Substitute z(t) and Fs(t) (s=X, Y) into equation [3.86] and then solve

x(t) and y(t) using the schemes in [SHA 01];

9) Set t = t + Δt and update the entry angle θen(t) or exit angle θex(t)
based on x(t) and y(t). For example, equation [3.90] can be used to update the

entry angle in case of down milling. Δt is the time increment;

10) Use x(t− kτ) and y(t− kτ) (k=0, 1, 2, ..., Nd) to calculate hi,j(t) with

equations [3.1] and [3.2];

11) Update z(t) using equation [3.87];

12) Repeat steps (6)–(11) until t reaches Sspan;
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13) Check the stability status using equation [3.91]. The sub-steps are as

follows:

i) if the system is stable at a
(k)
p = amax

p , amax
p is assumed to be the limit

of the axial depth of cut that can ensure stable milling for S(l). Set l=l+1,

S(l)=S(l−1) +ΔS and go to step (3). ΔS is spindle speed increment;

ii) if the system is stable at a
(k)
p < amax

p ,

- if
∣∣∣a(k)p − a(k−1)

p

∣∣∣ < εp, a
(k)
p is assumed to be the limit of the axial

depth of cut that can ensure stable milling for S(l). Set l=l+1, S(l)=S(l−1)+ΔS
and go to step (3). εp is the tolerance used to check the convergence.

- otherwise, set k=k+1, a
(k)
p = (ap,L + ap,U)/2 and ap,L = ap

(k−1), and

then go to step (4).

iii) in the case of unstable milling, set k=k+1, a
(k+1)
p = (ap,L +ap,U)/2 and

ap,U = a
(k−1)
p . And then go to step (4).

14) Repeat steps (2)–(13) until all concerned spindle speeds are simulated;

15) Plot the stability lobes using the results obtained above.

It is worth noting that in the above simulation procedure, x(t − kτ) and

y(t − kτ) (k= 1, 2, ..., Nd ) are artificially assumed to be zero when t is less

than the cutter cutting period. Superscripts (k) and (l) in the above procedure

represent the iteration steps.

Verifications of the proposed methods will be described as follows.

Direction Mode Natural frequency

(Hz)

Modal mass(kg) Damping ratios (-)

X 1 739.03 1.357 0.058995

Y 1 708.54 1.725 0.051897

2 1183.2 3.62 0.034145

Table 3.5. Modal parameters

To investigate the effectiveness of the method described above, a series of

experimental tests are performed on a vertical CNC milling machine. A three-

fluted carbide end mill with a diameter of 16 mm and a helix angle of 30
◦

is

employed to cut aluminum alloy AL7050.
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Test No. Radial depth of cut

ae(mm)

Axial depth of cut

ap(mm)

Feed per tooth

f (mm/tooth)

Spindle speed

S(rpm)

1 8 2 0.1 2000

2 4 24.5 0.1 6000

3 4 24.5 0.1 7000

Table 3.6. Cutting conditions
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Figure 3.12. Predicted stability lobes and measured cutting forces for
ae=4mm andf=0.1mm/tooth: the cutting force coefficients calibrated

from Test 2 are used in simulation. For a color version of this figure, see
www.iste.co.uk/zhang/milling.zip

In Figure 3.12, the predicted stability lobes are shown for the following

conditions: ae = 4 mm and f = 0.1 mm/tooth. Modal parameters used in

simulation are listed in Table 3.5. Figure 3.12 shows the stability lobes

generated using the proposed method for the three cutting force models,

whose cutting force coefficients are only calibrated from Test 1 in Table 3.6.

Obviously, a good agreement exists between the predicted results.
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Two cutting tests, i.e. Tests 2 and 3 in Table 3.6, are carried out at the axial

depth of cut ap = 24.5 mm, ae = 4 mm and f = 0.1 mm/tooth. One is at a

spindle speed of 6000 rpm, where unstable cutting occurs. From the measured

cutting forces and their Fourier spectrum shown in Figure 3.12, it can be seen

that chatter vibrations are severe and evident at 6000 rpm. The chatter occurs

at frequency 733.3 Hz, close to the frequency of the first mode of the machine-

tool system. When the spindle speed is increased to 7000 rpm, the chatter

vibrations disappear. Note that the spectrum Spk(k = 1, 2, 3, 4) in Figure 3.12

stands for the harmonic force due to the cutter runout. Detailed explanations

of this issue can be found in [WAN 09a, WAN 10b]. The above two tests mean

that the proposed methods are valid to plan chatter-free processes.
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Mathematical Modeling of the
Workpiece-Fixture System

In general, fixtures mechanical devices used to assist machining, assembly,

inspection, welding, and other manufacturing operations. The function of

fixtures is to locate and ensure the desired positions and orientations of

workpieces during the manufacturing process. In traditional and modern

manufacturing systems, how to plan the workpiece holding is the basic issue

of the machining operation to be confronted for the fixture design. In this

chapter, a series of models and methods about configuring the fixture locating

scheme and clamping strategies are given and well discussed.

4.1. Criteria of locating scheme correctness

4.1.1. The DOFs constraining principle

As shown in Figure 4.1, the workpiece coordinate system XwYwZw

attached rigidly to the workpiece can be movable whereas the global

coordinate system XYZ is fixed. Without loss of generality, we denote

r∗w = [x∗w, y∗w, z∗w]
T, θθθ∗

w = [α∗w, β∗w, γ∗w]
T, vw = [δx∗w, δy∗w, δz∗w]

T and

ωωωw = [δα∗w, δβ∗w, δγ∗w]
T as the position, orientation, linear and angular

velocities of XwYwZw related to XYZ, respectively. In addition,

rP = [xP, yP, zP]
T and rw

P = [xw
P , y

w
P , z

w
P ]

T are used to represent the

coordinates of an arbitrary point P in XYZ and XwYwZw, respectively. If

Milling Simulation: Metal Milling Mechanics, Dynamics and Clamping Principles, 
First Edition. Weihong Zhang and Min Wan.
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XwYwZw is assumed to coincide with XYZ, then the velocity of point P can

be expressed as

vP = vw + ωωωw × rP [4.1]

 

X

Y

Z
wZ

wY

wX

O

wO

*
wr

w

Pr P

r
P

Figure 4.1. The motion status of the workpiece

In order to study the relationship between the constrained degrees of

freedom (DOFs) of the workpiece and its machining dimensions,

equation [4.1] is rewritten in differentiation form:

⎡
⎣δxP

δyP

δzP

⎤
⎦ =

⎡
⎣δx∗w + δβ∗wzP − δγ∗wyP

δy∗w + δγ∗wxP − δα∗wzP

δz∗w + δα∗wyP − δβ∗wxP

⎤
⎦ [4.2]

or

δrP = Eδq∗
w [4.3]

with

δq∗
w =

[
vT

w, ω
T
w

]T
= [δx∗w, δy

∗
w, δz

∗
w, δα

∗
w, δβ

∗
w, δγ

∗
w]

T [4.4]

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Mathematical Modeling of the Workpiece-Fixture System 167

where δq∗
w represents the desired DOF vector of the workpiece to be

constrained correspondingly. E is the position matrix of point P. It is

important to note that δrP is the machining-dimension vector of the

workpiece in its perturbation form.

E =
[
ET

1 ,E
T
2 ,E

T
3

]T
,Ei = [eT

i ,−(ei × rP)
T] [4.5]

with e1 = [1, 0, 0]T, e2 = [0, 1, 0]T and e3 = [0, 0, 1]T.

Obviously, the achievement of the considered machining dimensions relies

on the constrained DOFs in δq∗
w. For example, if the machining dimension is

aligned in the X direction,

δxP = δx∗w + δβ∗wzP − δγ∗wyP = 0 [4.6]

Because yP and zP can take arbitrary values, equation [4.6] is valid if and

only if

δx∗w = δβ∗w = δγ∗w = 0 [4.7]

In other words, only when three DOFs (δx∗w,δβ∗w,δγ∗w) are constrained, the

machining operation is correct. Similarly, if machining dimensions are

required simultaneously in the X and Y directions, the following conditions

have to hold,{
δxP = δx∗w + δβ∗wzP − δγ∗wyP = 0

δyP = δy∗w + δγ∗wxP − δα∗wzP = 0
[4.8]

The constrained DOFs are then

δx∗w = δy∗w = δα∗w = δβ∗w = δγ∗w = 0 [4.9]

Meanwhile, if the machining dimensions ought to be guaranteed in all three

directions, we have

⎧⎨
⎩
δxP = δx∗w + δβ∗wzP − δγ∗wyP = 0
δyP = δy∗w + δγ∗wxP − δα∗wzP = 0
δzP = δz∗w + δα∗wyP − δβ∗wxP = 0

[4.10]
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It follows that

δx∗w = δy∗w = δz∗w = δα∗w = δβ∗w = δγ∗w = 0 [4.11]

Therefore, the machining dimensions in three directions can be achieved

only when six DOFs are all constrained. To make the discussion easier, all the

above constrained DOFs derived from machining dimensions are referred to

as theoretical constrained DOFs that are essentially the required constraints. A

summary is given in Figure 4.2 to show the relationship between the machining

dimensions and the theoretical constrained DOFs.

Direction(s) The theoretical constrained DOFs 

Machining

dimension(s)

*

wq

X

Y

Z

X,Y

Y,Z

Z,X

X,Y,Z

*

wx *

w

*

w

*

wy *

w

*

wz

*

w

*

w
*

w

*

wz

*

wx *

w

*

w

*

wy

*

w

*

wx *

w

*

w

*

w

*

wz

*

w

*

w

*

wy *

w

*

wx *

w

*

w

*

wy *

w

*

wz

Figure 4.2. The relationship diagram between the machining
dimensions and the theoretical constrained DOFs

4.1.2. The locating scheme

In fact, locating schemes depend upon locator number and positions. The

aim of designing a workable locating scheme consists of constraining first of

all the undesired DOFs of the workpiece. As shown in Figure 4.3, to obtain

the machining surface with specified dimensions a and b, a variety of locating

schemes can be designed to locate a block workpiece. The workpiece is

theoretically fixed in all directions by locating schemes 1 and 2. However, it

can move in the Z direction if constrained by locating scheme 3 and 4. With

locating schemes 5 and 6, the workpiece can translate in both X and Z

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


Mathematical Modeling of the Workpiece-Fixture System 169

directions and rotate about the Y axis so that the machining dimension a

cannot be guaranteed by both locating schemes because the DOFs of the

workpiece cannot be properly constrained. Here, it is necessary to note that

the difference between “partial location” and “under location” is that partial

location can correctly constrain DOFs of the workpiece whereas under

location cannot.

Therefore, during the fixture design of a locating scheme, it is very

important to ensure the validity of the locator number and positions. In order

to model the locating scheme mathematically, following assumptions are used

throughout this chapter.

– workpiece and locators are rigid bodies;

– only point contacts exist between each locator and workpiece;

– the contact surface of the workpiece is piecewise differentiable.

1 24

5

6

3

a

b

 
  

   

(a)

(f)(e)(d)

(c)(b)

Workpiece
Location 1

Location 2

Location 1Location 1
Location 2

Location 1
Location 2 Location 2

X X

Z

Y

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

Figure 4.3. Effect of the locator number and positions: a) locating scheme 1:
deterministic location; b) locating scheme 2: complete over location; c) locating
scheme 3: partial location; d) locating scheme 4: partial over location; e) locating
scheme 5: under location; f) locating scheme 6: under over location. For a color version
of this figure, see www.iste.co.uk/zhang/milling.zip
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As illustrated in Figure 4.4, the contact surface of the workpiece is supposed

to be

fw (rw) = fw (xw, yw, zw) = 0 [4.12]

in which rw = [xw, yw, zw]T designates the coordinate vector of an arbitrary

point on the workpiece with respect to XwYwZw.

Therefore, the coordinate vector r in XYZ can be expressed as

r = T (θθθw) · rw + rw [4.13]

where

T (θθθw) =

⎡
⎣ cβwcγw −cαwsγw + sαwsβwcγw sαwsγw + cαwsβwcγw

cβwsγw cαwcγw + sαwsβwsγw −sαwcγw + cαwsβwsγw

−sβw sαwcβw cαwcβw

⎤
⎦
[4.14]

is an orthogonal rotation matrix with c = cos and s = sin.

1

X

Y

Z

k

Workpiece

cpN

Figure 4.4. Illustration of the locating scheme to the workpiece
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By inserting equation [4.13] into equation [4.12], the latter will be

expressed in XYZ as follows

fw
[
T(θθθw)

T · (r− rw)
]
= 0 [4.15]

By assigning qw =
[
rT

w, θθθ
T
w

]T
= [xw, yw, zw, αw, βw, γw]

T, one has

fw (qw) = f
w
[
T(θθθw)

T (r− rw)
]
= 0 [4.16]

Let rk = [xk, yk, zk]
T(1 ≤ k ≤ Ncp) be the coordinate vector of the kth

contact point, then the following relation holds

rk = T (θθθw) · rw
k + rw [4.17]

whereNcp is the total number of contact points or locators. Thus, the following

equations have to hold simultaneously provided that locators rk(1 ≤ k ≤ Ncp)

remain in contact with the workpiece surface.

fw (qw, rk) = 0, 1 ≤ k ≤ Ncp [4.18]

Physically, such a system describes the workpiece position qw constrained

by the locating scheme of Ncp locators. Let q∗
w denote the desired workpiece

position associated with the machining dimensions, qw = q∗
w is then a solution

of the above set of homogeneous linear system only when the locator number

and position are correctly configured.

In contrast to the definition of δq∗
w, denote δqw to be the workpiece position

variation near the desired position q∗
w. No matter what the variation of δqw

is, Ncp contact points must be theoretically kept in touch with the workpiece

surface. Otherwise, the practical locating operation becomes meaningless. So,

equation [4.18] can be further written as

fw (qw, rk) = f
w (q∗

w + δqw, rk) = 0, 1 ≤ k ≤ Ncp [4.19]

With the Taylor expansion at q∗
w and neglecting higher order terms, it then

follows that

fw (q∗
w + δqw, rk) = f

w (q∗
w, rk) +GT

kδqw = 0, 1 ≤ k ≤ Ncp [4.20]

where Gk is the gradient vector.
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The comparison between equations [4.18] and [4.20] shows that the

workpiece remains in contact with Ncp locators at qw = q∗
w + δqw if and

only if

JJac,kδqw = 0, 1 ≤ k ≤ Ncp [4.21]

with JJac,k = GT
k . If the XwYwZw is assumed to be identically oriented with

the XYZ, we have

JJac,k =
[
− nw

kx, −nw
ky, −nw

kz, n
w
kzy

w
k − nw

kyz
w
k ,

nw
kxz

w
k − nw

kzx
w
k , n

w
kyx

w
k − nw

kxy
w
k

] [4.22]

with the normal vector of the workpiece surface at the kth contact point

nw
k =

[
nw
kx, n

w
ky, n

w
kz

]T

=
[
∂fw

∂xw
k
, ∂f

w

∂yw
k
, ∂f

w

∂zw
k

]T

.

The compact expression of equation [4.21] can be rewritten in matrix form

JJacδqw = 0 [4.23]

with the Jacobian matrix JJac = [JT
Jac,1,J

T
Jac,2, ...,J

T
Jac,Ncp ]

T.

In equation [4.23], all zero terms of δqw are the so-called practical

constrained DOFs of the workpiece depending upon the locator number Ncp

and positions.

4.1.3. Judgment criteria of locating scheme correctness

Here, let operator num( ) denote the allowable number of DOFs. Scalar

m denotes the number of unconstrained allowable DOFs in num( ) that do

not satisfy equation [4.23]. Consequently, num( )-m is the number of DOFs

belonging to the practical constrained DOFs. Recall that Ncp refers to the

locator number. Some judgment criteria can be derived below to verify the

locating scheme correctness.

– Case 1: if Ncp < 6, then the locating scheme is:

- partial location when rank (JJac) = Ncp and rank (JJac) +
num (δq∗

w)−m = 6; as illustrated in Figure 4.3(c);
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- under location when rank (JJac) = Ncp and rank (JJac) +
num (δq∗

w)−m < 6; as illustrated in Figure 4.3(e);

- partial over location when rank (JJac) < Ncp and rank (JJac) +
num (δq∗

w)−m = 6;

- under over location when rank (JJac) < Ncp and rank (JJac) +
num (δq∗

w)−m < 6.

– Case 2: if Ncp = 6, then the locating scheme is:

- complete location when rank (JJac) = 6, as shown in Figure 4.3(a);

- partial over location when rank (JJac) < 6 and rank (JJac) +
num (δq∗

w)−m = 6, as shown in Figure 4.3(d);

- under over location when rank (JJac) < 6 and rank (JJac) +
num (δq∗

w)−m < 6, as shown in Figure 4.3(f).

– Case 3: if Ncp > 6, then the locating scheme is:

- complete over location when rank (JJac) = 6, as shown in

Figure 4.3(b);

- partial over location when rank (JJac) < 6 and rank (JJac) +
num (δq∗

w)−m = 6;

- under over location when rank (JJac) < 6 and rank (JJac) +
num (δq∗

w)−m < 6.

Finally, flowcharts are given in Figure 4.5 to summarize judgment criteria

for different locating schemes.

4.1.4. Analysis of locating scheme incorrectness

Generally speaking, a workable locating scheme is able to constrain the

undesired DOFs of the workpiece. The fixture designer must determine the

layout of the certain number of locators so as to locate the workpiece in the

desired position. In fact, a variety of locating schemes will be obtained by

changing the number and layout of locators, as shown in Figure 4.3. Based on

the three cases discussed in the above section, we can judge the correctness

of the locating scheme. However, it is more important to figure out incorrect
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locating schemes. To do this, an additional three cases are given to analyze the

number and layout of locators.

NoYes

NoYes

NoYes

A

N
cp

N
cp

=6?

Complete

location

Partial over-

location
Under over-

location

rank(J
Jac

)=N
cp

?

rank(J
Jac

)+num(       )-m=6?*

wq

NoYes

A

N
cp
＜6?

rank(J
Jac

)=N
cp

?

rank(J
Jac

)+num(       )-m=6?*

wq

No

Yes NoYes

Partial over-

location

Under over-

location

rank(J
Jac

)+num(       )-m=6?
*

wq
NoYes

Partial location Under- location

rank(J
Jac

)=6?
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Jac

)+num(       )-m=6?*

wq

Partial over-

location

Under over-

location

Complete over-

location

YesNo

YesNo

Figure 4.5. Flowchart verifying different locating schemes

– Case 4: if Ncp < 6, then:

- whenNcp < 6−num (δq∗
w) and rank (JJac) = Ncp and rank (JJac)+

num (δq∗
w)−m < 6, the locator number Ncp is insufficient;

- whenNcp > 6−num (δq∗
w) and rank (JJac) = Ncp and rank (JJac)+

num (δq∗
w)−m < 6, the locator number Ncp is excessive;

- when rank (JJac) < Ncp and rank (JJac) + num (δq∗
w) −m = 6, the

locator number is also excessive;

- whenNcp < 6−num (δq∗
w) and rank (JJac) < Ncp and rank (JJac)+

num (δq∗
w) − m < 6, not only the locator layout is improper, but also the

locator number is excessive;

- whenNcp = 6−num (δq∗
w) and rank (JJac) < Ncp and rank (JJac)+

num (δq∗
w)−m < 6, the locator layout is improper;
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- whenNcp > 6−num (δq∗
w) and rank (JJac) < Ncp and rank (JJac)+

num (δq∗
w) − m < 6, not only the locator layout is improper, but also the

locator number is insufficient.

– Case 5: if Ncp = 6, then:

- when rank (JJac) < Ncp and rank (JJac) + num (δq∗
w) −m = 6, the

locator number is excessive;

- whenNcp = 6−num (δq∗
w) and rank (JJac) < Ncp and rank (JJac)+

num (δq∗
w)−m < 6, the locator layout is improper;

- whenNcp > 6−num (δq∗
w) and rank (JJac) < Ncp and rank (JJac)+

num (δq∗
w) − m < 6, not only the locator layout is bad, but also the locator

number is excessive.

– Case 6: if Ncp > 6, then:

- when rank (JJac) = 6, the locator number is usually excessive;

- when rank (JJac) < 6 and rank (JJac) + num (δq∗
w) − m = 6, the

locator number is excessive;

- when rank (JJac) < 6 and rank (JJac)+num (δq∗
w)−m < 6, not only

is the locator layout wrong, but the locator number is also excessive.

It is worth noting that although the application of a great number of locators

and supports can increase the workpiece stiffness, the addition of a locator

into a fixture may increase the workpiece set-up time, fixture capital cost and

weight, and reduces cutting tool access to the workpiece. Therefore, when

the locator layout is correctly made, the minimum locator number required is

6− num (δq∗
w).

4.2. Analysis of locating scheme correctness

4.2.1. Localization source errors

To establish a general fixture model describing the relationship between

the workpiece position error and the localization source errors, we must

analyze a variety of localization source errors in detail. As shown in

Figure 4.6(a), if the localization source error exists due to the setup errors of
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the locators, the tool-setting point will deviate from its nominal position and

then the position of the contact point with respect to the tool-setting point can

vary. The workpiece will move along with the movement of the contact

points. Here, note that {GCS} and {WCS} denote the global coordinate

system and the workpiece coordinate system, respectively. As shown in

Figure 4.6(b), if another localization source error associated with the

manufacturing default of the locator appears, positions of contact points and

workpiece will vary. The third localization source error as shown in

Figure 4.6(c), is concerned with the manufacturing error of the workpiece. Its

presence will change not only the position of contact point with respect to

locating point, but also lead to the translation and rotation of the workpiece.

Contact point 
Contact point Contact point 

(a) (c)(b)

wq
wq

wq

ct,r k ct,r k cl,r k

Figure 4.6. The locating scheme consists of locators: a) illustration of
the setup error; b) illustration of the manufacturing default of locator; c)

illustration of the manufacturing default of workpiece.

Based on the above analysis of effects of localization source errors on the

workpiece position, the qualitative relationship among the localization source

errors due to workpiece surface and fixture setup errors, the position variation

of locating points with respect to tool-setting as well as the workpiece position

error can be schematically figured out in Figure 4.7.

4.2.2. Fixture modeling

To investigate the quantitative relationship between the localization source

error and the workpiece position error, a fixture model will be established for

the study.
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As is known, a workpiece is theoretically desired to be well kept in the

specified position after it is located in a fixture. However, position variations

of the locating points with respect to tool-setting points induced by the

localization source errors will lead to the movement of the workpiece.

Figure 4.7. Relationship between source error and objective error

k

w

c,r k
cl,r k

l,r k

c,r k
t,r k

f,r k

c t,r k

f

c,r k

w

kn
wr

k

Figure 4.8. Fixture locating scheme

As shown in Figure 4.8, the locating scheme consists of Ncp (k
= 1, 2, ..., Ncp) locators. Suppose that the workpiece is a rigid body with a

surface represented by a piecewise differentiable function in {WCS}.

fw(rw) = fw(xw, yw, zw) = 0 [4.24]
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where rw = [xw, yw, zw]T is the coordinate vector of any point on the

workpiece with respect to {WCS}. Then, at the kth contact point of the

workpiece surface, the equation of tangent plane related to {WCS} is as

follows

ϕw
k (r

w) = nwT
k (rw − rw

c,k) = 0 [4.25]

where nw
k is the unit normal vector of the workpiece surface at the kth contact

point whose coordinate vector is rw
c,k =

[
xw

c,k, y
w
c,k, z

w
c,k

]T

in {WCS}.

If the orientation and position of the workpiece are known, the workpiece

point rw can be mapped from {WCS} to {GCS} by the following

r = T(θθθw)r
w + rw [4.26]

where

T (θθθw) =

⎡
⎣ cβwcγw −cαwsγw + sαwsβwcγw sαwsγw + cαwsβwcγw

cβwsγw cαwcγw + sαwsβwsγw −sαwcγw + cαwsβwsγw

−sβw sαwcβw cαwcβw

⎤
⎦

is an orthogonal rotation matrix with c = cos and s = sin. rw = [xw, yw, zw]
T

denotes the position of the origin of {WCS} in {GCS}. θθθw = [αw, βw, γw]
T is

the orientation of {WCS} with respect to {GCS}.

By substituting equation [4.26] into equation [4.25], the equation of tangent

plane can be rewritten as

ϕk(qw, r) = nwT
k T(θθθw)

T(r− rw)− nwT
k rw

c,k = 0, 1 ≤ k ≤ Ncp [4.27]

where the vector qw = [rw, θθθw]
T = [xw, yw, zw, αw, βw, γw]

T represents six

DOFs of the workpiece.

Likewise, at the kth contact point of the locator surface, we can obtain the

equation of the tangent plane related to {LCS}k

φf
k(r

f) = T(θθθf,k
w )nwT

k (rf − rf
c,k) = 0 [4.28]
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where rf
c,k =

[
xf

c,k, y
f
c,k, z

f
c,k

]T

is the coordinate vector of the kth contact

point represented in the kth locator coordinate system {LCS}k, T(θθθf,k
w ) is a

transformation matrix from {WCS} to {LCS}k.

It is well known that any point rf defined in {LCS}k can be mapped to

{GCS} following

r = T(θθθf,k)r
f + rf,k [4.29]

where

T(θθθf,k) =

[
cβf,kcγf,k −cαf,ksγf,k + sαf,ksβf,kcγf,k sαf,ksγf,k + cαf,ksβf,kcγf,k

cβf,ksγf,k cαf,kcγf,k + sαf,ksβf,ksγf,k −sαf,kcγf,k + cαf,ksβf,ksγf,k

−sβf,k sαf,kcβf,k cαf,kcβf,k

]

is an orthogonal rotation matrix. rf,k = [xf,k, yf,k, zf,k]
T and

θθθf,k = [αf,k, βf,k, γf,k]
T denote the position and orientation of {LCS}k with

respect to {GCS}, respectively.

By substituting equation [4.29] into equation [4.28], the plane tangent to

the kth locator element can be described by the following equation

φk(qf,k, r) = T(θθθf,k
w )nwT

k T(θθθf,k)
T(r− rf,k)− T(θθθf,k

w )nwT
k rf

c,k = 0,

1 ≤ k ≤ Ncp [4.30]

where the vector qf,k = [rT
f,k, θθθ

T
f,k]

T
= [xf,k, yf,k, zf,k, αf,k, βf,k, γf,k]

T

represents position and orientation of the kth locator element.

Thus, the contact between the workpiece and locator k holds at the kth point

if and only if ϕk(qw, rl,k + rcl,k) and φk(qf,k, rt,k + rct,k) are identical, i.e.

ϕk(qw, rl,k + rcl,k)− φk(qf,k, rt,k + rct,k) = 0 [4.31]

where,

rcl,k = rc,k − rl,k [4.32]
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rct,k = rc,k − rt,k [4.33]

In order to study the relationship among the workpiece position error and

the surface errors of workpiece and locators, equation [4.31] is differentiated

with respect to qw, rcl,k and rct,k such that

∂ϕk
∂qw

δqw +
∂ϕk
∂rcl,k

δrcl,k =
∂φk
∂rct,k

δrct,k, 1 ≤ k ≤ Ncp [4.34]

or in a compact form

JJac,kδqw + nwT
k T(θθθw)

Tδrcl,k = T(θθθf,k
w )nwT

k T(θθθf,k)
Tδrct,k [4.35]

with the Jacobian matrix being

JJac,k = [−nw
kx, −nw

ky, −nw
kz, n

w
kzy

w
c,k − nw

kyz
w
c,k,

nw
kxz

w
c,k − nw

kzx
w
c,k, n

w
kyx

w
c,k − nw

kxy
w
c,k]

[4.36]

where δqw represents the practical position errors of the workpiece. δrct,k and

δrcl,k represent the position variations of the contact point with respect to the

tool-setting point and locating point, respectively.

Without the loss of generality, we can always assume that {WCS} and

{LCS}k are identically oriented with {GCS}. Then T(θθθw), T(θθθf,k) and T(θθθf,k
w )

will be unit matrices of I3×3. In this case, the matrix form of equation [4.35]

can be rearranged by representing δqw as a function of δrlt

JJac,kδqw = −(nwT
k T(θθθw)

Tδrcl,k − T(θθθf,k
w )nwT

k T(θθθf,k)
Tδrct,k)

= −nwT
k (δrcl,k − δrct,k)

= −nwT
k δrlt,k

[4.37]

Equation [4.37] can be rewritten in matrix form

JJacδqw = −NTδrlt [4.38]
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with JJac = [JT
Jac,1,J

T
Jac,2, · · · ,JT

Jac,Ncp
]
T
, δrlt = [δrT

lt,1, δr
T
lt,2, · · · , δrT

lt,Ncp
]
T
,

N = diag(nw
1 ,n

w
2 , · · · ,nw

Ncp
).

Generally, δqw can be decomposed into two parts according to

equation [4.38] (see [LAN 85])

δqw = δqs
w + δqh

w

= −JJac
+NTδrlt +

(
I6×6 − JJac

+JJac

)
λλλCon

[4.39]

with δqs
w = −JJac

+NTδrlt, δq
h
w = (I3×3 − JJac

+JJac)λλλCon, JJac
+ ∈ R6×k

is a Moore–Penrose inverse matrix of JJac, and λλλCon ∈ R6×1 is an arbitrary

constant vector.

In the above equation, the first term δqs
w results from the position variation

δrlt of the locating point to the tool-setting, and the second term δqh
w is induced

by the free DOFs of the workpiece, which are not constrained by locators.

To have a good understanding, Figures 4.9(a) and (b) show a 2-D

workpiece constrained by two locators represented by triangles. In both cases,

the workpiece is obviously free to either translate along X direction or rotate

about point O. This means that a non-zero λλλCon exists. On the contrary, the

workpiece is determinately constrained in case of Figure 4.9(c) so that the

second item δqh
w will vanish.

Y

X

Y

X X

Y

Locator 1 Locator 2 Locator 2 Locator 2 Locator 3 

Locator 1 Locator 1 
Workpiece Workpiece

Workpiece
Free direction Free direction

O
O O

Conλ
Conλ

(a) (b) (c)

Figure 4.9. Locating scheme: a) translation along X direction;
b) rotation about point O; c) deterministic constraint
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4.2.3. Locating scheme correctness

4.2.3.1. Locating principle

In principle, design of a locating scheme consists of some basic steps

including the determination of number, layout and dimensions of locators. In

fact, a variety of locating schemes will be obtained by changing the number

and layout of locators as shown in Figure 4.9. The aim of designing a

workable locating scheme consists of first constraining all the undesired

DOFs of the workpiece. Now let us consider the effect of δqh
w in

equation [4.39] upon the variation of the workpiece position. According to

equation [4.39], we can write

JJacδq
h
w = 0 [4.40]

Suppose δq∗
w = [δx, δy, δz, δα, δβ, δγ]T defines the allowable variation of

the workpiece position. There could be certain DOFs required to be

constrained, for instance δx, then δx = 0. Otherwise, a non-zero arbitrary

constant may be attributed to δx.

In practical applications, δq∗
w is the allowable displacement vector

determined in advance based on the machining requirements of the

workpiece. Comparatively, δqh
w calculated by equation [4.40] corresponds to

the real displacement of the workpiece after the locating setup. Now, assume

S(δqh
w) and S(δq∗

w) be the sets of constrained DOFs in δqh
w and δq∗

w,

respectively, relation to S(δqh
w) ⊇ S(δq∗

w) signifies that really constrained

DOFs in δqh
w are equal or more than the desired ones involved in δq∗

w. Hence,

the relationship between δq∗
w and δqh

w determines the correctness of the

locating scheme. From this point of view, six corollaries can be used to verify

the correctness of the locating scheme mathematically dominated by

equation [4.40].

COROLLARY 4.1.–

If rank (JJac) = Ncp = 6, then this is a sufficient and necessary condition

for the complete location.
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COROLLARY 4.2.–

If rank (JJac) = Ncp < 6, i.e. matrix JJac is row full rank, then this is:

– a necessary condition for the partial location and under-location as well;

– a sufficient and necessary condition of the partial location only when

S(δqh
w) ⊇ S(δq∗

w);

– a sufficient and necessary condition for the under-location only when

S(δqh
w) ⊂ S(δq∗

w).

COROLLARY 4.3.–

If rank (JJac) < Ncp, then this is:

– a sufficient and necessary condition for the over-location;

– a necessary condition for the under over-location.

COROLLARY 4.4.–

If Ncp > 6 and rank (JJac) = 6, i.e. matrix JJac is column full rank, then

this is:

– a sufficient necessary condition for the complete over-location;

– a sufficient condition for the over-location.

COROLLARY 4.5.–

If rank (JJac) < Ncp, rank (JJac) < 6 and S(δqh
w) ⊇ S(δq∗

w), then this is:

– a sufficient necessary condition for the partial over-location;

– a sufficient condition for the over-location.

COROLLARY 4.6.–

If rank (JJac) < Ncp and S(δqh
w) ⊂ S(δq∗

w), then this is a sufficient and

necessary condition for the under over-location.
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Finally, a flowchart is given in Figure 4.10 to summarize six corollaries for

the verification of different locating schemes.

partical
over location

under
over location

partical
over location

under
over location

over
location

partial
location

under
location

over
location

complete
over location

complete
location

Input data:N
cp
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*

wq
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Jac

)?
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Jac

)＜N
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N
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)＝N
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N
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＞6

=6

＜6

N
cp 6

S(     )?
h

wq *

wqS(     )

S(     )?*

wqS(     )h

wq

S(     )?*

wqS(     )h

wq yes

yes

yes

no

no

no

N
cp

=6

Figure 4.10. Flowchart verifying different locating schemes

4.2.3.2. Robust design model of locating scheme

After verifying the correctness of a locating scheme by means of the

locating principle equation [4.40] and six corollaries, it is further required to

design the optimal layout and dimensions of locators. As mentioned before,

even if the locating scheme is sound, the position of the workpiece may still

be perturbed due to the localization source errors δrlt, as shown in

Figure 4.11. So, the first term in equation [4.39] consists of

δqs
w = −JJac

+NTδrlt [4.41]

which relates the position error of the workpiece δqs
w to the localization source

errors δrlt.
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Locator 1 Locator 2 

Locator 3

Workpiece

Perturbation

X

Y

ltδr
O

Figure 4.11. The position variation of the workpiece

Due to lots of non-deterministic factors such as manufacturing errors,

measurement errors, assembly errors and mechanical wear will contribute to

δrlt, the latter is characteristic of randomicity. Consequently, δqs
w is also a

stochastic variable. In this study, suppose that δqs
w obeys a normal

distribution as shown in Figure 4.12. Theoretical and mean values of δqs
w are

δq̂s
w = 0 and δq̄s

w = 0, respectively.

O
3 s

wvar(δq ) 3 s

wvar(δq )

s

wδq

Y

Theoretical value
s

w
ˆδq

Practical value s

wδq

Figure 4.12. A normal distribution of δqs
w

Robust design aims at minimizing the fluctuation of δqs
w. Therefore,

according to the quality loss function L(δrlt) of the nominal-is-best

characteristic, we adopt its mean value E {L(δrlt) } as the rule function ν in

robust design, namely

ν(δrlt) = E{L(δrlt)} = E{(δqs
w − δq̂s

w)
2} = E{(δqs

w − δq̄s
w)

2}
= var(δqs

w) [4.42]
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Note that var( · ) means variance. Hence, the optimum design model of

fixture locating scheme corresponds to

find rlt = [rT
lt,1, r

T
lt,2, · · · , rT

lt,Ncp
]
T

min var(δqs
w)

s.t.

G(rlt) ≤ 0

H(rlt) ≤ 0

[4.43]

where G(rlt) ≤ 0 is a geometric constraint condition including feasible layout

regions of locators and effective regions of assembling. H(rlt) ≤ 0 is a

performance constraint condition to control the workpiece position error δqs
w

within the allowable tolerance.

As δrlt and δqs
w are stochastic variables, their maximum valuesES(rlt) and

ES(qs
w) are also stochastic variables. Thus, equation [4.43] can be rewritten

as

find rlt = [rT
lt1, r

T
lt2, · · · , rT

ltk]
T

min var(ES(qs
w))

s.t.

G(ES(rlt)) ≤ 0

H(ES(rlt)) ≤ 0

[4.44]

where, ES(rlt) and ES(qs
w) are referred to as upper deviations of rlt and qs

w,

respectively.

4.3. Analysis of workpiece stability

4.3.1. Modeling of workpiece stability

Two locating schemes are shown in Figure 4.13 with three locators at the

bottom of a prismatic workpiece. During the locating operation, suppose that
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the workpiece is only subject to its gravity force whose center is denoted by

point G. As G is beyond the crosshatched region formed by three locators in

Figure 4.13(a), the workpiece will upset and detach from locator L2 so that it

is unstable and cannot occupy an accurate position. On the contrary, if the

gravity center G is within the crosshatched region as shown in Figure 4.13(b),

the workpiece may be in equilibrium to hold the stability. Based on the

qualitative analysis, we can understand that a stable workpiece should satisfy

both static equilibrium equations and friction constraints in all fixturing steps.

Figure 4.13. Locating scheme with 3 locators: a) gravity center
outside the crosshatched region; b) gravity center

inside the crosshatched region

4.3.1.1. Workpiece static equilibrium constraints

Suppose that a workpiece-fixture system consists of a workpiece, m
locators and n clamps. Denote We = [We1,We2,We3,
We4,We5,We6]

T ∈ R6×1 the external wrench including only cutting force

Wm and the workpiece weight Wg; nk ∈ R3×1, t1k ∈ R3×1 and

t2k ∈ R3×1 the unit inner normal vector and two orthogonal unit tangential

vectors of the workpiece at contact point rk ∈ R3×1 of the kth fixture

element, respectively. Contacts between the workpiece and fixture elements

are considered as frictional contacts.

As shown in Figure 4.14, for the kth fixture element,

fk(t) = fnk + ft1k + ft2k ∈ R3×1 denotes the kth contact force resultant

expressed in the global coordinate system {GCS} with fnk, ft1k and ft2k
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being the three components of fk along nk = [nkx, nky, nkz]
T,

t1k = [t1kx, t1ky, t1kz]
T and t2k = [t2kx, t2ky, t2kz]

T, respectively. Hence,

⎧⎪⎪⎨
⎪⎪⎩

fnk = f c
nknk

ft1k = f c
t1kt1k

ft2k = f c
t2kt2k

, 1 ≤ k ≤ m+ n [4.45]

where f c
k = [f c

nk, f
c
t1k, f

c
t2k]

T is the kth contact force vector in the local

contact coordinate system {CCS}k.

XO
Z

Y
Fixture element k

Workpiece

r
k

n
k

{CCS}
k

t1
k

t2
k

Figure 4.14. Fixturing scheme of the workpiece

When the machining forces and moments vary with respect to time, the

reaction forces and frictions at all fixture elements will correspondingly change

with respect to the machining time. Nevertheless, the workpiece-fixture system

must be in static equilibrium for a stable fixture configuration to be realized

over the machining time. At any instant, the equilibrium equation system of

the workpiece-fixture system is obtained as

∑
k

[
f c
k(t)
rk(t)× f c

k(t)

]
+We(t) = 0 [4.46]

with t being the instantaneous machining time.
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The substitution of equation [4.45] into equation [4.46] results in

∑
k

Gkf
c
k +We(t) = 0 [4.47]

where

Gk = [Gnk,Gt1k,Gt2k] =

[
nk t1k t2k
rk × nk rk × t1k rk × t2k

]
∈ R6×3 [4.48]

is a layout matrix of the kth fixture element.

4.3.1.2. Modeling of the clamping sequence

The workpiece stability is related directly to the clamping sequence. In

general, a workpiece may require multiple clamping steps to keep the

workholding before machining. All these clamping steps will form a

clamping sequence in accordance with loading histories of gravity, clamping

and machining forces. Figure 4.15 illustrates the fixturing scheme of a

workpiece with multiple clamps that can be decomposed into a sequence of

steps. As shown in Figure 4.16, each step has its own contact points and

external forces.

Figure 4.15. Fixturing scheme with multiple clamps

Before studying, it is important to outline the basic difference between a

locator and a clamp. A locator only acts as a passive element to support

clamping and external forces. At the contact point with the workpiece, both
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the normal pressure and tangential friction force exist. A clamp is, however,

an active element that cannot generate frictional forces by itself. The

frictional force related to the current clamp may produce only when a new

clamp is then applied in the next step.

Figure 4.16. Clamping sequence

Now consider the problem illustrated in Figure 4.16. In step 1, suppose

the workpiece is mounted with m = 3 locators. The gravity force serves as

the external loading, i.e.We = Wg that will be balanced by the normal and

frictional forces related to locators. Then, the static equilibrium equation of the

workpiece is given as

Glc0f
c
lc0 = −Wg [4.49]

with

Glc0 = [G1,G2, · · · ,Gm] ∈ R6×3 m [4.50]

f c
lc0 = [(f c

1)
T, · · · , (f c

m)T]
T

= [f c
n1, f

c
t11, f

c
t21, · · · , f c

nm, f
c
t1m, f

c
t2m]T

∈ R3m×1

[4.51]

In step 2, clamp C4 is applied. The set of external forces is enlarged with

the addition of a normal clamping force f c
n(m+1) related to C4. So, the static

equilibrium equation of the workpiece becomes

Glc1f
c
lc1 = −Wg [4.52]
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with

Glc1 = [G1,G2, · · · ,Gm, |G(m+1)] ∈ R6×3 (m+1) [4.53]

f c
lc1 = [(f c

1)
T, · · · , (f c

m)T, |(f c
(m+1))

T]
T

= [f c
n1, f

c
t11, f

c
t21, · · · , |f c

n(m+1), 0, 0]
T

∈ R3(m+1)×1

[4.54]

In step 3, clamp C4 that was an active element becomes now a passive

locator element with the generation of tangential forces at the contact point

of C4. In addition, a normal clamping force f c
n(m+2) associated with clamp

C5 will be exerted so that the static equilibrium equation of the workpiece

becomes

Glc2f
c
lc2 = −Wg [4.55]

with

Glc1 = [G1,G2, · · · ,Gm,G(m+1), |G(m+2)] ∈ R6×3(m+2) [4.56]

f c
lc2 = [(f c

1)
T, · · · , (f c

m+1)
T, |(f c

m+2)
T]

T

= [f c
n1, f

c
t11, f

c
t21, · · · , f c

n(m+2), 0, 0]
T

∈ R3(m+2)×1

[4.57]

By analogy, the static equilibrium equation in step j is generally stated as

Glcjf
c
lcj = −We [4.58]

with

We =

{
Wg, 0 ≤ j ≤ n
Wg +Wm, j = n+ 1

[4.59]
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Glcj = [G1,G2, · · · ,Gm,G(m+1), · · · , |G(m+j)] ∈ R6×3 (m+j)[4.60]

f c
lcj = [(f c

1)
T, · · · , (f c

m)T, (f c
(m+1))

T, · · · , |(f c
(m+j))

T]
T

= [f c
n1, f

c
t11, f

c
t21, · · · , |f c

n(m+j), 0, 0]
T

∈ R3(m+j)×1

[4.61]

4.3.1.3. Friction cone constraints

To prevent the workpiece detachment from the fixture elements in the

fixturing process, the normal forces at any contact point between the

workpiece and fixture element must be in compression such that

f c
nk ≥ 0 [4.62]

t1
k

t2
k

f
k

c

n
k

Figure 4.17. Friction cone

Furthermore, the resultant of normal and frictional forces at any contact

point must also lie within the friction cone to prevent the workpiece from

slipping. In view of Coulomb’s friction law shown in Figure 4.17, it follows

(f c
t1k)

2 + (f c
t2k)

2 ≤ (μkf
c
nk)

2 [4.63]
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where μk is the friction coefficient between the workpiece and the kth fixture

element.

4.3.1.4. Modeling of workpiece stability

In the fixture design, stability analysis is actually concerned with the

evaluation of the workpiece static equilibrium and friction constraints under

given fixturing conditions and machining forces [WAN 01]. Thus, in

clamping sequence j + 1, the necessary and sufficient conditions for a

workpiece to be stable are obtained as

Glcj f
c
lcj = −Wg

s.t.

f c
nk ≥ 0

(f c
t1k)

2 + (f c
t2k)

2 ≤ (μkf
c
nk)

2

[4.64]

where 1 ≤ k ≤ m+ j.

In the particular case of neglecting friction forces, the workpiece stability

model can be simplified as

Glcj f
c
lcj = −Wg

s.t.

f c
nk ≥ 0

[4.65]

If equations [4.64] or [4.65] are satisfied, the workpiece is said to be stable.

In other words, this implies that at least a solution to equations [4.64] or

[4.65] exists. From the mechanistic viewpoint, the workpiece stability can

be classified as locating, clamping and machining stability in detail. Such a

classification is as follows:

– if equation [4.64] has solutions for j = 0, the workpiece is of locating

stability;

– if equation [4.64] has solutions for 1 ≤ j ≤ n, the workpiece is of

clamping stability;
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– if equation [4.64] has solutions for j = n+1 and We = Wg +Wm, the

workpiece is of machining stability.

To do this, almost all existing methods were focused on predicting directly

contact forces satisfying equations [4.64]or [4.65]. Whether the solution is

feasible or not, a complete computing procedure has to be carried out. To

circumvent this inconvenience, we propose below an indirect approach that

transforms the original problem into an equivalent linear programming one.

4.3.2. Solution techniques to the model of workpiece stability

4.3.2.1. Linear programming techniques

In the study of form closure grasps, linear programming techniques were

used by Asada and Kitagawa [ASA 89] to solve kinematic equations. These

techniques are extended here to analyze force closure and force feasibility.

Firstly, consider below a set of linear equations with r ≥ s and bk ≥ 0 (1 ≤
k ≤ s).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · a1rxr = b1
a21x1 + a22x2 + · · · a2rxr = b2

· · · · · ·
as1x1 + as2x2 + · · · asrxr = bs

[4.66]

s.t.

x1, x2, · · · , xr ≥ 0 [4.67]

Mathematically, the solution existence of equations [4.66] and [4.67] can be

examined equivalently by solving the following linear programming problem;

max w = c1x1 + c2x2 + · · ·+ crxr [4.68]
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · a1rxr ≤ b1
a21x1 + a22x2 + · · · a2rxr ≤ b2

· · · · · ·
as1x1 + as2x2 + · · · asrxr ≤ bs
x1, x2, · · · , xr ≥ 0

[4.69]

where,

cj =
s∑

k=1

akj [4.70]

It is important to note that equalities in equation [4.66] are all relaxed into

inequalities in equation [4.69]. Theoretically, it proves that a solution satisfying

equations [4.66] and [4.67] exists if and only if

max(w) =

s∑
k=1

bk [4.71]

4.3.2.2. Workpiece stability without friction

With the above idea in mind, the verification of the workpiece stability

without friction is equivalent to the investigation of the solution existence of

equation [4.65].

Based on equation [4.48], [4.65] is thus developed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1xf
c
n1 + n2xf

c
n2 + · · ·+ n(m+j)x

f c
n(m+j) = −We1

n1yf
c
n1 + n2yf

c
n2 + · · ·+ n(m+j)y

f c
n(m+j) = −We2

n1zf
c
n1 + n2zf

c
n2 + · · ·+ n(m+j)z

f c
n(m+j) = −We3

(n1zy1 − n1yz1)f c
n1 + · · ·+ (n(m+j)z

y(m+j)

−n(m+j)y
z(m+j))f

c
n(m+j) = −We4

(n1xz1 − n1zx1)f c
n1 + · · ·+ (n(m+j)xz(m+j)

−n(m+j)zx(m+j))f
c
n(m+j) = −We5

(n1yx1 − n1xy1)f c
n1 + · · ·+ (n(m+j)yx(m+j)

−n(m+j)xy(m+j))f
c
n(m+j) = −We6

[4.72]

www.EngineeringBooksLibrary.com

http://engineeringbookslibrary.com/


196 Milling Simulation

s.t.

f c
nk ≥ 0, 1 ≤ k ≤ m+ j [4.73]

with −Wek ≥ 0 (1 ≤ k ≤ 6). Denote now a sign function of −Wek

sign(−Wek) =

{
1, −Wek ≥ 0

− 1, −Wek < 0
[4.74]

If two members of equation [4.72] are multiplied simultaneously by

sign(−Wek), then equations [4.72] and [4.73] can be transformed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(−We1)(n1xf
c
n1 + n2xf

c
n2 + · · ·+ n(m+j)x

f c
n(m+j))

= (−We1)sign(−We1)
sign(−We2)(n1yf

c
n1 + n2yf

c
n2 + · · ·+ n(m+j)y

f c
n(m+j))

= (−We2)sign(−We2)
sign(−We3)(n1zf

c
n1 + n2zf

c
n2 + · · ·+ n(m+j)z

f c
n(m+j))

= (−We3)sign(−We3)
sign(−We4)((n1zy1 − n1yz1)f c

n1 + · · ·+ (n(m+j)z
y(m+j)−

n(m+j)y
z(m+j))f

c
n(m+j)) = (−We4)sign(−We4)

sign(−We5)((n1xz1 − n1zx1)f c
n1 + · · ·+ (n(m+j)xz(m+j)−

n(m+j)zx(m+j))f
c
n(m+j)) = (−We5)sign(−We5)

sign(−We6)((n1yx1 − n1xy1)f c
n1 + · · ·+ (n(m+j)yx(m+j)−

n(m+j)xy(m+j))f
c
n(m+j)) = (−We6)sign(−We6)

[4.75]

f c
nk ≥ 0, 1 ≤ k ≤ m+ j [4.76]

Now, a comparison between equations [4.75] and [4.76] and

equations [4.66] and [4.67] shows that both systems have the same form.

Therefore, the following linear programming can be solved:

max w = c1f
c
n1 + c2f

c
n2 + · · ·+ c(m+j)f

c
n(m+j) [4.77]
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(−We1)(n1xf
c
n1 + n2xf

c
n2 + · · ·+ n(m+j)x

f c
n(m+j))

≤ (−We1)sign(−We1)

sign(−We2)(n1yf
c
n1 + n2yf

c
n2 + · · ·+ n(m+j)y

f c
n(m+j))

≤ (−We2)sign(−We2)

sign(−We3)(n1zf
c
n1 + n2zf

c
n2 + · · ·+ n(m+j)z

f c
n(m+j))

≤ (−We3)sign(−We3)

sign(−We4)((n1zy1 − n1yz1)f c
n1 + · · ·+ (n(m+j)z

y(m+j)−
n(m+j)y

z(m+j))f
c
n(m+j)) ≤ (−We4)sign(−We4)

sign(−We5)((n1xz1 − n1zx1)f c
n1 + · · ·+ (n(m+j)xz(m+j)−

n(m+j)zx(m+j))f
c
n(m+j)) ≤ (−We5)sign(−We5)

sign(−We6)((n1yx1 − n1xy1)f c
n1 + · · ·+ (n(m+j)yx(m+j)−

n(m+j)xy(m+j))f
c
n(m+j)) ≤ (−We6)sign(−We6)

f c
n1, f

c
n2, · · · , f c

n(m+j) ≥ 0

[4.78]

where,

ck = sign(−We1)nkx + sign(−We2)nky + sign(−We3)nkz

+ sign(−We4)(nkzyck − nkyzck) + sign(−We5)(nkxzck − nkzxck)
+ sign(−We6)(nkyxck − nkxyck), 1 ≤ k ≤ m+ j

[4.79]

It now turns out that the workpiece is of stability provided that the following

criterion holds

max(w) =
6∑

k=1

(−Wek)sign(−Wek) [4.80]

Alternatively, if the clamping force is specified in advance with f c
n(m+j) =

ιj , the above system can be applied to check its feasibility. If the workpiece

holds the stability for any ιj varying in the interval [0,+∞), the workpiece is

said to be in strong stability. Otherwise, the workpiece is in weak stability if ιj
is limited in a finite interval.
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4.3.2.3. Workpiece stability with friction

As equation [4.63] is quadratic in terms of contact forces, and both f c
t1k and

f c
t2k may take positive or negative values, equation [4.64] cannot be solved

directly by using equations [4.68] and [4.69]. To circumvent this difficulty,

equation [4.62] will be approximately linearized and tangential forces will be

substituted with non-negative variables.

Linear approximation of friction cone [DEM 94]

As shown in Figure 4.18(a), the friction cone is approximated by a

polyhedron whose approximation accuracy can be improved with the increase

of the plane number. Figure 4.18(b) is a projection of 4Npk (Npk is a natural

number) sided polyhedral cone in plane f c
t1k − f c

t2k, with αs being an

inclination angle of the line perpendicular to side s. Thus,

αs =
π

4
+
π

2k
(s− 1), 1 ≤ s ≤ 4Npk, 0 ≤ αs ≤ 2π [4.81]

c

n kf

s

c

k knf

pk4N

pk4 1N

pk4N

Figure 4.18. Linearized friction cone: a) tangent polyhedral cone;
b) projection in plane f c

t1k − f c
t2k

So, any plane of a 4Npk-sided polygon can be described by the equation

μkf
c
nk + f

c
t1k cosαs − f c

t2k sinαs = 0 [4.82]

Consequently, the friction cone constraint is approximated as:

μkf
c
nk + f

c
t1k cosαs − f c

t2k sinαs ≥ 0, 1 ≤ s ≤ 4Npk, 1 ≤ k ≤ m+ j[4.83]
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or,

C4Npkk
f c
lc k ≥ 0, 1 ≤ k ≤ m+ j [4.84]

with the polyhedron matrix being,

C4Npkk
=

⎡
⎢⎢⎣
μk cosα1 − sinα1
μk cosα2 − sinα2
· · · · · · · · ·
μk cosα4Npk

− sinα4Npk

⎤
⎥⎥⎦ ∈ R4Npk×3 [4.85]

Non-negative variable transformation

As done conventionally in linear programming, tangential force

components of f c
t1k and f c

t2k will be represented as a difference between two

non-negative variables with

{
f c
t1k = u1k − v1k
f c
t2k = u2k − v2k

[4.86]

where 1 ≤ k ≤ m+ j ; u1k, v1k, u2k, v2k ≥ 0

Verification of workpiece stability with friction

Based on the above approximation and transformation, equation [4.64] may

be converted into the following standard form

G′
lcj f

′c
lcj = −We

s.t.

f ′clcj ≥ 0

C′
4Npk

f ′clcj ≥ 0

[4.87]
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where

G′
lcj =

[
n1

r1 × n1

t11
r1 × t11

−t11
−r1 × t11

t21
r1 × t21

−t21
−r1 × t21

· · ·
· · ·

nm+j

rm+j × nm+j

t1m+j

rm+j × t1m+j

−t1m+j

−rm+j × t1m+j

t2m+j

rm+j × t2m+j

−t2m+j

−rm+j × t2m+j

]

∈ R6×5(m+j)

[4.88]

f ′clcj = [f c
n1, u11, v11, u21, v21, · · · , f c

n(m+j), u1(m+j), v1(m+j),

u2(m+j), v2(m+j)]
T ∈ R5(m+j)×1

[4.89]

C′
4Npk

=

⎡
⎢⎢⎢⎣
C′

4Npk1

C′
4Npk2

. . .

C′
4Npk(m+j)

⎤
⎥⎥⎥⎦

∈ R4Npk(m+j)×5(m+j)

[4.90]

C′
4Npkp

=

⎡
⎢⎢⎣
μk cosα1 − cosα1 − sinα1 sinα1
μk cosα2 − cosα2 − sinα2 sinα2
· · · · · · · · · · · · · · ·
μk cosα4Npk

− cosα4Npk
− sinα4Npk

sinα4Npk

⎤
⎥⎥⎦

∈ R4Npk×5

[4.91]

Therefore, the workpiece stability with friction can be verified by solving

the following linear programming problem with the same criterion.

max w = c1f
c
n1 + c2u11 + c3v11 + c4u21 + c5v21 + · · ·

+c[5(m+j)−4]f
c
n(m+j) + c[5(m+j)−3]u1(m+j)+

c[5(m+j)−2]v1(m+j) + c[5(m+j)−1]u2(m+j) + c5(m+j)v2(m+j)

[4.92]
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s.t.

diag(sign(−We))G’lcjf
′c
lcj ≤ diag(sign(−We))( −We)

f ′clcj ≥ 0

C ′
4Npk

f ′clcj ≥ 0
[4.93]

c(5k−4) = sign(−We1)nkx + sign(−We2)nky + sign(−We3)nkz+

sign(−We4)(nkzyk − nkyzk) + sign(−We5)(nkxzk − nkzxk)
+sign(−We6)(nkyxk − nkxyk)

c(5k−3) = sign(−We1)t1kx + sign(−We2)t1ky + sign(−We3)t1kz

+sign(−We4)(t1kzyk − t1kyzk) + sign(−We5)(t1kxzk − t1kzxk)
+sign(−We6)(t1kyxk − t1kxyk)

c(5k−2) = −c(5k−3)

c(5k−1) = sign(−We1)t2kx + sign(−We2)t2ky

+sign(−We3)t2kz + sign(−We4)(t2kzyk − t2kyzk)
+sign(−We5)(t2kxzk − t2kzxk) + sign(−We6)(t2kyxk − t2kxyk)

c5k = −c(5k−1)

1 ≤ k ≤ m+ j

[4.94]

4.4. Modeling of the workpiece-fixture geometric default and
compliance

4.4.1. Source error analysis

4.4.1.1. Source errors due to workpiece-fixture geometric default

A workpiece-fixture system is illustrated in Figure 4.19. The workholding

aims to guarantee the finished workpiece feature during the machining

operation. For example, dimension h shown in Figure 4.19 is the machining

requirement of the current machining step with respect to the processing

datum plane AA′ (the upper plane of the workpiece). Note that {CCS}k
denotes the contact coordinate system consisting of the normal unit vector nk

and two orthogonal tangential unit vectors τττk and ηηηk at the kth contact point,

respectively.
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Locator 3Locator 2

Locator 1

Workpiece

Clamp 1

Clamp 2

Machined feature

Chip

thickness

A

h

{WCS}

{GCS}

A

Figure 4.19. Illustration of the workpiece-fixture system

As shown in Figure 4.20(a), source errors relative to geometric defaults

correspond to the setup errors and manufacturing errors of locators and the

workpiece. These errors will finally cause the translation and rotation of the

workpiece, i.e. the so-called workpiece position error (WPE). δh will be the

workpiece machining error (WME) whose value varies along the machined

feature. Moreover, the inconsistent datum error (IDE) is another kind of source

error. As shown in Figure 4.20(c), if the processing datum plane for machined

feature h is not identical with the locating datum plane (the lower plane) and

if the manufacturing default of the processing datum plane, being equal to

Hmax − Hmin, exists with respect to the locating datum plane, the IDE will

occur for dimension h and equals also Hmax −Hmin.

4.4.1.2. Source errors due to workpiece-fixture compliance

It is well known that clamps are used to exert clamping forces to press the

workpiece against locators. However, insufficient clamping forces cannot

prevent the workpiece from slipping or detaching from locators whereas

excessive clamping forces may cause strongly the workpiece deformations

and overall workpiece motions. Therefore, besides gravity and machining

forces, clamping forces have a significant impact on the machining quality.

Mathematically, gravity, machining forces, clamping forces and

corresponding moments may be described by a resultant wrench vector.
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Under their solicitations, three kinds of deformations will occur, i.e. the

locator deformation, the contact deformation and the workpiece deformation

as illustrated in Figure 4.21(a-c).

Locator 1

Locator 2 Locator 3 Locator 3Locator 2

Locator 1

Locator 1 Locator 1

Locator 2 Locator 2 Locator 3Locator 3

Workpiece Workpiece

Workpiece
Workpiece

Machined 

feature

Machined 

feature

Machined 

feature

Machined 

feature

minH

maxH

h

h

P

P

{WCS}

{WCS}

{WCS}

{WCS}

{GCS}{GCS}

{GCS} {GCS}

δh
δh

δhδh

P

P

(a)

(b) (c)

Figure 4.20. Source errors due to geometric default: a) illustration
of the setup-error and manufacturing-error of locator; b) illustration

of the manufacturing default of workpiece locating plane;
c) illustration of the IDE

Contact stiffness

Contact deformations between the workpiece and the fixels can be

characterized by a locally elastic model based on the classical Hertz contact

theory [JOH 85]. Denote Ew,k and Ef,k, as the Young’s moduli of the

workpiece and fixture, respectively, at the kth contact point. νw,k and νf,k are

Possion ratios. Gw,k and Gf,k are the shear moduli of two contact bodies.

R′
w,k, R′′

w,k and R′
f,k, R′′

f,k are the principal radii of the workpiece and the

kth fixel at the kth contact point, respectively. Then the equivalent radius reads

R∗
k =

√
RakRbk [4.95]
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where

Rak =
1

(Ak +Bk)− (Bk −Ak)

Rbk =
1

(Ak +Bk) + (Bk −Ak)

Ak +Bk =
1

2

(
1

R′
w,k

+
1

R′′
w,k

+
1

R′
f,k

+
1

R′′
f,k

)

Bk −Ak =
1

2
[BA1 +BA2]

1
2

BA1 =

(
1

R′
w,k

− 1

R′′
w,k

)2

+

(
1

R′
f,k

− 1

R′′
f,k

)2

BA2 = 2

(
1

R′
w,k

− 1

R′′
w,k

)(
1

R′
f,k

− 1

R′′
f,k

)
cos 2θk

[4.96]

where θk is the angle between planes containing R′
w,k and R′

f,k or R′′
w,k and

R′′
f,k.

P

P

P

Locator 1

Locator 2 Locator 3

Locator 1 Locator 1

Locator 2 Locator 3 Locator 3Locator 2

Workpiece

WorkpieceWorkpiece

Machined

feature

Machined

feature

Machined

feature

{WCS}

{WCS} {WCS}

{GCS}{GCS}

{GCS}

h

h h

δh

δh

δh

After

machining

(a)

(b) (c)

Figure 4.21. Source errors due to workpiece-fixture compliance: a)
illustration of the contact deformation; b) illustration of the locator

deformation; c) illustration of the workpiece deformation.
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An elliptical contact area forms when the 3D workpiece is in contact with

the kth fixel. So major and minor radii of contact ellipse can be written as

ak =

(
Rak

Rbk

) 1
3

ck

bk =

(
Rbk

Rak

) 1
3

ck

ck =

(
3R∗

kf
c
kn

4E∗
k

) 1
3

αk

[4.97]

Thus, the contact deformation in {CCS}k at the kth contact point can be

achieved as

Δc
c,k,n =

(
9f c

kn

16E∗
k
2R∗

k

) 1
3 αk
β2k

Δc
c,k,τττ =

f c
kτττ

8akG
∗
k

γk

Δc
c,k,ηηη =

f c
kηηη

8akG
∗
k

λk

[4.98]

Equation [4.98] is differentiated with respect to the deformations, Δc
c,k,n,

Δc
c,k,τττ, Δc

c,k,ηηη, and the corresponding loads, f c
kn, f c

kτττ, f c
kηηη, such that the contact

stiffness can be obtained as

Kc
c,k,n =

(
6R∗

kE
∗
k
2f c

kn

) 1
3

αkβk

Kc
c,k,τττ =

8akG
∗
k

γk

Kc
c,k,ηηη =

8akG
∗
k

λk

[4.99]
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where, E∗
k ,G∗

k and ν∗k are the equivalent Young’s modulus, shear modulus and

Poisson ratio which can be formulated as

1

E∗
k

=
1− ν2w,k

Ew,k
+

1− ν2f,k
Ef,k

1

G∗
k

=
2− νw,k

Gw,k
+

2− νf,k

Gf,k

1

ν∗k
=

1

2νw,k
+

1

2νf,k

[4.100]

and, αk,βk,γk andλk are the correction factors whose expressions are as

follows:

αk ≈ 1−
[(
Rak

Rbk

)0.0602

− 1

]1.456

βk ≈ 1−
[(
Rak

Rbk

)0.0684

− 1

]1.531

γk ≈ 1 + (1.4− 0.8ν∗k) log
(
ak
bk

)

λk ≈ 1 + (1.4 + 0.8ν∗k) log
(
ak
bk

)
[4.101]

Specially, ifR′
w,k,R′′

w,k andR′
f,k,R′′

f,k tend to be infinite and the kth fixel

has high elastic modulus and cylindrical cross-section, the contact stiffness can

be simplified as

Kc
c,k,n =

2Ew,krf,k

1− ν2w,k

Kc
c,k,τ = Kc

c,k,η =
8Gw,krf,k

2− νw,k

[4.102]

where rf,k is the radius of the fixel at the kth contact point.
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Locator stiffness:

Fixture elements may be modeled as cantilevered beam elements with a

cylindrical cross-section of radius rf,k and length lf,k. Thus, the stiffness of

fixel k in {CCS}k is written as

Kc
f,k,n =

πEf,kr
2
f,k

lf,k

Kc
f,k,τ = Kc

f,k,η =
3πGf,kr

2
f,k

4lf,k

[4.103]

Local stiffness:

Considering the contact stiffness and locator stiffness presented above, we

can write the overall local stiffness terms in each direction at the kth contact

point as follows

1

Kc
kn

=
1

Kc
c,k,n

+
1

Kc
f,k,n

1

Kc
kτ

=
1

Kc
c,k,τ

+
1

Kc
f,k,τ

1

Kc
kη

=
1

Kc
c,k,η

+
1

Kc
f,k,η

[4.104]

4.4.2. Workpiece position error

4.4.2.1. Workpiece position error relative to geometric default
[QIN 06b]

From section 4.4.1.1, we know that only setup-error and manufacturing

error can cause WPE (I) corresponding to the rigid motion of the workpiece.

In this section, a generic mathematical formulation is derived to describe their

relationship.

As shown in Figure 4.22, the workpiece-fixture system consists of m
locators and n clamps. rc,k = [xc,k, yc,k, zc,k]

T is the coordinate vector of the

kth contact point measured in {GCS}. nk, τττk and ηηηk denote the unit inner
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normal vector and two orthogonal unit tangential vectors of the workpiece at

the contact point rc,k, respectively. {LCS}k is the locator coordinate system.

When, {WCS} and {LCS}k are assumed to be identically oriented with

{GCS}. The WPE (I) measured in {GCS} reads

JJacδq
[I]
w = −NTδrc [4.105]

where δq
[I]
w =

[
δrT

w, δθ
T
w

]T
= [δxw, δyw, δzw, δαw, δβw, δγw]

T is the measure

of WPE (I). JJac =
[
JT

Jac,1,JT
Jac,2, ... ,JT

Jac,m

]T
and N = diag (nw

1 , n
w
2 , ... ,n

w
m)

are the Jacobian matrix and the normal vector matrix with

JJac,k = [−nw
kx, −nw

ky, −nw
kz, n

w
kzy

w
c,k − nw

kyz
w
c,k,

nw
kxz

w
c,k − nw

kzx
w
c,k, n

w
kyx

w
c,k − nw

kxy
w
c,k]

[4.106]

and nw
k =

[
nw
kx, n

w
ky, n

w
kz

]T

at the kth contact point, respectively. δrc is the

resultant error vector consisting of setup-error and manufacturing error of

locators as well as manufacturing error of workpiece. It worth mentioning

that the significance of δrc is the position variation of the locating datum with

respect to the tool-setting datum whose detailed discussion can be found in

[QIN 06b].

l

c ,kr

{WCS}

{GCS}

Workpiece

kn

w

c ,kr

kτ

kη

f ,kr

k{ CCS }

k{ LCS }

Locator k

Figure 4.22. Workpiece-fixture system
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Generally, if the locating scheme is sound, the workpiece position error

δq
[I]
w can be solved as

δq
[I]
w = −JJac

+NTδrc [4.107]

with JJac
+ being a Moore-Penrose inverse matrix of JJac.

4.4.2.2. Workpiece position error relative to local deformation [QIN 05]

As stated above, the WPE (II) is due to local deformation. Without loss

of generality, we can always assume that {WCS} is identically oriented with

{GCS}. It can be therefore demonstrated that the WPE (II), denoted by δq
[II]
w =[

δrT
w, δθθθ

T
w

]T
, and the local deformation vector of all locators, denoted by Δc

l =[
(Δc

1)
T, ..., (Δc

m)T
]T

, have the following relationship

Eδq
[II]
w = T (θθθ)Δc

l [4.108]

where, E =
[
ET

1 , ...,E
T
m

]T
and T (Θ) = diag (T (θθθ1) , ...,T (θθθm)) are the

location matrix of locators and the system transformation matrix, respectively.

Ek =

⎡
⎣1 0 0 0 zw

c,k −yw
c,k

0 1 0 −zw
c,k 0 xw

c,k

0 0 1 yw
c,k −xw

c,k 0

⎤
⎦ [4.109]

and

T (θθθk) = [nk, τττk,ηηηk] [4.110]

According to Hooke’s law, Δc
l =
(
Kc

l

)−1
f c
l .

Here, Kc
l = diag

(
Kc

1, ...,K
c
m

)
= diag

(
Kc

1n,K
c
1τ ,K

c
1η, ...,K

c
mn,

Kc
mτ ,K

c
mη

)
is the local stiffness matrix. f c

l =
[
(f c

1)
T, · · · , (f c

m)T
]T

=

[f c
1n, f

c
1τ , f

c
1η, · · · , f c

mn, f
c
mτ , f

c
mη]

T is the contact force vector. If the located
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workpiece is deterministically in an equilibrium state, the following equation

will hold:

δq
[II]
w = E+T (θθθ) (Kc

l )
−1f c

l [4.111]

where E+ is a Moore–Penrose inverse matrix of E.

Note that δrc in equation [4.107] is known whereas f c
l in equation [4.111] is

unknown. Therefore, contact forces f c
l must be determined firstly. To this end,

we can apply the principle of the total complementary energy stating that for

all statically admissible forces satisfying equilibrium, the actual state of forces

(the one corresponding to kinematically compatible displacements) leads to an

extreme value for the total complementary energy Π∗[PIL 94]. The latter has

the form of

Π∗ = U∗ −W ∗ [4.112]

For a workpiece-fixture model as described in equation [4.111], as the

workpiece is assumed to be rigid and contacts between the workpiece and the

fixture elements are considered as frictional point-wise contacts with friction

coefficient μk, the complementary strain energy is only concerned with

deformable fixels

U∗ =
1

2
(f c

l )
T(Kc

l )
−1f c

l [4.113]

In our case, as the prescribed displacement vector δc
l is zero, the related

potentialW ∗ is also zero with

W ∗ = (f c
l )

Tδc
l = 0 [4.114]
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Consequently, f c
l can be obtained by finding the extreme value of the

following problem:

find f c
l

min
1

2
(f c

l )
T(Kc

l )
−1f c

l

s.t.

(static equilibrium constraints)Glf
c
l = −We −Gaf

c
a

(contact condition) NTT (θθθ) f c
l ≥ 0

(friction cone constraints) Hf c
l ≥ 0

[4.115]

where We is the wrench vector consisting of gravity, machining forces and

their corresponding moments.

Gl =

[
n1 ... nm

rc1 × n1 ... rcm × nm

]
[4.116]

Ga =

[
nm+1 ... nm+n

rc(m+1) × nm+1 ... rc(m+n) × nm+n

]
[4.117]

are the locator configuration matrix and the clamp configuration matrix,

respectively.

f c
a =

[(
f c
m+1

)T
, · · · , (f c

m+n

)T
]T

=
[
f c
(m+1)n, 0, 0, · · · , f c

(m+n)n, 0, 0
]T

[4.118]

is the active clamping force vector.

H = diag
(
H4Ncp1

, ...,H4Ncpm

)
[4.119]
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is the overall matrix describing the linear approximation of the friction cone.

The latter consists ofm sub-matrices with:

H4Ncpk
=

⎡
⎢⎢⎢⎢⎣
μk − cosα1 − sinα1
... ... ...
μk − cosαs − sinα2
... ... ...
μk − cosα4Ncp − sinα4Ncp

⎤
⎥⎥⎥⎥⎦ , (k = 1, · · ·,m) [4.120]

with the inclined angle

αs =
π

4
+
π

2k
(s− 1) , 1 ≤ s ≤ 4Ncp [4.121]

4.4.3. Machining error analysis

The machining error refers to the deviation of the actual dimension from

the theoretical one. Due to the existence of WPE, IDE and workpiece elastic

deformation (WED) of the workpiece-fixture system, the machining error is

unavoidable and should be controlled within an allowable variation range, i.e.

dimensional tolerance. Machining errors include linear and angular

dimension errors fundamentally as those are generated by the relative

position/motion of the cutting-tool with respect to the processing datum. As

the motion path of the cutting-tool is assumed to be planned for the

machining operation, the evaluation of machining errors can be equivalently

transformed into the evaluation of the variation of processing datum with

respect to the {GCS} if the workpiece is considered to be rigid, as shown in

Figure 4.20(a, c) and Figure 4.21(a, b). In this section a systematic modeling

is presented to show how source errors influence the machining error.

4.4.3.1. Machining error relative to geometric default

As shown in Figure 4.23, rP = [xP, yP, zP]
T and rw

P = [xw
P , y

w
P , z

w
P ]

T are

the coordinate vectors of the processing datum point P in {GCS} and {WCS},

respectively. Therefore the relationship between rw
P and rP can be described as

rP = T (θθθw) r
w
P + rw [4.122]
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Processing

datum point Workpiece

Contact

point

{GCS}

{WCS}

Locator k

P

k
{ LCS }

w

Pr

Pr
w

c ,kr

l

c ,kr

c ,kr

f ,kr

Figure 4.23. Machining error relative to geometric default

Note that the system transformation matrix, T (θθθw), will be a unit matrix

if {WCS} has the same orientation with {GCS}. In this case, it is easily

demonstrated that the machining error relative to the geometric default can be

evaluated by differentiating equation [4.122].

δr
[I]
P = EPδq

[I]
w + δr

w[I]
P [4.123]

with

EP =

⎡
⎣1 0 0 0 zw

P −yw
P

0 1 0 −zw
P 0 xw

P

0 0 1 yw
P −xw

P 0

⎤
⎦ [4.124]

where δr
[I]
P is the machining error of the linear dimension. δq

[I]
w is the WPE (I)

due to the workpiece-fixture geometric default and is derived from

equation [4.107]. δr
w[I]
P refers to IDE of point P.

In fact, equation [4.123] is the velocity composition law of a kinematic

particle. The physical meanings of δr
[I]
P , δr

w[I]
P and EPδq

[I]
w are the absolute

velocity, the relative velocity and the transportation velocity of point P,

respectively. In order to have a good understanding, we denote v
[I]
a = δr

[I]
P ,
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v
[I]
r = δr

w[I]
P and v

[I]
t = EPδq

[I]
w = v

[I]
w + ω

[I]
w × rw

P . In the last expression,

v
[I]
w = [δxw, δyw, δzw]

T and ω
[I]
w = [δαw, δβw, δγw]

T denote the linear velocity

and angular velocity of the origin of{WCS}, respectively.

It is worth noting that the machining error model of the linear dimension

described by equation [4.123] can be extended to evaluate the machining error

of the angular dimension.

In Figure 4.24, suppose that line P1P2 denotes the processing datum of an

angular dimension. Similarly, linear velocities, v
[I]
r1 and v

[I]
r2, at point P1 and P2

can be obtained following equation [4.123]

v
[I]
r1 = δr

[I]
P1 = EP1δq

[I]
w + δr

w[I]
P1 [4.125]

v
[I]
r2 = δr

[I]
P2 = EP2δq

[I]
w + δr

w[I]
P2 [4.126]

Workpiece

Processing

datum line

{WCS}

Contact point

{GCS}

{LCS}
k

Locator k

P
1

P
2

w

2Pr

w

1Pr

2Pr

1Pr

w

c,kr

c,kr c,

l

kr

f,kr

wr

Figure 4.24. Machining error of angular dimension

Then, the linear velocity v
[I]
12 of the datum line P1P2 can be defined

according to the theoretical mechanics [CHE 89]

v
[I]
12 = v

[I]
r1 − v

[I]
r2 [4.127]
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Then, the relationship between the linear velocity v
[I]
12 and the angular

velocity of the reference line P1P2 is given as

ωωω[I]
12 × r12 = v

[I]
12 [4.128]

with r12 = rP1 − rP2.

So the angular velocity of line P1P2 is obtained as

ωωω[I]
12 = v

[I]
12 ×

r12

‖r12‖2
= − 1

‖r12‖2
r12 × v

[I]
12 [4.129]

Combing equation [4.123] with equation [4.129], the locating error of the

angular dimension with respect to the datum line can be determined by

δθθθ[I]
12 = − 1

‖r12‖2
[(Ωw

P1 − Ωw
P2) , (Ω

w
P2 − Ωw

P1)]

[
δrP1
δrP2

]
[4.130]

where

Ωw
k =

⎡
⎣ 0 −zw

k yw
k

zw
k 0 −xw

k

−yw
k xw

k 0

⎤
⎦ , k = P1, P2 [4.131]

4.4.3.2. Machining error relative to workpiece-fixture compliance

Similarly to equation [4.123], the machining error δr
[II]
P resulting from the

workpiece-fixture deformations can be derived as

δr
[II]
P = EPδq

[II]
w + δr

w[II]
P [4.132]

where δr
w[II]
P is the workpiece deformation of the processing datum point P

mentioned qualitatively in Figure 4.21(a). It is worth noting that δr
w[II]
P can be

computed as the nodal displacement based on the commercial finite element

software. Conversely to equation [4.115], we will solve the mathematical
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programming problem defined by the complementary strain energy of the

workpiece

find fw

min
1

2
(fw)

T(Kw)
−1fw

s.t.

(Static equilibrium constraints) Glf
c
l = −We −Gaf

c
a

(Contact condition) NTT (θθθ) f c
l ≥ 0

(Friction cone constraints) Hf c
l ≥ 0

[4.133]

where, Kw is the workpiece stiffness matrix. fw is the external load vector

including the gravity fg, the machining force fm, the clamping force f c
a and

corresponding contact force fl = T (θθθ) f c
l at locators.

When contact forces fl are computed at all locators by commercial FEM

software, the workpiece deformation can be simultaneously derived as

Uw = (Kw)
−1fw [4.134]

Similarly, equation [4.132] can also be interpreted as the velocity

composition law of the kinematic particle. v
[II]
a = δr

[II]
P means the absolute

velocity, v
[II]
r = δr

w[II]
P is the relative velocity, and

v
[II]
t = EPδq

[II]
w = v

[II]
w + ωωω[II]

w × rw
P corresponds to the transportation velocity

with v
[II]
w = [δxw, δyw, δzw]

T and ωωω[II]
w = [δαw, δβw, δγw]

T of the linear

velocity and angular velocity of the origin of {WCS}.

4.4.3.3. Overall machining error

In the previous sections, we focused our efforts on modeling the

machining error relative to geometric defaults and deformations of the

workpiece-fixture system independently. Now we will evaluate the overall

machining error resulting from all source errors in the workpiece-fixture

system.
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As a resultant velocity can be expressed as a vectorial combination of all

components, the overall machining error of a datum point on the workpiece in

{GCS} can be obtained by combining equations [4.123] and [4.132]

δrP = EPδqw + δrw
P [4.135]

with

δqw = δq
[I]
w + δq

[II]
w , δr

w
P = δr

w[I]
P + δr

w[II]
P [4.136]

A flowchart is given in Figure 4.25 to summarize the whole procedure for

the computation of the overall machining error. From an engineering

application point of view, some simplifications can be made to improve the

computation efficiency [DEM 01, RON 99]. If the workpiece is characteristic

of strong stiffness, the geometric variation and local deformation will

dominate the machining error such that

δqw = δq
[I]
w + δq

[II]
w , δr

w
P = δr

w[I]
P [4.137]

In the extreme case, the source error relative to local contact deformations

may be further negligible such that equation [4.137] becomes

δqw = δq
[I]
w , δr

w
P = δr

w[I]
P [4.138]

Alternatively, if the workpiece material is substantially softer than the

fixture elements, the elastic deformation of the workpiece may be dominant.

equation [4.136] can be thus simplified as

δqw = δq
[I]
w , δr

w
P = δr

w[I]
P + δr

w[II]
P [4.139]

Likewise, in the extreme case when the source error relative to geometric

defaults is negligible, equation [4.139] becomes

δrw
P = δrw[II]

P [4.140]
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Figure 4.25. Computing procedure of the overall machining error

4.5. Optimal design of the fixture clamping sequence

4.5.1. Effect of clamping sequence on high-stiffness workpiece

If a workpiece is of high-stiffness, the local deformation will be the main

factors influencing the workpiece quality [DEM 01]. On the contrary, if the

workpiece material is substantially softer than the fixture elements, the elastic

deformation of the workpiece may be dominant. Therefore the effects of the

clamping sequence on the workpiece quality can be analyzed following the

workpiece stiffness.

4.5.1.1. Description of multiple fixture elements

When multiple clamps are set up one by one onto the workpiece with

known force magnitudes, directions and placements [COG 92], the clamping

sequence will influence the redistribution of resultant contact forces generated

between the workpiece and fixture elements (fixels). As shown in Table 4.1,

the clamping sequence can be decomposed into basic clamping steps and

each step possesses its own passive and active elements with corresponding

passive and active forces. From the above description, locators and clamps

will act as passive and active elements, respectively. However, an active
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clamp applied in the present step will serve as a passive element in the next

step when a new clamp is applied. This is because tangential frictions will

occur. Physically, clamping forces are frequently controlled by a hydraulic or

pneumatic actuator. A summary of elements and forces in each clamping step

is shown in Table 4.1.

Table 4.1. Passive and active elements and
contact forces in clamping steps

4.5.1.2. Mathematical modeling of clamping sequence

In section 4.5.1.1, the clamping sequence is qualitatively illustrated. Now,

let us study the clamping sequence and related contact forces quantitatively. In
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each clamping step, contact forces must satisfy static equilibrium equations of

the workpiece.

– Step 1: given the set of passive fixels characterized by layout matrices

G1, G2, . . ., Gm, only Wg is applied as the external gravity force vector onto

the workpiece as listed in Table 4.1. Then, the static equilibrium system of

equations of the workpiece is dominated by

G
(1)
P f

(1)
P = −Wg [4.141]

where the configuration matrix and the resultant contact force vector of total

passive elements in step 1 are

G
(1)
P = [G1,G2, · · · ,Gm] [4.142]

f
(1)
P = [f

(1)T
P1 , f

(1)T
P2 , · · · , f (1)TPm ]

T

= [f
(1)
1n , f

(1)
1τττ , f

(1)

1ξξξ , · · · , f
(1)
mn, f

(1)
mτττ , f

(1)

mξξξ]
T

[4.143]

– Step 2: the first clamp numbered m+1 is now set up as an active element

with a prescribed clamping force fa (m+1) applied to the workpiece whereas

previous locators (k = 1, 2, . . . ,m) are passive elements. Therefore, the

current static equilibrium equation system can be obtained as

G
(2)
P f

(2)
P = −Wg − Gm+1fa(m+1) [4.144]

where the configuration matrix of passive elements, G
(2)
P , is identical to G

(1)
P

and the resultant contact force vector of all passive elements in step 2 is

f
(2)
P = [f

(2)T
P1 , f

(2)T
P2 , · · · , f (2)TPm ]

T

= [f
(2)
1n , f

(2)
1τττ , f

(2)

1ξξξ , · · · , f
(2)
mn, f

(2)
mτττ , f

(2)

mξξξ]
T

[4.145]

– Step 3: suppose that the second active clamp numbered m+2 is put in use

to the workpiece with a known clamping force of fa (m+2). Note that clamp

m+1 used in step 2 now becomes a passive element with the presence of

frictional forces. Therefore, the current static equilibrium equation system of

the workpiece can be written as

G
(3)
P f

(3)
P = −Wg − Gm+2fa(m+2) [4.146]
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where the configuration matrix of passive elements, G
(3)
P , is an extension of

G
(2)
P with

G
(3)
P = [G

(2)
P ,Gm+1] [4.147]

and the resultant contact force vector of total passive elements in Step 3 is

f
(3)
P = [f

(3)T
P1 , f

(3)T
P2 , · · · , f (3)TP(m+1)]

T

= [f
(3)
1n , f

(3)
1τττ , f

(3)

1ξξξ , · · · , f
(3)
mn, f

(3)
mτττ , f

(3)

mξξξ, f
(3)
(m+1)n, f

(3)
(m+1)τττ, f

(3)

(m+1)ξξξ]
T

= [f
(3)
1n , f

(3)
1τττ , f

(3)

1ξξξ , · · · , f
(3)
mn, f

(3)
mτττ , f

(3)

mξξξ, f(m+1)n, f
(3)
(m+1)τττ, f

(3)

(m+1)ξξξ]
T

[4.148]

– Through analogy, the static equilibrium equation in Step j is generally

stated as

G
(j)
P f

(j)
P = −We − Gm+j−1fa(m+j−1) [4.149]

where Gk (k = 1, . . . ,m+ n) and faj (j = 1, . . . , n) are the layout matrix and

active contact force vector at the kth fixture element.

We =

{
Wg, 2 ≤ j ≤ n+ 1

Wg +Wm, j = n+ 2
[4.150]

is the external load vector applied to the workpiece in step j.

4.5.1.3. Determination of contact forces in the clamping sequence

For a 3D workpiece clamped in step j, as its fixture generally consists of

m ≥ 6 locators and n = j − 1 clamps, there exist 3(m + j − 2) unknown

components of contact forces to be determined in equation [4.149], which is

indeterminate from the equilibrium viewpoint. True force components of f
(j)
P

will be evaluated based on the principle of minimum total complementary

energy for (m+ j − 2) passive fixture elements.

As shown in Table 4.1, f
(j−1)
P and f

(j)
P denote resultant contact forces of

dimensions 3(m + j − 3) × 1 and 3(m + j − 2) × 1 in step j-1 and step j,
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respectively. By introducing a new notation for resultant contact forces f
(j−1)
P

in step j-1,

f ′(j−1)
P =

⎧⎨
⎩

03m×1, j = 1

[f
(j−1)T
P , zT

3 ]
T
, 2 ≤ j ≤ n+ 2

[4.151]

with

z3 = [0, 0, 0]T [4.152]

f
(j)
P −f ′(j−1)

P represents then the force increment of dimension 3(m+j−2)×1
generated in step j.

Contact forces f
(j)
P can be determined by means of the principle of the total

complementary energy. The latter states that among all statically admissible

stress/forces satisfying equilibrium, the actual state of stress/forces (the one

corresponding to kinematically compatible displacements) leads to an extreme

value for the total complementary energy Π [PIL 94, HUR 02] with

Π = U∗ −W ∗ [4.153]

Since the workpiece is assumed to be rigid, our workpiece-fixture model

is only concerned with deformable fixels whose complementary strain energy

associated with the force increment from step j − 1 to step j is expressed as

U∗ =
1

2
(f

(j)
P − f ′(j−1)

P )
T
(K

(j)
P )

−1
(f

(j)
P − f ′(j−1)

P ) [4.154]

Note that the above expression is approximate if the stiffness matrix varies

with respect to the contact forces.

Moreover, the potential of prescribed displacements, W ∗, equals zero as

prescribed displacements, δd
(j)
P , are equal to zero in our case

W ∗ = (f
(j)
P − f ′(j−1)

P )
T
δd

(j)
P = 0 [4.155]
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Therefore, the contact force vector of f
(j)
P in step j can be obtained by

finding the extreme value of the following nonlinear programming problem

min
1

2
(f

(j)
P − f ′(j−1)

P )
T
(K

(j)
P )

−1
(f

(j)
P − f ′(j−1)

P )

s.t.

G
(j)
P f

(j)
P = −We − Gm+j−1fa(m+j−1)

N
(j)T
P T(θθθ(j)

c )f
(j)
P ≥ 0

C
(j)
4k f

(j)
P ≥ 0

T(j)
z f

(j)
P = f (j)a

[4.156]

Here, the first set of constraints refers to equilibrium that must be verified

to be statically admissible f
(j)
P . The second and third sets refer to unilateral

and friction constraints required to ensure the attachment and no slipping

between the workpiece and the fixels. The last constraint set refers to the

known clamping forces exerted by hydraulic clamps. Below are details of

related terms:

K
(j)
P = diag(K

(j)
p1 ,K

(j)
p2 , · · · ,K(j)

p(m+j−2))

K
(j)
Pk = diag(K

(j)
kn ,K

(j)
kτττ ,K

(j)

kξξξ )

N
(j)
P = diag(n1,n2, · · · ,n(m+j−2))

T(θθθ(j)
c ) = diag(T(θθθc1),T(θθθc2), · · · ,T(θθθc(m+j−2)))

T(θθθck) = [nk, τττk, ξξξk]
C

(j)
4l = diag(C4l1, C4l2, · · · , C4l(m+j−2))

T
(j)
z = diag(Z3, · · · , Z3︸ ︷︷ ︸

m

, U3, · · · , U3︸ ︷︷ ︸
j−2

)

Z3 = diag(0, 0, 0)
U3 = diag(1, 0, 0)

f
(j)
a = [zT

3 , · · · , zT
3︸ ︷︷ ︸

m

, fT
a(m+1), f

T
a(m+2), · · · , fT

a(m+j−2)]
T

[4.157]
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4.5.2. Effect of clamping sequence on low-stiffness workpiece

In this case, deformations of fixels are considered to be relatively

negligible with respect to those of the workpiece. Compared to

equation [4.156], the mathematical programming problem will be formulated

as

min
1

2
(f

(j)
w − f ′(j−1)

w )
T
(Kw)

−1(f
(j)
w − f ′(j−1)

w )

s.t.

G
(j)
P f

(j)
P = −We − Gm+j−1fa(m+j−1)

N
(j)T
P T(θθθ(j)

c )f
(j)
P ≥ 0

C
(j)
4l f

(j)
P ≥ 0

T(j)
z f

(j)
P = f (j)a

[4.158]

where Kw denotes the workpiece stiffness matrix of 3r × 3r (r is the nodal

number). f
(j)
w denotes the external load vector of 3r×1 consisting of the gravity

force fg, the machining forces fm and corresponding contact forces f
(j)
P at

locators, including frictions between the workpiece and fixture elements.

From equation [4.158], it is known that contact forces f
(j)
P in step j depend

on contact forces f
(j−1)
P in step j − 1. Therefore, f

(j−1)
P must be equivalently

applied to the workpiece in way of initial stresses for the evaluation of f
(j)
P with

the commercial FEM software. In the meantime, the increment of displacement

vector δd
(j)
w can be obtained for the evaluation of total displacement vector.

δδδ(j)w = δδδ(j−1)
w + δd

(j)
w [4.159]

where δδδ(j−1)
w and δδδ(j)w are the workpiece deformations in step j-1 and step j,

respectively.
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4.5.3. Optimization of clamping sequence

Due to the effect of clamping sequence on the workpiece machining

accuracy, it is necessary to model the clamping sequence and then find the

optimal one to ensure the machining accuracy.

4.5.3.1. Optimization of clamping sequence for high-stiffness
workpiece

Local deformation analysis of the workpiece-fixture system

Without the loss of generality, consider the local deformation of the

workpiece-fixture system in step j. The matrix form of the solution can be

expressed as follows at all contact points

Δd
(j)
P = (K

(j)
P )

−1
f
(j)
P [4.160]

where

Δd
(j)
P = [Δd

(j)T
P1 ,Δd

(j)T
P2 , · · · ,Δd

(j)T
P(m+j−2)]

T
[4.161]

Deviation of the position and orientation of the workpiece

Consider a workpiece as shown in Figure 4.26. r
(j)
w and θθθ(j)

w represent the

position and orientation of the workpiece with respect to {GCS} in step j,
respectively. rw

k = [xw
k , y

w
k , z

w
k ]

T is the position of the kth contact point in the

{WCS}. When {WCS} is assumed to be aligned with {GCS}, the variation

of the position and rotation of the workpiece, Δq
(j)
w , produced by the local

deformation, Δd
(j)
P , of passive elements obeys

E
(j)T
P Δq

(j)
w = T(θθθ(j)

c )Δd
(j)
P [4.162]

with

Δq
(j)
w = [Δr

(j)T
w ,Δθθθ(j)T

w ]
T

= [Δx
(j)
w ,Δy

(j)
w ,Δz

(j)
w ,Δα

(j)
w ,Δβ

(j)
w ,Δγ

(j)
w ]

T
[4.163]
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E
(j)
P = [E

(j)
P1 , E

(j)
P2 , · · · , E(j)

P(m+j−2)] [4.164]

E
(j)
Pk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 zw

k −yw
k

−zw
k 0 xw

k

yw
k −xw

k 0

⎤
⎥⎥⎥⎥⎥⎥⎦ [4.165]

w
rk

( )

wr
j nk

k

k

rk

Fixel k

Figure 4.26. Coordinate system of a workpiece-fixture system

Optimization of clamping sequence

According to equation [4.162], given a clamping sequence, the location

accuracy of the workpiece in step j can be calculated. However, it is possible

to specify different clamping sequences for the same fixture consisting of m
locators and n clamps and each sequence may give rise to a variant location

accuracy of the workpiece. Thus, the optimal clamping sequence corresponds

to the solution minimizing the deviation of location accuracy in the final step

n+ 2.

min Δ =

√
Δq

(n+2)T
w Δq

(n+2)
w

s.t.

E
(n+2)T
P Δq

(n+2)
w = T(θθθ(n+2)

c )Δd
(n+2)
P

Δd
(n+2)
P = (K

(n+2)
P )

−1
f
(n+2)
P

[4.166]
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Note that the objective function Δ is a function of the clamping sequence.

4.5.3.2. Optimization of clamping sequence for low-stiffness workpiece

Similarly, the optimal clamping sequence for a low-stiffness workpiece can

be achieved by minimizing the maximum module of nodal deflection of the

workpiece in the final step. Based on equation [4.159], the following model

can be used to this end.

min Δ = max
l

√
(
∥∥∥δδδ(n+2)

wl

∥∥∥)
= max

l
(

√
(δx

(n+2)
wl )

2
+ (δy

(n+2)
wl )

2
+ (δz

(n+2)
wl )

2
)

s.t.

δδδ(n+2)
wl =

n+2∑
j=1

δd
(j)
wl , (1 ≤ l ≤ r)

[4.167]
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